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The Lorentz deformation property of the phase-space distribution function is studied for harmon-

ic oscillators. The overlap effect of two distribution functions is discussed in detail. It is shown that

the Lorentz deformation of the phase-space distribution is responsible for the polynomial cutoff be-

havior of the proton form factor in the harmonic-oscillator quark model.

I. INTRODUCTION

The phase-space representation of quantum mechan-
ics' is of current interest. We have shown in our pre-
vious papers ' that the light-cone coordinate system is
the natural language for the Lorentz-covariant phase
space representation of quantum mechanics. The
Lorentz-deformed phase-space distribution was discussed
in detail for localized light waves and harmonic oscilla-
tors. It was shown in Ref. 6 that the covariant harmonic
oscillator ean illustrate the Lorentz-deformed phase-
space distribution for a relativistic free particle with a
space-time extension.

The purpose of the present paper is to study the over-
lapping phase-space distributions functions. We are of
course interested in Lorentz-deformed distributions, and
in how their eAect manifests itself in the real world. For
this purpose, we shall study the electromagnetic structure
of nucleons. Because the radius of the proton is 10 times
smaller than that of the hydrogen atom, the proton had
long been thought to be a point particle. However,
Hofstadter's discovery in 1955 clearly demonstrated that
the proton has a spread-out charge distribution.

Although there had been many attempts to understand
the structure of nucleon since 1955, the first comprehen-
sive approach to the probability distribution of hadronie
matter was the quark model, in which the nucleon is a
bound state of three quarks. Among the mathematical
models for this bound state, the harmonic-oscillator mod-
el gives a simple explanation for a wide range of hadronic
phenomena observed in high-energy physics labora-
tories. " While the major strength of the oscillator
model is its mathematical simplicity, its most useful
property for our present purpose is that the oscillator
model constitutes a representation of the Poincare
group. ' ' The harmonic-oscillator model can be made
covariant.

Another important property of the oscillator model is
that it is the natural language for phase space. ' '
Therefore the harmonic-oscillator model is an eff'ective
scientific language for the covariant description of phase
space. We shall study in this paper overlapping distribu-
tion functions in the covariant phase-space formulation
of harmonic oscillators.

In Sec. II we summarize the earlier works on overlap-
ping phase-space distribution functions and their physical
interpretations. Section III explains how the form factor
is defined and why a Lorentz-covariant formalism is
needed for studying the form factor. Section IV deals
with the covariant phase-space distribution functions
which are needed for calculating the form factors. In
Sec. V we study how the overlap of two Lorentz-
deformed phase-space distribution functions lead to the
correct form-factor behavior in the harmonic-oscillator
model for hadrons.

II. OVERLAPPING PHASE-SPACE
DISTRIBUTION FUNCTIONS

If g(x ) is a solution of the time-independent
Schrodinger equation, its phase-space distribution func-
tion is

W&(x,p)= —f P*(x +y)P(x y)e '~~dy . —

For simplicity, we shall use the term "PSD function" for
phase-space distribution function. This is a function of x
and p which are c numbers. This function is real but is
not necessarily positive everywhere in the two-
dimensional phase space of x and p. We can, however,
recover the positive distribution functions in the position
and momentum coordinates by integrating the PSD func-
tion over p and x, respectively, '

p(x)= f W&(x,p)dp, o(p)= f W&(x,p)dx .

In this paper, we are interested in two overlapping
PSD functions. Indeed, the overlap integral becomes the
absolute square of the inner product of the two wave
functions in the Schrodinger picture. If W&, (x,p) and

W&(x,p) are the PSD functions for tit(x) and P(x), respec-
tively, then'

f W&(x,p) W&(x,p)dx dp =( I /2tr) ~(P(x), g(x) ) ~

This expression is non-negative, but can be zero if the
two functions are orthogonal, indicating that the PSD
functions are not always positive everywhere in phase
space.
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In studying the interaction of a photon with an atomic
system, we often encounter the matrix element of the
form

M/, =(P,e' '"g) . (4)

This is the inner product of the wave functions P and g'
with f'=e' g. Thus we have to construct the PSD func-
tion for P',

W~, (x,p)= —j1(*(x+y)t((x —y)e '~ '
dy .

This leads to

W~, (x,p)=W~(x, (p —k)) .

Therefore

~(P, e' "Q)~ =2~f W~(x, p)W~(x, (p —k))dx dp . (7)

FIG. l. Elastic electron-proton scat tering. The electron
behaves like a point charge. However, the proton has its ha-
dronic structure, and has a spread-out charge distribution.

We have thus far carried out the formalism for one-
dimensional space. The generalization to the three-
dimensional space is straightforward and has been dis-
cussed in the literature. '

to

e [U(P/)1 „(P/, P, )U(P, )](1/K )[U(k/)y" U(k, )],

III. FORM FACTORS

If electrons are scattered by a charged point particle,
the scattering amplitude in the Born approximation is

f (0)=2me /(k& —k, ) . On the other hand, if the elec-
tron is scattered by a spread-out charge due to quantum
probability distribution, the scattering amplitude is

where P;, P&, k, , and k& are the initial and final four-
momenta of the proton and electron, respectively. U(P, )

is the Dirac spinor for the initial proton. We use here the
four-vector convention x"=(x,y, z, t) Kis the fo. ur-2

momentum transfer squared given by

f (0)=(2me /K )F(K ) . K =K —Ko =(P/ P, ) =(k, ——k/) (12)

where K=k&. —k, , and K =(k& —k, ) . F(K ) is called
the form factor and takes the form

F(K )=(g/, e ' "g, )=f [g/(x)] g;(x)e ' "d'x,

with F (0)= 1, if the initial- and final-state wave functions
are the same. If j [g&(x)] g, (x)] describes a point-charge
distribution with 6(x), F(K )=1 for all values of K .
According to Eq. (3), the form factor should take the
form

~F(K ) = f W&(x, p) W;(x, (p —K))d x d'p . (10)

This is a generalization of Eq. (7) to the three-
dimensional space.

As the energy of incoming electrons becomes higher
for the fixed nucleon target, K becomes very large, and
the problem becomes relativistic. For the electromagnet-
ic interaction of point particles, we have to use quantum
electrodynamics, where the scattering amplitude is ex-
panded in a power series of the fine-structure constant
a = e /4~ in the Lorentz-Heaviside unit. The lowest
nontrivial term in this expansion is essentially a relativis-
tic version of the Born approximation.

In lowest order in a, we can describe the scattering of
an electron by a proton using the diagram given in Fig. 1.
The corresponding matrix element is given in many text-
books on elementary particle physics. ' It is proportional

The 1/K factor in Eq. (11) comes from the virtual pho-
ton being exchanged between the electron and the pro-
ton. In the metric we use, the quantity is positive for
physical values of the four-momenta for the particles in-
volved in the scattering process.

The function I „(P&,P, ) in Eq. (11) represents the
closed circle in Fig. 1 and carries the effect of the nucleon
structure. If the proton were a point charge, we would
have I „=y„. If the proton has an extended charge
structure, we will be inclined to write it as I „=y„F(K ).
However, the proton and neutron have anomalous mag-
netic moments whose values are 2.79 and —1.91 in units
of e/2M for the proton and neutron, respectively, where
M is the nucleon mass. If we include these observed
anomalous magnetic moments, I „should be written as

I „,=y„F,(K )+i(o.„,JC /2M)F, (K ) . (13)

GM(K )=F, (K )+F2(K ),
G~(K )=F,(K )+(K /4M )F2(K ) .

(14)

These form factors should be written for the proton and
the neutron separately. We may use the superscripts p
and n to distinguish them. When K =0,

The form factors are scalar functions in the Lorentz-
invariant variable K . When we compare F, (K ) and
F(K ) with experimental data, it is more convenient to
use the following linear combinations:
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GQ(0) =p„=2.79, Gg (0)= 1 (proton);

GM(0)=p, „=—1.91, Gg(0)=0 (neutron) .

These numbers are the magnetic moments and electric
charges of the proton and neutron, respectively.

Among the many attempts to understand the form fac-
tors, the quark model appears to be the most promising
approach. ' ' In this model, the nucleon consists of
three nonstrange quarks. There are two nonstrange
quarks called u (up) and d (down) which have electric
charges —', and —

—,
' respectively. The proton consists of

two u quarks and one d quark, and the neutron is made
up of one u quark and two d quarks. The neutron charge
is therefore zero, while the proton charge is 1.

Indeed, one of the early successes of the quark model
was the calculation of the magnetic moment ratio
pn /pp 3

However, it is even more chal lenging to
calculate the form factors for increasing values of K . ' '
At present, we can make the following experimental ob-
servation. For the four form factors in the nucleonic sys-
tem given in Eq. (14), the neutron charge form factor is
zero at K =0, and remains small (not zero) for all values
of K . ' The three remaining form factors decrease like
1/(K ) as K increases beyond the value of the nucleon
mass squared. This behavior is usually called the dipole
fit. We are interested in the question of whether each of
the form factors can be written in terms of the single
form factor G (K ), multiplied by a constant, where
G(K ) is normalized as G(0)=1, and is proportional to

1/(K ) for large values K, as is illustrated in Fig. 2. In
the case of the neutron charge form factor, we have to
multiply G(K ) by zero within the framework of the
model in which the spin, unitary spin, and spatial wave
functions are factorized. ' The question is whether it is
possible to calculate the above-mentioned dipole behavior
of G (K ) using the wave functions obtained from the
quark model.

Another important aspect of the quark model is that
the forces between the quarks are like harmonic oscilla-
tors, and the hadronic mass spectrum is consistent with
the equal mass-squared spacing predicted by the oscilla-
tor model ~

'' In addition, the parton distribution shows
a Gaussian shape in the region where the structure func-
tion can be measured accurately. "

It is therefore a reasonable approach to calculate the
nucleon form factor assuming that the nucleon is in the
ground state of a harmonic-oscillator system. However,
the Gaussian distribution gives an exponential cutoff of
the type exp( —K /40), where SI is the spring constant
of the oscillator system. This contradicts the experimen-
tal observation, as is indicated in Fig. 2. It is therefore
interesting to see whether the effect of Lorentz deforma-
tion in phase space could transform this exponential de-
crease into a polynomial cutoff.

IV. COVARIANT PHASE-SPACE
DISTRIBUTION FUNCTIONS

The covariant phase-space representation for harmonic
oscillators has been discussed in Ref. 6. As in Ref. 6, we
start with two quarks bound together by a harmonic-
oscillator potential. Then the convenient coordinate vari-
ables are"

Point Charge X =(x, +x„)/2, x =(x, —xb)/2&2 . (16)

0. 1
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FIG. 2. Form-factor behaviors for increasing values of K . If
the proton is a point charge, the form factor should be indepen-
dent of K, as is illustrated by the horizontal line. If the charge
distribution is Gaussian, the nonrelativistic calculation leads to
an exponential cutoff in K . The relativistic calculation gives a
reasonably accurate description of the real world. At present,
the experimental data are available for GM(K ), GF(K'), and
G~(K ) from K =0 to 25, 15, and 7 (QeV/c), respectively.
They are all consistent with the relativistic calculation with
Lorentz deformation.

z'=(z —Pr )/(1 —P')'", (19)

r'=(r —Pz)/(1 —P )'

Since the x and y variables are not affected by boosts

With these variables, the hadronic wave function takes
the form

cp(X, x) =e-' t(t(x), (17)
where P is the hadronic four-momentum. The wave
function f(x) describes the internal motion of the two-
quark system. The preceding form as a representation
space of the Poincare group' for relativistic extended
hadrons has been discussed in the literature. '

As for the four-momenta of the quarks p, and p&, we
can combine them into the total four-momentum and
momentum-energy separation between the quarks, '

~=~. +co (18)
where P is the hadronic four-momentum conjugate to X.
The internal momentum-energy separation q is conjugate
to x provided that there exist wave functions which can
be Fourier transformed.

If the hadron moves along the z direction with velocity
parameter P, the hadronic rest frame is important. In
this frame, the coordinate variables are

x'=x, y'=y,



2832 Y. S. KIM AND E. P. WIGNER 39

along the z direction, and since the harmonic-oscillator
system is separable in the Cartesian coordinate system,
we can drop these variables from the wave function. It is
important to note that t and t' in Eq. (19) are the time-
separation variables between the quarks. It was shown
that the ground-state harmonic-oscillator function for the
moving hadron takes the form

1
J&(u, q„)=—exp

1 P—„z+ 1+P
1+P 1 —P

The PSD function W&(u, q„;v, q, ) can be separated into
two phase spaces consisting of (u, q„) and (v, q„), respec-
tively. When the hadron is at rest with /3=0, this PSD
function is localized in the regions

1/2
1

t/'(z, t) = exp[ —Q(z'~+t'~)/ 2] . (20)
(u +q„)&1, (v +q, )(1. (27)

0 is the spring constant for the oscillator system. For
simplicity, we can use the unit where 0=1, and restore
this factor when we are ready to compare our calculation
with experimental data.

This wave function can be written in the light-cone
coordinate system, where the coordinate variables are

When the hadron moves, these regions undergo elliptic
deformations.

It is straightforward to generalized the preceding cal-
culation to the three-quark system in the harmonic-
oscillator regime. ' ' If we let x„xb, and x, be the
space-time coordinates of the quarks, it is more con-
venient to use the variables

and

u =(t +z) //2, v =(t —z)/&2, (21)
X =

—,'(x, +x„+x,),
r= —'(x +xb —2x~ ), s = ~(xb x~ )

(28)

q„=(q, —qo)/&2, q, , =(q, +qo)/v'2 . (22)
and their conjugate variables,

In this coordinate system, the Lorentz boost of Eq. (19)
takes a form

pa+ps+pc ~

p +pb 2p. k +3(pb po) .
(29)

[
I+P

1/2

V
1+P t

1 —P

q„'=
' 1/2

1+P
1 —P

q„, q,
' = 1—

1+/3

1/2

1 I —P p 1+f3
exp + V

2 1+f3 1 —
/3

The wave function of Eq. (20) then becomes
1/2

t( (8tz)= — exp[ —(u' +v' )/2]
1

1/2
1

(23)

(24)

In terms of these variables, the covariant harmonic-
oscillator wave function for the three-particle bound sys-
tern takes the form

P&(r, s) =(1/~)exp[ —(0/2)(r', +r'o+s', +s'o)], (30)

V. CALCULATION OF THE FORM FACTOR

where, as in Eq. (20), the transverse components have
been ignored. The primed coordinate variables are those
in the hadronic rest frame. This function can also be
written in terms of the light-cone coordinate variables,
just as in the case of Eq. (24). It is then straightforward
to construct the covariant phase-space distribution func-
tion.

2

1
8'&(u, q„;v, q, )= — J [f&(u +x, v +y)]*

X g&(u —x, v —y)

X exp[2i(q„x +q„,y ) ]

Xdx dy . (25)

After the evaluation of this integral, the PSD function be-
comes

with

W&z(u, q„;v, q, , ) =Jts(u, q„)J &(v, q, ),

The Lorentz-deformation property of this wave function
has been discussed in the literature. '

For the ground state, the PSD function can now be
defined as~

g(K ) =exp( —K /40) . (31)

We use g (K ), instead of G (K ), for the two-body bound
state. This expression does not lead to a polynomial
cutoff for large values of E, and therefore is not con-
sistent with the real world as is described in Fig. 2. The
story is the same for G (K ) for the three-body bound
state.

We are interested in the question of whether the

Let us now go back to the expression for the form fac-
tor in Eq. (10). Since the harmonic-oscillator model gives
a reasonable description for the mass spectrum of non-
strange baryons, and since the shape of the proton struc-
ture function shows a Gaussian behavior where the ex-
perimental data are accurate, '' we are compelled to cal-
culate the nucleon form factors with the ground-state
harmonic-oscillator wave function.

For a two-body bound state, the nonrelativistic calcula-
tion without the Lorentz-deformation effect gives the
form factor of the form



39 COVARIANT PHASE-SPACE REPRESENTATION AND. . . 2833

nqu qu

Over lap

Lorentz-deformed
Distributions
8 =0.8
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FICx. 3. Breit frame for electron-nucleon scattering. The
momentum of the outgoing nucleon is equal in magnitude but
opposite in direction to that of the incoming nucleon.

Lorentz effect on the Gaussian distribution will lead to a
dipole fit. For this purpose, let us go to the Lorentz
frame in which the momenta of the incoming and outgo-
ing nucleons have an equal magnitude but opposite signs,
as is described in Fig. 3. Then

Pf+P; =0 .

The Lorentz frame in which this condition holds is usual-
ly called the Breit frame. We assume that the proton
comes in along the z direction and goes out along the neg-
ative z direction after the scattering process. In this
frame, the four-vector K=(kf —k;)=(P; —Pf) has no
timelike component. Thus the exponential factor
exp( i K x) —can .be replaced by the Lorentz-invariant
form exp( —iK x).

We can use the covariant harmonic-oscillator wave
function discussed in Sec. IV for the proton. If we as-
sume for simplicity that the proton is a bound state of
two quarks, and the form factor should take the form

FIG. 4. Lorentz-deformed phase-space distribution functions
and their overlaps. According to Eq. (27), the J& function of
Eq. (26) is localized within a circular or elliptic region. As the
momentum transfer increases, the PSD functions become
separated. Without Lorentz deformation, the PSD functions
become completely separated in the overlap integral of Eq. (35).
This lack of overlap is the cause of an unacceptable exponential
cutoff in K'. However, the Lorentz-deformed PSD functions
maintain a small overlapping region as K' increases. This leads
to a polynomial decrease of the form factor.

X W&(u, (q„—K+2; v, (q„—K /+2) )

Xdu dq„du dq„. (36)

Then, in terms of the J&z function defined in Eq. (26),
g (K ) takes the simpler form

g(K )=2~fJ &(u, q„) &J(u, (q„—K/&2))du dq„.

(37)

This overlap integral of the PSD function is illustrated in
Fig. 4. The evaluation of this integral is straightforward,
and the result is

tor can then be computed from the overlap integral of
two Lorentz-deformed PSD functions,

g(K )i

=(2n) f W &(u, q„;v, q, )

g(K')= f gf(x)g, (x)e ' "d x . (33)
g(K )=[2M'/(2M'+K')]

g (K') = f g' z(z, r)gz(z, r)e ' 'dz dr . -

In terms of the light-cone variables,

g (K ) = f P* &(u, v)g&(u, v)e ' '" "'~ du dv,

(34)

(35)

where K is the magnitude of the vector K. The form fac-

Then the only difference between this form and the non-
relativistic cases is that the integral of Eq. (33) requires
an integration over the timelike variable. This time-
separation variable has been thoroughly discussed in the
literature. ' '' If /3 is the velocity parameter for the in-
coming proton, g, and gf in Eq. (33) should be replaced
by g& and P ~ of Eq. (24), respectively. The form-factor
integral in the Breit frame takes the form

XexpI —M K /[2Q(2M +K )]I (38)

This expression becomes the nonrelativistic form of Eq.
(31) for small values of K and becomes 1 for K =0. It
decreases like 1/K as K becomes large, but does not de-
crease like 1/(K ) . How are we going to get an extra
1/K factor?

Since there are three quarks inside the nucleon, there
are two oscillator modes. We can therefore expect that
each mode will contribute a 1/(K ) factor to give the net
decrease of 1/(K ) as K becomes very large. The gen-
eralization of the form factor calculation to this three-
quark system is straightforward, ' ' ' for the harmonic-
oscillator wave functions. Since the oscillator wave func-
tions are separable, the construction of the PSD function
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is also straightforward. The result of the calculation is

G (K ) = [2M /(2M +K ) ]

XexpI —M K /[B(2M +K )]] (39)

which is 1 at K =0, and decreases as 1/(K ) . The be-
havior of this function is illustrated in Fig. 2.

The experimental curves are nicely summarized in Ref.
22. For protons, the data for the magnetic and electric
form factors are available from K =0 to 25 and 15
(GeV/c), respectively. For neutrons, the data for the
magnetic form factor is available from K =0 to 7
(GeV/c) . All these data are consistent with the form
given in Eq. (39) and illustrated in Fig. 2.

As for the charge form factor of neutrons, the
coefficient to be multiplied to G (K ) of Eq. (39) is zero in

the harmonic-oscillator model in which only the ground
state is taken into account. However, the observed neu-
tron charge form factor is not zero for nonzero values of
K . This is a clear indication that excited oscillator
states should also be taken into account. This point has
been discussed by Hussar and Haberman in their recent
paper in the conventional harmonic-oscillator formal-
ism.

Throughout this paper, we ignored the effect of spins
and assumed that the nucleon form factor can be decom-
posed into the form of Eq. (13) in the quark model.
Indeed, there are models in which the quark spins can be
combined for the nucleon to give the form of Eq. (13).
On the other hand, we still do not know how to treat the
spins in the covariant phase-space formalism. This is a
challenging future problem.
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