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Precise nonvariational calculation of the positronium negative ion
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The three-body Schrodinger equation is solved directly for the ground state of the positronium
negative ion by using a rapidly convergent correlation function hyperspherical harmonic method,
which involves no adjustable parameters. The inclusion of 169 hyperspherical functions yields the
ground-state energy 0.26200486 a.u. , which is converged to an error in the seventh significant
figure. Expectation values of different functions of interparticle distances as well as the two-photon
annihilation rate are calculated and compared with those obtained by variational calculations.

In the last few decades a great amount of variational
work' has been done on wave functions and expecta-
tion values of the positronium negative ion
Ps (e+e e ). The binding energy of this system and its
decay rate were measured recently by Mills. ' In lowest
order, the decay width I of the positronium ion is pro-
portional to the density (6(r») ) of electrons at the posi-
tron, '

clustering structure of the system. A factor P is expand-
ed into the hyperspherical harmonics and satisfies the
Schrodinger equation, written in atomic units as

(
—~ V + V')P=EP,

with the effective velocity-dependent potential V' deter-
mined' by the true potential V and the correlation factor

I =2~a C(6(r„))
=100.938C(6(r») ) nsec

p2V'= —(Vine)V —
—,
' + V . (3)

Here, C=1+g and g=g]+g2+q3, where g] accounts
for radiative corrections' [g, = —a(5/n —m/4)], r)z for
three-photon annihilation" [r)z= —4a(~/3 —3/7r)], and

g3 for bound-state and relativistic effects, which have not
yet been calculated. The values of (6(r») ), computed in
previous works ' are 0.020713, 0.020730, and 0.020733,
respectively, which correspond to the widths 2.0908C,
2.0924C, and 2.0928C nsec '. For C = 1+g, +g2=0.996 824, they correspond to 2.0842, 2.0858, and
2.0861 nsec '. The experiment currently gives
2.09+0.09 nsec ', which with current experimental accu-
racy agrees with all above-mentioned theoretical values.
However, a feasible order-of-magnitude increase in the
experimental precision clearly demands better
knowledge of the expectation values (6(r») ) in order to
test relativistic and radiative corrections and ground-
state contributions to the decay rate.

The purpose of this work is to calculate the disputed
quantities once again as well as to obtain expectation
values of different functions of the interparticle distances,
including the Hamiltonian, with the help of the correla-
tion function hyperspherical harmonic method. This
method was developed recently by the present au-
thors' ' and is designed to provide analytically and lo-
cally correct wave functions, generally unobtainable by
the variational method. The method consists of present-
ing a wave function P as a product of two factors, P=gP,
where g is chosen to account for the singular and/or

&=exp[ —y(r, &
+ rz& )

—6r,z], (4)

often employed in calculations of symmetric S states of
two-electron systems. The parameters y and 6 are
chosen in such a way as to incorporate the most impor-
tant features of the wave function. The residual wave

Here V' is the six-dimensional gradient. As was demon-
strated in the example of the ground and excited states of
the helium atom, ' ' our method allows a very precise
direct solution of the three-body Schrodinger equation.
A wave function calculated by this method converges to a
true solution at every point in absolute and uniform
fashion, and not "on the average, " as in variational ap-
proaches. That enforces similar convergence for the ex-
pectation values of different operators. Another impor-
tant feature of the wave function is its correct analytic
structure. The double coalescent points can be exactly
taken into account in the correlation function g, and the
radial dependence of function P is given analytically by
the logarithmic-power-series expansions' ' resulting
from direct solution of the Schrodinger equation. Thus
the logarithmic terms, which were anticipated by
Bartlett' and Fock, ' are taken into account automati-
cally and precisely. The energies and other expectation
values' ' calculated with this wave function have an
accuracy available earlier only in very elaborate varia-
tional calculations.

We use here the correlation function,
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TABLE I. Convergence of eigenvalues (a.u. ) for the ground state of the positronium negative ion for
asymptotic, uncorrelated variational, variational, and uncorrelated cusp parametrizations.

0

8
12
16
20

Asymptotic
{0.362,0)

0.192 79
0.244 03
0.252 45
0.256 12
0.258 12
0.259 33

Uncorrelated
variational
(0.3437,0)

0.185 15
0.241 50
0.251 38
0.255 56
0.257 73
0.259 06

Variational
(0.367,—0.044)

0.211 82
0.246 81
0.253 19
0.256 30
0.258 28
0.259 44

Uncorrelated cusp
(0.5,0)

0.206 69
0.246 58
0.264 85
0.261 11
0.262 07
0.262 12

function p, which is expanded in hyperspherical harmon-
ics, contains a minimum of hyperangular dependence,
and therefore its hyperspherical expansion is rapidly con-
vergent.

There are three obvious ways to choose these parame-
ters. ' ' They are, respectively, based on the following
requirements: (i) absence of Coulomb singularities in the
equation for function y [cusp parametrization'
y =MZ /(M + 1 ), 5 = —0.5], (ii) minimal energy
configuration (variational parametrization' ), corre-
sponding to the minimum of

&xlHlx&
&xlx&

y+6
8y'+ sy5+6'

X 2y y —2Z (5+4y)M+1
M

+(1+5)(5y +4y5+5 )

and (iii) proper asymptotic behavior of the correlation
function [asymptotic parametrization '

y = &MIAMI/(M +I),
where 5=0]. Here M is the ratio of the mass of the
nonidentical particle to that of like particles. Clearly, the
cusp parametrization is expected to work best for small

systems, such as the ground-state helium atom, where
electrons are close to a nucleus and to each other. The
asymptotic or variational parametrizations should be
most appropriate for loosely bound and clustered sys-
tems, such as the positronium negative ion considered
here, where particles are located far away from each oth-
er. This system is adequately represented as a positroni-
um core with an extra loosely bound and nearly uncorre-
lated electron. An alternative description could be given
by the uncorrelated cusp parametrization
y =MZ/(M + 1), 5=0. This last choice takes care of the
singularity of interaction between close particles and
neglects those between distant particles. It turned out to
be an excellent choice for excited helium, ' and it was
natural also to consider it in the present computation.

The eigenvalues' E for the positronium negative ion,
obtained with different sets of parameters (y, 5), are given
in Table I. The table allows us to choose the parametriz-
ation that corresponds to the fastest convergence. This
turns out to be the uncorrelated-parametrization. The
asymptotic, variational, and uncorrelated-variational pa-
rametrizations [the last one is obtained by variation of y
in (5) with 5 fixed at zero value] give, obviously, far less
accurate results. Table II summarizes the eigenvalues E
of Eq. (2) and the expectation values of the true Hamil-
tonian H = —

—,'V + V (which, in our approach, are not
automatically equal to each other' ) obtained by in-
clusion into the expansion of P, 49, 81, 121, and 169 hy-
perspherical functions, corresponding to maximum glo-
bal angular momenta K =24, 32, 40, and 48, respective-

TABLE II. Eigenvalues E and expectation values (0 ) (a.u. ) of the Hamiltonian operator for the ground state of the positronium
negative ion when the uncorrelated cusp parameters are employed. The number of digits indicates the numerical precision of the cal-
culated value. The last entry gives the result of the variational calculations (Refs. 1, 2, 4, 5, and 7).

40 Variational

—E
—(H)

0.261 964 226
0.262 000

0.262 025 526 4
0.262 003 4

0.262 009 899
0.262 004 47

0.262 002 413 0
0.262 004 857

0.261 995 6"
0.262 001 1"

0.262 004 895'
0.262 005 065"
0.262 005 070'

'Reference 1.
Reference 2.

"'Reference 4.
"Reference 5.
'Reference 7.
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TABLE III. Expectation values (a.u. ) of various functions of interparticle distances for the ground-state positronium negative ion.
The number of digits indicates the numerical precision of the calculated value. The table contains also variational results (Refs. 1, 4,
5, 6, and 7).

K

24
32
40
48

49
81

121
169

—2

0.279 23
0.279 335 8
0.279 332 0
0.279 309 7

0.339 89
0.339 751
0.339 809 4
0.339 831 3

0.020 712
0.020 741 3
0.020 737 5

0.020 730 3

5.483
5.497 1

5.491 082
5.488 352

2

48.31
48.63
48.459
48.379 317

(F13123 )

0.091 05
0.090 843 3
0.090 917 11
0.090 949 23

Variational 0.339 8'
0.339 821 02"

0.020 713'
0.020 730'
0.020 733'

5.489 1'
5.506
5.489 633 3

48.393 6'
48.415 2'
48.75'
48.418 936b

24
32
40
48

49
81

121
169

—2

0.036 11
0.035 979 2
0.036 017 95
0.036 034 51

0.155 81
0.155 483
0.155 602 0
0.155 654 3

6(I 12 )

0.000 188 97
0.000 184 094 9
0.000 181 826 9
0.000 180 151 7

P"
12

8.536
8 ~ 563 2
8.551 381
8.546 11129

2
112

92.98
93.60
93.258
93.100 697 0

0.06078
0.060 629 5

0.060 684 08
0.060 707 79

Variati onal

'Reference 4.
Reference 7.

'Reference 5 ~

Reference 1.
'Reference 6.

0.155 6'
0.155 631 90"

0.000 171 29'
0.000 171 5'

8.547 6'
8.580'
8.548 580 8

93.128 3"'

93.171 4'
93.94
93.178 633

ly. Table III displays expectation values of various func-
tions of interparticle distances. The results in both
Tables II and III are calculated with the uocorrelated
cusp parametrization.

The convergence pattern of the energy values in the
Table II indicates that our final ground-state energy
0.26200486 computed as the expectation value of the
Hamiltonian for K =48 has an error only in the seventh
decimal place. %'ith this precision it agrees very well
with the values given by the most sophisticated variation-
al calculations, ' ' which use hundreds of variational pa-
rameters. The agreement among averages of powers of
interparticle distances calculated by us and by the varia-
tional method is also very good and on the same level as
the agreement among different variational calculations.
Our value of 0.020730 for the electron density (5(r,3) )
at the position coincides exactly with the value obtained
by Bhatia and Drachman under the restriction of the
correlation factor being symmetric under interchange of
the electrons, a condition which was also employed in the
present work. However, as follows from Table III, the
probability (5(r, z) ) of two electrons to be found at the
same point is rather different in our present direct calcu-
lation and the variational calculation. This could reAect
the difticulty of reproducing the electron-electron cusp
(not taken into account explicitly in the exponential
correlation factors in both computations) with the help of
the sum of smooth continuous terms.

Summing up, we have solved directly the three-body

Schrodinger equation for the positronium negative ion
with the help of the correlation function hyperspherical
method. Our present results show that this method pro-
vides a very accurate solution not only for the system of
two light and one heavy particle, such as the helium
atom, ' ' but also for the system of particles with com-
parable masses. Our positronium ion ground-state ener-
gy and expectation values agree very well with the results
of the most recent variational calculations, and the
two-photon annihilation rate of 2.0858 nsec coincides
precisely with that calculated in Ref. 5. Our results were
obtained with the correlation function which contains the
electron-positron cusps exactly. This guarantees a
smoothness of the factor P and therefore a fast conver-
gence of the hyperspherical expansion. In particular, the
correct analytic structure of the wave function t( is as-
sured in the vicinity of the electron-positron coalescence
points. This renders a very accurate 5(r&3) expectation
value, which depends solely on the values of the wave
function at the coalescence points. Hence our annihila-
tion rate should be rather reliable. The expected increase
in the experimental precision would allow us to test this
number and the present understanding of quantum elec-
trodynamic corrections.

The authors thank Dr. R. Drachman for pointing out
several recent references on variational calculations of
Ps
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