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Quantum electrodynamics based on self-fields, without second quantization:
Apparatus dependent contributions to g —2
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Using a formulation of quantum electrodynamics which is not second quantized, but rather based
on self-fields, we calculate the energy shifts of an electron bound by a magnetic field in the vicinity
of an infinite-plane conductor. We confirm the recent result of Kreuzer that the energy shift arising
from the plate-induced change in the magnetic moment, Ap/p= —e/4Rm, is exactly canceled by a
similar change hm/m = —a/4Rm in the mass. Thus no change occurs in the spin-precession fre-
quency to order n/Rm, in agreement with Brown et al. This cancellation of the two effects resolves
an apparent controversy in recent literature over whether such a shift to the spin-precession fre-
quency co, occurs. There is, however, a boundary-induced change in the cyclotron frequency co,
which we calculate in the quantum result as Ace, /co, =a/8Rm to order e. Our method of approach
is novel in that it uses only the self-field to compute radiative corrections; there are no vacuum Auc-
tuations.

I. INTRODUCTION

It has long been known that radiative energies are
shifted in the presence of boundaries. Perhaps the most
famous example of this phenomenon is the Casimir effect,
whereby two parallel-plane conductors experience a force
of attraction, usually explained as due to the boundary
condition demanded upon the surrounding electromag-
netic vacuum fluctuations. ' However, the concept of
zero-point fluctuations is not the only way to explain this
effect; precisely the same attraction between the plates
can be derived in the absence of hypothetical field fluc-
tuations if one includes instead self-field effects emanating
from the plates themselves. Similarly, the long-range
Casimir-Polder van der Waals force between an atom and
a conducting surface can be computed by coupling the
atom to the surface through the intermediary of the
zero-point fluctuations, or by considering the effect of
the boundary on the self-field of the electron in the ab-
sence of any of the vacuum fields. Finally, these two
rather different points of view, vacuum fluctuations (VF)
versus self-fields (SF), lead to the same result when one
computes the effect of a boundary upon the rate of spon-
taneous emission or upon the Lamb shift of an atom.

While the SF approach is classically grounded in the
theory of radiation reaction —the VF method has no
classical analogue, since the classical solution to the
homogeneous Maxwell equations is usually taken as
3„:—0, stochastic electrodynamics notwithstanding. For
a survey of the curious duality between the VF and SF
approaches to QED, we refer the reader to Milonni. It
shall suffice to say here that the VF picture is not the only
one, as is commonly believed, and that there are those
who believe that the vacuum field is more of a formal
contrivance or artiface than a "real" physical thing.
Perhaps self-field phenomena are the same in certain
cases as if a fluctuating zero-point field were present.

a, = CO CO (g/2) —I g —2
1 2

(2)

Thus we see that boundary-induced shifts to co, and to co,
must both be reckoned with.

Over the years calculations have been performed for
electrons in various states of motion near conducting
boundaries of many different geometries. For simplicity,
we shall restrict our discussion to an electron in a strong-
ly magnetic field, executing cyclotron motion in a plane
parallel to and a distance R from a perfect plane conduc-
tor. From dimensional arguments one can see that
changes in either co, or cu, will have the form
(h/2tr=c =1)

mR

The most accurate measurement of the electron g fac-
tor, a, :=(g —2)/2 comes from an experiment conducted
by Dehmelt and co-workers. (The notation 3:= B
means that A is being defined as equal to B.) A single
electron is suspended in a Penning trap under the
influence of a uniform magnetic field, and the experimen-
tal result

a, = 1 159 652 193(4)X 10

is obtained. For a typical trap the distance R from the
bound electron to the trap wall is on the order of R =

3

crn. Thus it is of interest to approximate the effect of the
boundary upon the QED free space shift a„ to see at
what point we would expect to see a change in the experi-
mental outcome.

In the Penning-trap experiments the electron is bound
by a strong magnetic field into Landau orbitals. The cy-
clotron and spin-precession frequencies, co, and co, are
measured, and the value of g —2 is related to these two
quantities by
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to first order in the fine-structure constant e.
There has been a controversy in recent literature over

whether there is indeed any correction to co, to first order
in the parameter o;/Rm. Brown and his co-workers find
no correction to co, in this order of approximation,
whereas others seem to obtain such a shift. The
discrepancy had been blamed on lack of gauge invariance
or on the inappropriate use of the image method. How-
ever, Kreuzer and Svozil, ' in a series of elegant papers,
have used the image method and a manifestly gauge-
invariant approach to show that, to order a /R m, mag-
netic moment corrections are exactly canceled by mass
corrections, leaving no overall correction to co, for an
electron bound in a Gaussian wave packet between
parallel-plate conductors. Thus if one computes Ap
without including the effect of Am, one finds a correction
to co„whereas if both effects are taken together there is
no correction.

There is, however, a plate-induced correction to co, to
this order, as pointed out by Brown et al." The change
Ace, is essentially classical in origin, and forms the dom-
inant contribution to 5a, .

Hitherto, all calculations of ~, have been carried out
using either the full apparatus of standard QED, or by
coupling zero-point fluctuations to the electron in a non-
relativistic (NR) approach.

In the present paper we shall use a formulation of QED
which is not second quantized and which contains no
vacuum fluctuations but rather is based on self-fields. We
compute all corrections to the energy of an electron exe-
cuting cyclotron motion in a stationary plane parallel to a
perfectly conducting planar surface to first order in the
parameter a/Rm. We find, in exact agreement with the
full QED calculation of Kreuzer, ' no shift to co, in this
order due to cancellation of the effect of magnetic mo-
ment and mass shifts:

anism responsible for boundary-induced radiative correc-
tions to the magnetic moment and mass of the electron.

II. SELF-FIELD APPROACH TO QED

In standard QED one deals with a bare electron and a
second quantized radiation field; the self-field is added
back on to the electron one photon at a time through an
expansion in Feynman diagrams. In the self-field ap-
proach, as developed in the relativistic version by Barut
and Kraus, and in the NR version by Barut and van
Huele, ' the self-field of the electron is included from the
beginning and the radiation field is classical. Vacuum
fluctuations are conspicuously absent.

The standard QED results for the Lamb shift and
spontaneous-emission rates are derived from the self-field
theory in Refs. 12 and 13. The NR version of the theory
was adapted by Barut and Dowling to account for
boundary-induced changes in spontaneous emission and
Lamb shifts, as well as to describe long-range Casimir-
Polder van der Waals forces between an atom and a con-
ducting surface. Recently Barut, Dowling, and van
Huele' have arrived at a cutoff-dependent value for the
free-space value of g —2 which is correct in sign for all
values of cutoff and correct in magnitude for the reason-
able cutoff choice of A/I =

—,'.
In the present paper we adapt this previous NR free-

space calculation of g —2 to include boundary effects.
The results are finite and cutoff independent and agree
exactly with the fully relativistic, standard QED calcula-
tion of Kreuzer. '

An electron is assumed to be surrounded by an elec-
tromagnetic field A „(x) which can be separated concep-
tually into the sum of an external field A „' and a self-field
A„'. A„' obeys the homogeneous Maxwell's equations
while the field tensor F„' constructed from A „'

a
4Rm '

a
4Rm

(4)
F„:=B„A —0 A„

obeys the inhomogeneous equation
However, we do find two corrections to co, . There is a

direct shift in the orbital motion, b, coos (where OS refers
to orbital shift), due to the electromagnetic interaction of
the charge with its image in the wall, and a second
correction, b, a@Ms (where MS refers to mass shift), due to
the change of the electron mass in the the presence of the
conductor. The sum of the two shifts yields

(F,"') =ej",
where j "(x) is the electron's own four current (e )0
throughout). Equation (6) may be solved for A'„by use
of an electromagnetic Green's function D„ to yield

A' (x) =e Jdy D „(x —y)j'(y), (7)

os+ ~~Ms
8Rm

where the choice of the gauge is to be specified.
All calculations of energies will proceed from an action

formulation with w (x), an action density, and

in the quantum regime, as opposed to the classical limit
of large quantum numbers n.

It is interesting that the cavity corrections to QED,
which we calculate here via the (relativistic) Green's
functions appropriate for the cavity, are the same wheth-
er the matter part (4) is treated relativistically or nonrela-
tivistically. Thus the physics of the problem is already
contained in a NR theory which includes the self-field of
the electron from the beginning. It is therefore not neces-
sary to introduce a second quantized radiation field with
its resultant vacuum fluctuations to understand the mech-

W= Jdx w(x;g; 3)

the total action with x =x„, A = A „'+ A „', and y the
matter field. For bound states the action 8'is related to
the total energy E of the system by' '

W~, = (2'�)6(EI E; )E, —

where the subscripts i and f indicate initial and final en-
ergies.

For the problem at hand we use the Pauli Hamiltonian
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H= [o (p —e A)] +ego1

2m
(10) V

jM =y . y (momentum),
2ml

to construct the symmetrized action density (o is the usu-
al Pauli spin vector operator):

+

to =@* [(V+ie A) cr][o (V —ie A)]+eAD —id,
2m

6W 6W
5$* "5&p* „

V2 +—A.V+ V A
2m m 2m

cr B+ A y=O
2m 2m

yields the Pauli equation of motion Variati. on of W'with
respect to A„yields Maxwell's equations,

—cl = —ej +(F," ) =0
5A' "5(A')

v V,P

only if one takes j "as

=:—ej"

which can be written in the form

j"=@* 1, V+ (VXo.—o. XV) — A cp' 2mi 2m m

+—,
' F„,F"

where we have now included F„' F,"', and the Hamiltoni-
an H has been made symmetric by integration by parts
(IP). Here g*Vqs:= (Vy*)y. [Throughout, equality of
action densities shall mean equality with respect to IP
and surface terms which, along with A„'(x), are presup-
posed to vanish at infinity. ] The y(x) form a field of
two-component Pauli spinors. Notice we have not in-
cluded any contributions from image charges ab initio.
These eff'ects arise naturally through the boundary condi-
tions to be imposed on A„' through the Green's function

D„,
The current may be computed from Eq. (11) via the

Euler-Lagrange equations. Variation of W with respect
toy

1
jsM — [% (o XVq)

2m

—(Vy* X cr )y] (spin momentum),

3F= A (field),
m

(14)

(15)= ——A'j

where [,.] implies antisymmetrization in the indices,
and IP has been employed. Keeping in mind that j„ is a
function of the total field A = A'+ A' we insert the ex-
pression (14) for j into (15) to get

F FPv i eQ ps. (c
4 p1'

e , ie , ie=cp* ——A() — A' V — V. A'
2 2m 4m

2

+ o B'— -( A'. A'+ A, )
4m 2m

(16)
where IP has been used to sandwich all the V's between
y* and y. The interaction terms of Eq. (11) for to may be
written

1 [(V+ie A) o ][a (V —ie A)]+eAo
2m

1 2 ie ie eV+ —A.V+ V A — o. B
2m m 2m 2m

where cp*VQ:= cp*Vcp (Vc—p*)cp and p=cp*cp as usual.
Equation (14) is the the NR analogue of the Gordon
decomposition of the Dirac current

eely„V.

III. CALCULATION OF THE TOTAL ACTION

To determine the contribution of the contraction
F„,,F"' to the action density in Eq. (11) we write, for the
self-field A „' alone,

1Fs jpv —1 gs Fpv
4 P» 4 tP 1]

l ~ i"F"').
)

iP jM+jSM+jF] (13)
e+
2m

(17)

with
If we call B=B'+B'=VX A'+VX A', then the sum

of (16) and (17) gives for the total action density to

2 ~ 2 2
W=V* — +eAO+ —Ao —idt+ —"A'.V+ " A'-V — ' e B'— ' e B'+ A2+ ' A'. A'+ " V. A'

2m 2 ' m 2m 2m 4m 2m 2m 2m

+ V A'+ V A'
2m 4m

(18j
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The terms involving A „' alone yield the standard
quantum-mechanical (QM) motion of the charge and
those containing A „give rise to radiative corrections in

analogy to classical radiation reaction-type effects. In
particular, the a -8' term yields magnetic moment correc-
tions, and from A' V we get orbital energy shifts and
mass renormalization.

IV. CHOICE OF GAUGE
AND BOUNDARY CONDITIONS

present. ) The condition that E~~ and Bi vanish on the
surface S of a conductor can be written covariantly as

(19)

where n =[0,n], with n normal to 5 in the rest frame of
the conductor. If we now restrict ourselves to the situa-
tion of a perfect plane conductor located at z = —R, then
Eq. (19) is implied by the choice of the axial gauge condi-
tion

Following Kreuzer and Svozil, ' we choose to work in
the axial gauge. (Of course, physical results will be in-
dependent of the choice of gauge, but use of the axial
gauge facilitates the calculations when boundaries are

I

o=n„A~=A, , (20)

where n„=[O,z]=[0,0, 0, 1]. With this choice of gauge
the Green's function D„„ofEq. (7) can be written as'

ik (x —y)

D„(x —y) =—
(2~) k'+i e

n k+nk„nk„k
n k (n.k)~

(21)

ik. (x —yjeD(k;x —y):=
(2ir) k +ie

(22)

where the +i e, e & 0 provides the correct causal behavior.
If we de6ne

then the Green's function solution for A „' can be written

—A'(x)=e f f dy dkD(k;x —y)

(k.j)z+(z.j)k (k.j)k
z k (z.k)

image wall atom field point

and also

(23a)

COA0(x)= —e f f dy dkD(k;x —y) 1 — p(y),(z.k)

= Z

R, y'-2R)

i (t, x)
(23b)

where j= j(x), p(y) =j0(y), and k =k"= [co,k].
To effect the correct boundary condition, we use the

method of images. Consider the world path of an elec-
tron executing cyclotron orbits near our plane conductor
as shown in Fig. 1. Clearly the value of A„'(x) at the
field point x"= [r, x] is the sum of the contributions from
the current ej at source point y"=[s,y] and the contri-
bution of the image charge current —ej'v at the retarded
source point y 'p 2R "=[s 2R,—y' —2R] —where
y'=(y, ,y2, —y~). (Henceforth a prime indicates a change
of sign of the 3 coordinate). Here R =R"=[R,R]
=[R,O, O, R] in a notation clear by context. In the
Green's-function solution (7) for A„'(x) we now insert the
total current

j (y) =jo(y)+ ~jo =io(y) —jov(y' —2R )

to get, regardless of gauge,

FIG. 1. The value of the electromagnetic Green's function at
the field point [t,x] is determined by the current at the source
point at [u, y] and by the image current at the image source
point [u —2R,y —2R] where we define y':= (y, ,y2, y3) and
R:= (O, O, R). Notice that the image source point is retarded in
both space and time.

A„'(x)=e f dy D„,(x y)[j (y) —j (y„')]-
=e dy D„x—y —D„x—y„' j y

=:e fdy[D„(x —y)+AD„(x —y)]j0(y)

=:A„(x)+b,A„(x), (24)
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where the self-field only is being considered. The A„(x)
will give the free-space radiative corrections with D„ in
the Coulomb gauge; these corrections have been comput-
ed elsewhere. '

For the remainder of the paper, we shall be concerned
only with the boundary-induced shifts which arise from
b, A„(x) (we drop the superscript 0), with AD„, in the ax-
ial gauge. E(n)

277
(, n ~o"B'~n &,

2m

where co„:=E„—E, and t integration yields a 6 func-
tion. If we assume, to first order in the iteration, that the

are solutions to the unperturbed motion in 8'0, we

may extract the perturbation to the nth level and, as per
Eq. (9), division by 2n yields the energy

V. MAGNETIC MOMENT

Since the axial gauge demands A3=0 we may take
A= A~~=( —,')BiXx with B=Bi=Bz, B=B'+B', B' is

constant and uniform and B' is yet to be determined.
Referring back to the action density of Eq. (18) the

term with V. A' vanishes, and one can show V- A'=0
also. We assume only an external magnetic field B' and
thus Ao —=0 as well. As usual for weak fields, the term
containing

~

A'~ is neglected, and that proportional to
A'. A' is proportional also to

~

A'~, and so we drop it
too. The total action can now be written

which is the standard QM result for the interaction ener-
gy of the normal magnetic moment with an external mag-
netic field B'.

We now turn our attention to the anomalous magnetic
moment correction contained in Ws =( —e/4mo)o. B'.
Recall we are considering here only the plate corrections
induced by b A„'(x) in the axial gauge. Now since
b, A„'(x) is a function of j"(y), inspection of Eq. (14)
shows that to O(a) only jF will contribute to b,a„b,a,
being the plate correction to the free-space anomalous
magnetic moment a, . Using j„' and e ~—e in Eq. (7)
with the Green's function b,D„, of expression (24) in the
axial gauge, as in Eq. (23), we obtain

V ie e e ew=y* — +—A' V —iB, — cr B'— cr-B'
2m m ' 2m 4m b A'(x)=e f f dy dk D(k;x —y)

7

+ A'. V+ —Ao (p=: g w;.
2m 2 k=1

(25)
(k j')z+(z. j')k (k j')k

zk (zk)
(28)

y(x)=$f y„(x)e (26)

where the y„(x) are initially the exact discrete and con-
tinuous solutions to the total equation of motion con-
tained in Eq. (25) with E„as corresponding eigenvalues (n
stands for all eigenvalues). Hence

We shall assume that the zeroth-order energy is con-
tained in 8 o= 8, + 8'2+ 8'3. This is just the energy of
a spinless charge executing Landau orbitals in a plane
parallel to the conductor. The spin and radiative correc-
tions are included in 8":= 8'4+ 8 5+ 8 6+ I%7.

To illustrate how energies are extracted, we compute
first the contribution from W~=( —e/2m)o B', the ener-

gy due to the normal magnetic moment.
We begin by making the Fourier expansion

where

j'=j~(y)= —A'p(y) .

If one now considers V X A', then the operation 7'X be-
comes +ikX and terms proportional to k vanish, so we
drop them. Now, to O(a), A= A'. Further, we antici-
pate the dipole approximation (DA) in which x =y and so
saying we take A'(y) = A'(x). Applying the DA,
e'"'" "'=]., we ge

V Xb, A'(x)

e2
1 f dy dk D(k;t —s +2R)

m

W, = f dx y* — o"B'
2m X VX A', ——(VXz)(k. A', ) p(y) . (29)

g f f d x dt cp„*(o.B')y e
n, m

(2') g f d x &p„*(o.B')p 5(co„)
2m

(2vr) g &ne'er B'~n &,
2m

(27)

The second term in square brackets vanishes upon in-
tegration over the solid angle d A, k and so we eliminate it.
Remaining is V. A'(x) =:B'. Writing in the DA

k (x —y +2R) =co(t —s +2R) —2k.R

in D, we have
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68' = dxy — m B'
4m

e3 f f f dx dy dk D(k;t —s)e' y*'(tz. B')yp(y)

3

f f f dx dy dk D(k;t —s)e' "' q„*(x)(~ B')q, (x)~*(y)y (y)e
4m nmpq

3 d k
z 2 & f 2 2

e' ""e ' "
&n ltr'B'Im ) &p lq &6(to„+to„),

where the 5 function comes from t and s integrations.
(The 6 indicates a plate correction and the superscript F
shows that only the field term of the current is under con-
sideration. ) The 5 function is satisfied by co„+co =0.
For this condition we choose the self-energy solution
n =q and m =p, yielding upon integration over d cu

(Ik =:(A,, 2AR =:g)

dx y — o- 9'
4m

dxdydkD k;t —s

I 2 k Rg 4
( tr Be

)q)p (y )

VI. MASS RENORMALIZATION

If we take the mass which appears in the kinetic energy
W, = —V /2m, to the coefficient of inertia for the free-
space mass, then any radiative corrections arising from
hA„' which give rise to another term proportional to V

must be used to renormalize this mass. The term
&6=(ie/2m) A' V gives just such a contribution if one
isolates j~jM =y'Vy/2mi in the reckoning of b A'. In-
serting jM from Eq. (14) into the expression (28) for b, A'
we obtain

b, A'= — f dy f d g D ( k; t —s +2R )
Rm 0

(30) X y*(y)V" q(y) (35)

gE(n) ~+5 e cx
( n

I
tr 'B'I n ) .

2a 2m 4Rm

Thus the total energy proportional to cr B' is

(31)

E4+b,Es= — (o.B') 1—e cz

2m 4Rm
(32)

or

with a=e /4m in our units. Extracting the contribution
to level n and converting to energy, we get

where we have used the DA, integrated over d Qk, and
dropped a contact term singular in the variable cosOk.
We define 1, := Ikl and g:= 2XR. Notice how the com-
ponent of the momentum perpendicular to the wall, pro-
portional to Vj, has canceled out of the expression; this is
a consequence of the axial gauge formulation of the prob-
lem. ' Thus we see that the mass shift Am is actually a
tensor quantity with a component dmll arising from. V

and another component km~ which is zero. The action
68'~ is then

(plate shift) .
4Rm

(33) aWM= y f "dg""&
2Rm2 „o

We compare this to be the free-space anomalous mag-
netic moment, 5p, also calculated in the present NR
theory'

6p a 4A

p 277 3m

(free-space shift, before mass renormalization), where A is
a cutoff' in the photon momentum Ikl. (We use 5 for a
free-space effect and b, for a boundary effect. )

The interpretation within the present theory is that in
free space the self-field acts back on the particle so as to
decrease the spin —in a drag or spin retardation efT'ect-
leading to a decrease of magnetic moment given by Eq.
(34). In the presence of a conducting boundary, the in-
teraction of the change with the field of the image charge
further decreases the rate of spin.

—(n IVln ).(m IV~~lm )

ia
ntn

2 2a„—g'

X&nlVlm &. &mlV~~ln &

(36)

where a:= 2Rco and a„:=2Rco„, and $=2lklR. The
superscript M notates that only the momentum term of
the current has been used, while 5 indicates that only the
plate corrections to the free-space term 8'6 are under
consideration. With respect to the symmetry in n and m
in g„,we may write a partial fraction expansion'
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2 2
nm , +nm

anm

nm , ~nm

anm —2a„+(

a„+g
—l

aW, =—,g —&~[V[~ & &mIV lm &

2Rm 2

7T ~nm Sing
e

2 o a„

which is then inserted into the above expression to obtain

where, unlike in the magnetic moment case, the signs of
the two shifts 6m and Am are different. In free space the
mass of the particle increases due to the inclusion of the
mass energy of the self-field, in analogy to mass renormal-
ization as used in classical radiation reaction theory.
Near a conducting boundary the self-field of the charge,
which contributes to the electromagnetic mass, becomes
decreased due to the boundary condition', hence the ob-
served free-space mass is decreased by Am as given in Eq.
(40).

We notice that Am and Ap are equal magnitude and
sign. Thus if we express the total energy shift propor-
tional to o'B' in terms of the free-space mass mo we see

X &n
/

V/m & &m /V~/n & . (37)

AE"' =
MR , y &n fV/m & &m/V /n &

8Rm

8Rm

Calling mo the observed, free-space mass and I the
plate-renormalized value, we have

p2 g2

2m 2mp

2
~II

4m OR 2' p

which then implies

a
fPl

II

—mo 1

m~=mo .

These two expressions, when taken together, give

4mR
1—

=:mp+Am (39)

or

Am e
(plate shift) .

m 4mR
(40)

This is then the plate-induced shift in the dynamic
mass. For comparison, the free-space mass shift as given
in the present NR self-field theory' is

Barut and van Huele show that the first term in the
square brackets vanishes if one does not use the DA, so
we drop it. The last term in square brackets has been
shown by Barut and Dowling ' to give rise to boundary-
induced changes in the Lamb shift and spontaneous-
emission rates. Thus we carry only the middle term
which yields a mass renortnalization (MR). Since we seek
a self-energy contribution of an electron in level n upon
itself, we may set n =m in exp(ia„). Hence, converting
to energy in extracting the nth energy level,

Be ]+ AP

pe, Am Ap
2~o I p

e o'8',
2mo

(42)

VII. SHIFT IN CYCLOTRON FREQUENCY

A. Direct electromagnetic shift

In the present theory, one contribution to the shift in
the cyclotron frequency ~, =e8'/rn comes from the term
W6=(ie/2m) A'. V, which gives rise to changes in the
Landau levels. The analysis, which by now is standard,
of 8'2 for the free-space Landau solutions gives for the
nth energy level

ie eAE'z"'= n —A' V n = — n B'.L n, 43)
m 2m

where the b, m and b,p effects have cancelled out to 0 (a),
leaving the original free-space spin-precession energy.

Thus we see, in agreement with the observation of
Kreuzer, ' the equality of hp/p with Am /I effects a
cancellation of any contribution from the conductor to
the spin-precession frequency co& to within order 0./Rm.
It is clear that a calculation of Ap which does not also in-
clude the effect of hm will lead to an erroneous predic-
tion of a non-null value for Ace„' thus resolving the
discrepancy between the works of Ref. 9 and the con-
clusions of Brown et al. '

It is rewarding to note that although our self-field cal-
culation is nonrelativistic, uses the dipole approximation,
contains no second quantization of the electromagnetic
field and requires no zero-point radiation vacuum Auctua-
tions; it is nevertheless able to reproduce precisely the
same magnitudes for the boundary shifts Ap and Am as
those obtained by Kreuzer' in his fully relativistic, stan-
dard QED calculation. This illustrates the power of the
self-field approach to QED.

8A a
3m 277

(free-space shift), where L is the angular momentum operator. We have
used the relation,
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A.p= —'(BXr) p= —'B (rXp) =:—'B L .
2 2 2

To see how the presence of the conductor effects the
motion, let us consider b, A „' as given by Eq. (28) with

j '(y )~j F(y ) = (e /m ) A'(y)p(y) = (e /m ) A~ (y)p(y)

-=(e/m) A (x)p(y)

AE2 = — (n ~B'.L n )
2m

' (nIB Lln»+
2mo 4mR

(48)

and hence an additional change in frequency, Ace „due
to the boundary-induced mass shift (ms)

as found in expression (14). We have again anticipated
the use of the dipole approximation. The action A8'&
now becomes

4mR
(49)

00 2
~wF=

8mRm „o g a„

X ( n
~ A~~. V

~
m )5„ (44)

which, when combined with the orbital result, Ace„,
yields a total shift in the cyclotron frequency

~~OS ~~mS+
where a =2Rco, a„=2Rco„, and (=2~k~R as before.
The superscript F notates that only the field term of the
current is being used. The 5„ in Eq. (44) will act to
eliminate the retardation factor a„ from this piece of the
action. In the limit of large quantum numbers, the
spread of each energy level will prevent an exact cancella-
tion and a retardation factor of cos(2Rco„) will emerge.
This the factor which appears in the result of Brown
et aI." Extracting the nth-level contribution, converting
to energy, and recalling that A'. V=(i /2)B'. L, we have

gE(n jF
2~

(n ~B' L~n ) .
2m 8Rm

(45)

Expansion of Eqs. (45) and (43) gives for the direct orbital
shift (denoted by the os subscript)

8Rm
(46)

This is the direct orbital shift due to the electromagnet-
ic interaction of the orbiting electron with the wall. The
indirect shift due to the plate-induced mass change is
computed in Sec. VII B.

B. Indirect shift due to the mass change

In addition to the direct shift, Ace„, computed above,
there is an indirect shift in co, due to the fact that the
mass m which appears in the free-space formula
~, =eB/m of Eq. (43), is no longer the free-space mass
mo but rather the plate-shifted mass mo+ Am, where Am
is given by the relation (40). This shift is also classical in
origin. Classically, the observed free-space mass mo is
the sum of the bare mass mb and the electromagnetic
mass 6m; 6m is smaller in the presence of a conducting
boundary, a result which can be derived totally classical-
ly. In any case, one must use the plate-shifted mass in ex-
pression (43) for the normal cyclotron motion. Let us re-
call expression (40) for the plate-induced shift of the elec-
tron mass:

8Rm
(50)

VIII. SELF-ENERGY SHIFT

Previous calculations of Ace„such as those of Brown
et al. , seem to include both the direct orbital shift, Ace„,
and more subtle mass change effect, Ace „ together in
one calculation. Their result is valid for the classical lim-
it of large quantum numbers, however, and is not directly
comparable with our calculation here. Barton and
Fawcett' obtain our Eq. (49) using standard QED and
also a classical argument. We get, in addition, the contri-
bution from Eq. (48), which, together with Eq. (49), leads
to the overall result of expression (50). The self-field for-
malism used in this paper is very different from the for-
malism used in the standard theory, and hence it is ex-
tremely difficult to make a step-by-step comparison of the
two calculations. We note that the method used by Bar-
ton and Fawcett is not the fully relativistic QED theory,
but rather an approximation whereby the electromagnet-
ic vacuum field is taken as a perturbation upon nonrela-
tivistic electron equation of motion. This is similar to the
nonrelativistic approach used here, with the exception
that the vacuum field is replaced with the self-field of the
particle. Hence the two approaches are only approxima-
tions to a fully relativistic approach, which could explain
the discrepancy between our result and that of Barton
and Fawcett ~ In any case, the primary result of this pa-
per is that of Eq. (42) which shows that there is no plate
correction to the spin-precession frequency to first order,
resolving the apparent dispute in the literature. We leave
the detailed analysis of the plate-induced cyclotron fre-
quency shift under various limits —quantum, classical,
retarded regime, nonretarded regime, etc.—to future
work.

We see then that there is a danger of not considering
all possible boundary-induced effects together in calcula-
tions of this type. The interplay of various contributions
in the total energy can lead to cancellations or
modifications one might not expect by concentrating on
only one piece of the total action.

4mR

Including Eq. (47) in the expression (43) yields

To make a more complete analysis of the action 8 we
lastly turn our attention to W7 =(e /2) A 0, the self-energy
shift. Taking b, A o from Eqs. (23), we have
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&p o(x) =e ff dy dk D(k;x —
y +2R )

leading to

2

(z.k)
p(y),

(51)

8'7 —'
4 dx dy dA A'dnk

2 2(2tr ) CO

X cos(2XRu)e '" p(x)p(y)
e d sin

2tr 2R

CX77

2R
n

(52)

(53)

IX. CONCLUSIONS

We hope that in the course of this paper we have illus-
trated the power of the self-field approach to QED.

where u =cosOk, k= ~k~, etc. Converting to the energy of
level n, we obtain

(n)
g~(n)

Zw 4R
which is simply the electrostatic energy of interaction be-
tween the charge and its image in the wall. Notice how
in our formulation, energies such as this are not put
ab initio into the Hamiltonian, as is done in the nonrela-
tivistic, vacuum fluctuation approach, but rather arise
naturally through the self-field's reflecting of a change in
the boundary conditions.

The energies in Eq. (53) also may be interpreted as a
change in the free-space electromagnetic mass;
Am = —0.'/4R, or Am /m = —e/4Rm, consistent with
the result found previously in the relation (40). It is easy
to see that this mass shift is classical in origin. Equation
(52) may be analyzed classically by simply inserting the
classical charge density, p(x) =5(x); the result is precise-
ly the same, namely, Eq. (53). Hence the mass shift near
a conducting boundary is indeed a classical phenomenon.

From a single action we were able to extract all manner
of boundary-induced, QED radiative energy shifts, in a
theory which is not second quantized. The action 8'here
contains more information still: boundary effects on
spontaneous emission and on the Lamb sift, with accom-
panying long-range Casimir-Polder van der Waals forces
(as discussed in Refs. 4 and 6), and more. All this is ob-
tained by simply including the self-field of the particle to
begin with, and seeing to it that this self-field obeys the
boundary conditions of the surrounding space. It is a re-
markably economical approach to the theory of radiative
corrections, with the intuitive and appealing classical lim-
it of radiation reaction theory. Nowhere have we used
vacuum fluctuations.

The controversy over whether the spin-precession fre-
quency co, shifts to 0 (a/Rm) near a plane conductor ap-
pears to have been resolved in the negative due to the
cancellations of the effects of Ap and Am. The shift in co,
to this order, however, will have an impact upon future
measurements of g —2 in Penning tapes, a fact which
Brown and his co-workers have analyzed extensively. '

The self-field approach has been used to give a fully rel-
ativistic account of spontaneous emission, ' and work is
in progress to apply it to the Lamb shift' and g —2.
Further research is also forseen in using the self-field
method in the areas of Casimir-Polder forces, atoms in
blackbody radiation, and phenomenon such as the Unruh
effect and Hawking radiation.
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