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Geometry of multifractal systems
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The behavior of many fractal structures has been interpreted by a scaling hypothesis: The
number of sites on a fractal of size R with a probability measure R scales as R '. This
defines a series of exponents f(a). If the measure subdivides in a self-similar manner over the
structure, then it is shown that the set of sites with a given value of a do not themselves form a
fractal, but have a more complicated geometry. The analysis is applicable to many growth pro-
cesses including diAusion-limited aggregation, viscous fingering, and the screened-growth model.
If the measure is defined on a static fractal, then the same conclusion applies to many other sys-
terns such as models of turbulence, random-resistor networks, and fractal aggregates in shear
flows.

I. INTRODUCTION

A large amount of experimental and numerical work
has been devoted to the behavior of structures whose sur-
face has been characterized as fractal. ' The fractal can
be considered to be composed of N discrete sites or parti-
cles of unit size. If the overall extent of the structure is R,
then N scales as R, where, by definition, D is the fractal
or mass dimension. A measure or probability p; can be
assigned to a given site i. If the structure is covered with a
grid of boxes or blobs of length b, then the measure of a
box p; (b) is the sum of the measures of the particles in-
side it. The moments Z(q) of the distribution over the
boxes are defined as

din and Vulpiani.
The geometry of sets of sites with a particular value of

a is analyzed. It is shown that for many of the systems
mentioned above, the set itself is not a simple fractal with
a box-counting dimension equal to f(a), but has a more
complicated structure, which is discussed. The case of a
large fractal structure with a small cutoff of unit length
will be considered. This is the more natural description
for growth models. In other cases it is more usual to con-
sider a fractal of fixed size and let the size of the small-
scale cutoff tend to zero. The results presented below are
valid for either interpretation.

II. THE DIVISION OF PROBABILITY MEASURE
INSIDE A BOX

where N(b) is the number of boxes. Z(q) may scale with
the system size as (R/b) ' q) where r(q) is a spectrum of
exponents describing the growth. This distribution can
be interpreted in terms of a multifractal formalism: The
number N, of boxes with a measure (R/b) ' for some
small range of a from a to a+ Ba may scale as
(R/b) t')Sa. The scaling function f(a) provides a statist-
ical description of the behavior of many fractal systems.
The relationship between the exponents f(a) and r(q) is

The scale invariance of a fractal structure means that
inside a box of size b, there are bf ' points with measure
or probability b ', with the same function f(a) as for the
whole pattern, if the sum of the measures of the particles
in the box is normalized to unity. Imagine that a site has
an overall measure R and lies in a box whose measure
scales as (R/b) ' ". The site is chosen to have a normal-
ized measure b "'" inside the box. Then, if growth pro-
cesses are considered,

r(q) =qa, —f, (a), R R ~siteb (2)
where the subscripts refer to the value of df/da at which f
and a are evaluated.

Objects with a nontrivial f(a) are termed multifractals.
The concept was first introduced by Mandelbrot to de-
scribe turbulence. For fractal growth processes the mea-
sure may be interpreted as the probability that growth
next occurs from a given site. The formalism is also used
to describe the behavior of a fractal in an external field,
the current distribution in percolating networks, and the
energy density in fully developed turbulence. Multifrac-
tals also characterize the geometry of chaotic attractors,
temporal intermittency in discordered systems, and other
processes. The reader is recommended the review of Pala-

since the probability of growth is the product of the proba-
bilities of growth anywhere in the box and specifically at a
given point inside it. The measure around the fractal is
derived from a multiplicative subdivision: The measure at
a given site is the product of the measure in an enclosing
box times the measure for a subprocess inside the box.
This is valid in any space dimension for fractal growth
processes, such as diffusion-limited aggregation,
viscous fingering at finite viscosity ratio, the dielectric
breakdown model, ' the screened growth model,
Meakin's multifractal Eden model, ' '' viscous fingering
at large viscosity ratio, ' ' and diA'usion-controlled crys-
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tallization. ' The calculations presented here only assume
the existence of a multifractal system for which Eq. (2) is
valid. Hence, processes in which the "growth probability"
can be interpreted as an energy or flux density derived
from a hierarchical subdivision are also considered. This
is appropriate to current distributions in percolating net-
works, ' ' the force distributions on fractal aggre-
gates, and P or cascade models of turbulence. 4'9 io17, 18

It is possible to define an exponent f,ff such that the to-
tal number of the sites mentioned above is given by

' fbo.
Rfeff ~ bfsite (3)

b

where f«te and fbox are f(a»«) and f(abox), resPectively.
Then, from Eq. (2):

fbox (a asite ) +fsite(abox
eff

QbQX Qsi«
(4)

III. SELECTING SITES OF A GIVEN MEASURE

The sites on the fractal which have a value of Q in a
small range between a and a+ Sa (measure R ' to
R ' ) are selected. It is possible to analyze the
geometry of this set and ask whether or not these points
themselves describe a fractal, and if they do, whether or
not the set has a box-counting dimension equal to f(a). If
as above, the fractal is covered with a grid of boxes of
length b, then a box is said to be occupied if one or more
of the selected sites lie inside it, otherwise, it is empty.
The number n(a, b) of occupied boxes is counted as a
function of b If the set we.re fractal, it would be possible
to define a dimension D(a), independent of b from the
scaling law

n(a, b) —(R/b) ' Ba. (s)

n(a, b) is determined by the geometry of the sites with a
given a. D(a), if it exists, is not necessarily equal to f(a).

IV. IS THE SET FRACTAL?

As before, if an occupied box has a measure defined by
Qb,„and the site with overall measure R has a measure
b "' within the box, then the number of such boxes

The exponent feff is a weighted linear coinbination of
the exponents f;,t, and fb,„. Since the scaling function is
convex, f,ff will always lie below f(a) Conse. quently,
the number of sites for which Q„«and Qb, „are not equal is
only an infinitesimal fraction of the total number of points
with measure R ', if R, b, and R/b are all large f,ff.

equals f(a) in three cases only: (i) a equals a„t, and b is
equal to R, (ii) a equals ab,„and b equals I, and (iii) ab,„
and a„«are both equal to a. In this case f,ff is f(a) re-
gardless of b. These sites have the same values of ab,„and
Q„« independent of the box size.

This analysis of the division of probabilities has also
been used to study the screening of a fixed site on a grow-
ing fractal as it increases in size. '

scales as (R/b) *, where a, abo„, a„„,and b are related
by Eq. (2). For large R/b, n(a, b) will be dominated by
the largest possible value of fb,„ for which the box will be
occupied, i.e., it contains one or more sites of measure
R '. The number of such sites in each box scales as b "".

Hence, for a box to be occupied f„t,) .0. From Eq. (5)
an effective exponent D(a, b) is given by

D(a, b) =max(fbox) (6)

and if b scales as R~, then from Eq. (2):

Qbox = Q —yQ»«

1 —y
(7)

D(a,y) = '
f Q —yQ

1 —y

Qp Q

fo l)y)
Qp Q

Qp Q

Q
min

p

(sa)

(8b)

Notice that we do not have a geometrically fractal set.
The exponent D(a,y) is itself a function of box size. The
exponent increases from f(a) at b =1 until it reaches a
maximum fo at large b, where fo is the dimension of the
support of the measure which, for systems which are all

active surface, is equal to the mass dimension D. The to-
tal number of boxes is dominated by those boxes which

contain just a single particle of measure R '[f(a '")
=0].

For a '") a ) ao [a '" is the value of a where

f(a) =0 and df/da & 0] Eq. (8) is the same, but with

a '" substituted for a '". For a & a '" or a & a '", f(a)
is negative. Hence, typically, no such sites are seen on a
large cluster. In this case, n(a, b) is independent of b: one
box surrounds the single site seen on an atypical fractal.

That the sites with a given value of Q might not be frac-
tal was first demonstrated by Cates and Deutsch, who

calculated spatial correlations in a curdling model with a
hierarchical subdivision of probabilities. In this paper, the
correlation functions were again described by exponents
which were functions of distance.

It has already been remarked that f(a) cannot be in-

terpreted as the dimension of a set of given Q. Here, a
much stronger statement is made: an analysis of the
geometry yields an eff'ective exponent which is a function
of box size. However, a simple description of the physics
enables the exact form of the behavior [Eq. (8)] to be
determined. From Eq. (8), the only cases where we have

a truly fractal set where D(a) =f(a), independent of y,
are when (i) a=a '", (ii) a=a '", and (iii) a=ao. For
growth models, cases (i) and (ii) represent the most ex-
posed tips and the deepest fjords, respectively.

Q
'" is defined as the smallest value of Q for which

f(a) )0. For a in the range a '" ~ a~ ao (ao is the
value of a where df/da is zero: fo is the corresponding
maximum value off), then the largest value of fb,„occurs
when a„«=a '". Hence, from Eq. (6):
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V. INTERPRETATIONS

This short calculation has important consequences for
the interpretation of the multifractal formalism in the
many processes where the measure can be considered to
be derived from some hierarchical subdivision. If the
fractal boundary is decomposed into sets with different
values of a, then each set is itself not geometrically frac-
tal, although the number of such points does scale with a
constant power of the system size. Equation (4) shows
that all but an infinitesimal fraction of sites with a given
value of a lie within a box of the same a, regardless of the
box size b. Most points will lie within boxes which have
a„t„ab,„, and a all equal. Inside each such box will be
b ' sites with measure b '. These sites lie on a geome-
trically fractal set of dimension f(a) and can be con-
sidered to have a "singularity strength" a, which is in-
dependent of box size.

However, the total number of boxes [from which
n(a, b) is defined] is dotninated by those boxes which typi-
cally contain only a single site. Hence, f(a) cannot be
measured geometrically from a static cluster, although
f(a) is recovered if the probability measure is analyzed on
various sized grids or on fractals of different size. Only an

infinitesimally small fraction of sites have ab,„not equal to
a„.t,. In such cases, an effective exponent a defined from
the probability measure over a length b is dependent on b
itself. These sites cannot be considered to possess a
unique "singularity strength. " The scaling function, f(a),
does not itself imply anything about the spatial distribu-
tion of the measure, but assumptions about the physics of
many multifractal systems allow us to demonstrate that
the geometry of sites with different measure is richer and
more complicated than originally suggested.

It is likely that the calculation of other properties of
fractal growth or the behavior of static self-similar struc-
tures may reveal the dominance of other "atypical" sub-
sets, which have different "singularities" a measured on
diff'erent scales. '
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