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Nonlinear competition between waves on convective rolls
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We report experimental observations of confined and temporally modulated states produced by
the oscillatory instability of straight convective rolls. For this system we have measured all the
critical parameters characterizing the instability. We are thus able to confirm the interpretation
of such phenomena proposed by Cross [Phys. Rev. A 38, 3593 (1988)l based on the combination
of propagative effects and finite geometry.

The stability of systems that bifurcate to a wave state
involving both a temporal frequency and a spatial wave
number is the subject of many current studies. In particu-
lar, observations of traveling waves in binary mixtures, '
in Taylor-Couette experiments, and in the oscillatory in-
stability of convective rolls have revealed unusual local-
ized as well as time-modulated states. Conflicting theories
have been proposed to explain these phenomena. We
have studied the oscillatory instability of Rayleigh-Benard
convective rolls at low Prandtl number and have observed
similar complex spatiotemporal behavior. By determining
the amplitude-equation parameters for this system, we
have confirmed the scheme proposed by Cross based on
the propagative nature of the instability and the interplay
of the right and left waves coupled through the sidewall
reflection.

When a temperature difference AT is applied vertically
across a horizontal fluid layer of thickness d, the first bi-
furcation to the convective state takes place when the
Rayleigh number R (eehT) exceeds a critical value R, .
In Auids with a low Prandtl number Ap, v/tr (where v is
the kinematic viscosity and tc the thermal diffusivity), a
secondary bifurcation to a state in which transverse waves
propagate along the rolls takes place at a higher Rayleigh
number Rl which depends on JVp„and on the roll wave
number k . This is the oscillatory instability of Busse.

The convection cell consists of a plastic frame of thick-
ness d 1 mm and horizontal size 24dx31.7d. This
frame is sandwiched between a thick, water-cooled sap-
phire window and a copper mirror. This cell is placed in a
pressurized container, and observation is achieved by sha-
dowgraphy. The fluid is argon at 60 atm, leading to
r, , -d /tc 2.72 s for the vertical diffusion time, Ap,- v/tr I0.7, and hT 3.474 K at R, .

The characterization of the oscillatory instability re-
quires straight rolls, which are not commonly observed ex-
perimentally. To prepare a straight-roll pattern, we have
placed small heating wires along the two short sidewalls of
the rectangular cell. This forcing generates the seed from
which the roll pattern ultimately develops. For this sys-
tem, the oscillatory instability will appear if the wave
number k of the rolls equals approximately 3 of the crit-
ical wave number k „andif R is 3 to 4 times R,. ' Oth-
erwise, different instabilities occur. Starting at R, with 30
straight rolls, we must remove 5 roll pairs while increasing
R to obtain the final 20 rolls. We do this by applying a

short and strong alternating flow through the filling hole
located in the center of the long side of the container, us-
ing a small loudspeaker. This induces a dislocation which
climbs through the pattern. By using this technique we
have measured the stability diagram of these convective
rolls and their defects, as we described in Ref. 11.

Just above Rl =3.929R„the rolls start to oscillate
about their mean positions. Two waves traveling along
the y direction can be seen, each heading to the nearest
long sidewall. As shown in Fig. 1, the oscillations are in
phase from roll to roll, their magnitudes decaying near the
short sidewalls. Using a video camera, we measure, in
real time, the displacement Bx(y, t) of one roll (with its
axis along y) as a function of the position along the roll y
and of time t. We scale the measure of Bx by d. In Fig.
2(a) we show the time and space evolution of 8x(y, t) for
R 4.222R, . In two-dimensional (2D) space (y, t), the
right and left waves correspond to two distinct Fourier
modes centered on (k&p, cop) and ( —

k&p, top) which may
thus be separated to obtain the complex amplitude 2,
(At) of the right (left) wave with the fast spatial and tem-
poral scales removed. '
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FIG. 1. Picture of the oscillatory instability occurring on a
pattern of 20 straight rolls at R =4.3R, with k„=1.98. The pic-
ture is enclosed by a sketch of the container showing the resis-
tive wires along the short sidewalls and the location of the filling
hole connected to the loudspeaker. The length of the cell L„has
been expanded to make the wires visible.
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The oscillatory instability appears via a forward Hopf
bifurcation. In a range R ~ & R & R3 =4.283R„the time
evolution is monoperiodic with f= 1.2 Hz. As shown in
Fig. 2, the amplitudes of the waves grow exponentially as
they travel along the roll. For R& &R &R2, the max-
imum amplitudes of both waves are the same, as shown in
Fig. 3. At R2 =4.12, a new forward bifurcation leads to a
symmetry breaking, and one wave progressively dom-
inates the other, as in Fig. 2(c). Above R3, a slow modu-
lation of the fundamental frequency appears. Between R3
and R4=4.352R„the modulation is periodic and repre-
sents the beating of the dominant wave and the small one
at a frequency co/51. Over a small range of temperature,
this modulation leads to a subharmonic bifurcation and
then to chaos. When R is increased further, the dominant
wave alternates from right to left, but simultaneously the
phase coherence from roll to roll is lost, and the
phenomenon becomes two dimensional and beyond the
scope of this study.

The waves may be described by Landau-Ginsburg
(LG) coupled amplitude equations. ' In this particular
case, Fauve, Bolton, and Brachet' have derived them as

I I I
)

I I I I
I

I I

0.9—

0.6 — (,

03

e=O
I

I

I

I

I

I

I

I

I

I

Ec

I

I

I

~ I

I

I

I

0
0

0
0

0

0
0
0

~ ~
0

—0.06

~
)

—0.04

—0.02

o R1 Rp
I I I I I I I I I I I I I I I I

3.8 4 4.2
R/Rc

FIG. 3. Bifurcation diagram. The maxitnum value of
I A, I

and
I AI I are scaled with d and plotted vs R. The points on the

left correspond to the growth rate II (measured by using the
loudspeaker for c ( e, and directly from the pattern otherwise).
These measurements lead to the determination that a=0 at
R =Ro =3.727R .
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FIG. 2. (a) Plot of the roll displacement Sx (y, r ) at
R =4.222R„corresponding to the case where one wave dom-
inates. (b) Amplitude of the right and left wave along the roll at
R =4.036R„when both are symmetrical. (c) R =4.222R„one
wave dominates. (d) R =4.349R, ; the two waves are beating.
The two lines correspond to two opposite phases of the modula-
tion period.
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with z; 1+ic;, c; being real; 2, (AI) is the amplitude of
the right (left) wave, with the rapid time frequency ro and
spatial frequency ky ( —ky) removed. Finally, e ee R.
Equations (la) and (lb) extend the one describing a sta-
tionary pattern:' zp is the characteristic time scale, (p
the correlation length, e the control parameter, and g
measures the nonlinear saturation. The waves are, more-
over, characterized by their group velocity s =dro/dky and
lead to complex parameters. The c; express the evolution
of the wave frequency ~ with each parameter: co with e,
cI with Q (Q=ky —kyp), and c2 with the amplitude of
oscillation.

In contrast to the case of a stationary pattern, the pa-
rameters of the LG equations [Eqs. (la) and 1(b)] may
not all be absorbed by a proper rescaling of variables, so
that diferent physical behavior may be expected depend-
ing upon these parameters. To determine them, we have
used the loudspeaker connected to the filling hole to gen-
erate a small localized and periodic perturbation which is
ideal for inducing oscillations on the roll. When R is just
smaller than R t, and co = coo, this perturbation leads to a
traveling wave with a wave number k~ and an amplitude
which grows exponentially along the roll, its growth-rate
being g~. Keeping R constant and scanning co, we deter-
mine k~ and g~. The dispersion relation is given in Fig. 4
and may be written as Imtl = co =rop+sQ+ c I ((p/
rp)Q —(cp/rp)e. From Iiy and s, we obtain the temporal
growth rate: Reri=(e/rp) —(gp/rp)Q . Both agree with

predictions. ' This gives all the critical parameters in-
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FIG. 4. Dispersion relation of the oscillatory instability deter-
mined just below e; (R =3.92R, ). The open circles correspond
to this experiment; Imp =co and g have been normalized using

Solid (dashed) line corresponds to the prediction of Clever
and Busse (Ref. 10) with Ãp, =0.71, k» =2.0, and R =4.098R,
(R =2.927R, ).

volved in the linear parts of Eqs. (la) and (lb): dip
=2.3~0.1, r, , cop=19.8+ 1, z,, d 's=5.02+'0.5, d '(p
=0.52 ~ 0.15, z,,

'
zp =0.163 + 0.05, cp = 1.57 + 0.3, and

ci = —0.826+ 0.3. Finally, by setting co =up and varying
R, we determine the Rp value corresponding to a=0. For
Rp & R & R i, the sidewall-reAection losses prevent the in-
stability from developing. The value of t., =0.058 corre-
sponding to R =Ri is related to the sidewall reflection r
by e ' ' 1/r, leading to r =0.183.

The nonlinear parameter g should be given by the linear
behavior of i A„i i with e. Since this asymptotic regime
is not reached in Fig. 3, we give a lower limit of g~ 2.3.
We have estimated cq using the state shown in Fig. 2(c).
The local wave number k~ increases as the amplitude of
the strongest wave reaches its maximum, leading to
cq —1.15.

The waves are characterized by two velocities: the
group velocity s, and a front velocity vf =no' gp/rp. If we
are in a frame moving at the velocity s, vf characterizes
the invasion speed of a saturated oscillating state into the
unstable rest state; n is a numerical factor depending on
Eqs. (la) and (lb), n =2 when c|=cq=2. According to
the ratio of the two velocities, a pulse launched along the
roll will either spread everywhere, this is the absolute in-
stability, or will be swept away with the group velocity,
this is the convective instability. The transition between
the two regimes occurs when s =srp/e' gp exceeds 2.
Since vf varies as v e, s will diverge as e 0. However,

the sidewall-reAection losses prevent the occurrence of the
instability when 0 ( e ( e, . This limits the value reached
by s. For our experiment, we find that s =s, =6.5 ~ 2 at
e„and its value remains bigger than 2 when we reach the
chaotic state. Although the concepts of absolute and con-
vective instabilities were defined for an infinite system, '

Cross has shown that in a finite container they will lead to
very difl'erent patterns. ' We confirm that in the convec-
tive case the waves are localized since they exhibit an ex-
ponential profile reaching a significant amplitude only
near the sidewall.

Our observations bear many similarities with those
made in binary mixtures' as well as in convection in mer-
cury. However, those examples involve a subcritical bi-
furcation, which adds extra possibilities to explain local-
ized states. Nonlinear waves are particularly interesting
since the equations governing them [Eqs. (la) and (Ib)]
lead to intrinsic time dependence as soon as ci and cqWO.
In this situation, the Benjamin-Feir instability' may be
expected and was invoked to explain time dependence in
previous experiments. In our case, we believe that the lon-
gitudinal Benjamin-Feir instability is not relevant since
the product clcp is positive leading to the stability versus
longitudinal phase disturbances. ' To confirm this stabili-
ty, we have checked that the wave number ky always lies
in the stable band when R is increased. Using a model
with ci =cq =0, Cross has shown that the nonlinear com-
petition between modes may also explain wave beating.
Profiles of the waves of Fig. 3(d) are very similar to those
calculated by Cross and occur in the same range of s. In
addition, the slow amplitude modulation frequency is in
the range of 4L~/s in the numerical simulation, and
3 37L~/s in the. experiment. In the regime where waves
are in phase from roll to roll, our experiment fully
confirms Cross's simulations. Although we are not truly
in the regime ci =cq =0, we confirm these ideas. On the
other hand, the negative value of cq may lead to transverse
phase instability, which may be related to bidimensional
time dependence that we have observed and should lead to
further studies.

We have characterized the oscillatory instability occur-
ring on straight convective rolls in gases. We confirm the
idea proposed by Cross that waves in a finite container
having a convective nature lead to confined states and
time dependence. The understanding of this mechanism,
as well as the complete determination of the critical pa-
rameters involved in the oscillatory instability, are essen-
tial steps to study the phase dynamics of waves and their
related instability.
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