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We describe the problem of impurity diffusion in a semi-infinite region in the context of a model
that caricatures the Fokker-Planck equation. The solution obtained for the surface flux is an im-

provement over that found using the diffusion equation in two important respects: The short-time
behavior is better and additional information is found regarding the physical process at the
substrate-reactant interface.

I. DIFFUSION EQUATION THEORY

We have recently made use of a simple model to inves-
tigate several problems usually described by the solution
of the diffusion equation (DE) for a specified boundary
condition. ' This previous work has focused on situa-
tions involving an absorbing boundary for which the
correct boundary condition, that no particles emerge
from the boundary, cannot be prescribed since the DE
description includes only position and time but not veloc-
ity. In the present Brief Report we consider a different
type of boundary value problem, where the DE descrip-
tion does properly treat the boundary condition, for
which the model still provides an improved description.
The model allows us a more believable description at
short times, for which it is known the DE is qualitatively
incorrect, and also allows us a more complete under-
standing of the physical processes taking place.

The specific problem we consider is impurity diffusion
in a semi-infinite region. A dopant is initially uniformly
distributed in a substrate which at t =0 is allowed to
react with a gas under controlled conditions that insure a
local equilibrium will be maintained at the substrate-gas
interface where the dopant concentration is co (c, with
c the initial concentration. This can be treated as a
one-dimensional problem and the DE solution for the
surface flux is

jDE = —(c„—co )(D lrrt)'

with D the diffusion coefficient for the dopant in the sub-
strate. This result is clearly problematic at very short
times; also, the DE does not allow us to determine the

I

separate contributions to the flux of dopant exiting and
reentering the substrate.

II. MODEL EQUATION DESCRIPTION

A description which allows a more accurate descrip-
tion of short times and permits us to distinguish between
flux components is provided by the Fokker-Planck equa-
tion (FPE) which includes velocity as well as position
and time. The difficulty in obtaining solutions for this
equation in specific situations has motivated us to consid-
er a simple caricature of this equation that includes its
most pertinent feature relative to our present concern—
information about particle velocities. We have also
shown that the model is equivalent to the lowest level of
approximation in a systematic representation of the exact
FPE solution in the same way that Bhatnagar, Gross, and
Krook (BGK) model solutions are equivalent to approxi-
mations of exact solutions to the linearized Boltzmann
equation.

We consider the diffusing particle to move with
velocities +s with distribution functions u+ (x, t) and
u (x, t) so that the diffusant density is w (x, t)
=u+(x, t)+u (x, t) and the flux is now an independent
quantity given by sv(x, t) with U(x, t)=u+(x, t)
—u (x, t). The kinetic description is given by

Bu+ sou++ =p(u+ —u+. ), (2)
Bt Bx

where p is related to the friction coefficient and
D=s l2p. This equation is to be solved here subject to
the boundary condition w(x, O)=c, w(O, t)=co &c
In particular, we want to find the surface flux

j(0, t) =su (0, t); this quantity follows directly from the re-
sults given in the Appendix of Ref. 1,

j(O, t)=su(O, t)=s(co —c ) 1 pf dr—e ~ [Io(pr) I&(pr)]—
0

=s (co —c „)exP( Pt)Io(Pt), — (3)

where I„ is the modified Bessel function of order n. At
long times the preceding result reduces to the DE result
Eq. (1) but for Pt « 1 this result behaves quite differently.

III. DISCUSSION

I

us to determine the separate contributions to this quanti-
ty from exiting and reentering dopant particles. The
former is just su (O, t) while the latter is su+ (O, t). From
(3) and the boundary condition u+(O, t)+u (O, t)=co we

easily find

In addition to providing an acceptable description of
the initial surface flux development the model also allows

su (O, t) =
—,'c„e ~'Io(Pt),

su+ (O, t) =
—,'(2co —c )e ~'Io(Pt) .

(4)

(&)
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This problem clearly illustrates that even in situations
where the DE provides a physically correct description of
the boundary condition that the model description is
more accurate (in time-dependent problems) and richer in
detail. Additional results, including the dopant concen-
tration in the substrate interior, also follow directly from
the results of Ref. 1.
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