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A method for minimizing the unphysical oscillations in simple lattice-gas hydrodynamic models
is presented. Numerical simulations of two types of shear flows are reported that illustrate the use-

fulness of this method.

I. INTRODUCTION

Lattice-gas methods have been used to simulate
Navier-Stokes fluids and many other physical systems.! 3
These methods fully exploit the properties of discreteness
and local interactions. Several reports have recently
pointed out some problems of these methods.*> In par-
ticular, Dahlburg, Montgomery, and Doolen® found un-
physical energy oscillations in a lattice gas simulating
Kolmogorov free decay flows, whose kinetic energy
should decrease monotonically. In their paper, it was
correctly explained that the cause of this phenomena is
an unphysical compressibility contained in the equation
of state of the lattice gas. In this paper, we propose a
procedure for choosing initial conditions which minimize
these oscillations. We illustrate this procedure using the
FHP-I model"® for simplicity.

II. DESCRIPTION OF THE UNPHYSICAL
OSCILLATION

The lattice gas theory is based on an asymptotic expan-
sion with two small parameters; the Mach number, and
€=1/S, where S is the characteristic size of the supercell
over which spatial averages are taken. For lattice-gas
calculations, these parameters are finite, introducing fluc-
tuations in macroscopic quantities. These fluctuations
propagate at the sound speed (1/V'2 in FHP-I model).

The dependence of pressure p on density # and velocity
u has the form®

p=(n/2)1—gn)u?/cH]. (1N

Here c is the particle propagation speed (1 for the FHP-I
model) and g(n)=(n —3)/(n —6). For convenience, we
separate the density into two parts,

n=ny+n', (2)

where n is a constant and n’ is the density fluctuation.
As seen from Eq. (1), the low-speed regions have higher
pressures for constant density. If we initialize a constant
density (n'=0) and a nonuniform velocity, a spatially
nonuniform pressure results. This nonuniform pressure
is the driving force which causes the fluid to redistribute
its density. As time evolves, the density fluctuation »n’ be-
comes positive in the higher-speed regions and negative
in the lower-speed regions. Damped periodic oscillations
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in n’ can occur. We demonstrate this behavior in the
FHP-I model with a uniform initial density, an x-
direction velocity distribution, u, = U, sin(2my /L), and
u, =0 (Kolmogorov flow). Here L is the width of the
flow. For U;=0.2, we show in Fig. 1(a), the density dis-
tribution at three times during the first oscillation. For
all plots, n is 1.2 particles per cell, 2048 X 2048 cells are
used, and the supercell size is 64 X 2048 cells.

The importance of this oscillation phenomenon is best
illustrated when we use U;=0.3. In Fig. 2, we show the
time evolution of the normalized streamwise kinetic ener-
gy E,= 3, nu?, where V denotes the whole periodic
box. We see that the kinetic energy of the system can
sometimes increase unphysically in this force-free decay
flow (the dashed line in Fig. 2). In Fig. 3, we show the
time evolution of the cross-stream kinetic energy,
E=3y nuyz. Notice that the oscillation frequency of
the energy in the streamwise component is half that of
cross-stream component. Both oscillation periods can be
understood as follows: we separate velocities into two
parts, a constant part and a fluctuating part,

u =u§°)+u;” ,

X

(3)

—,, (0) (1)
u,=u, +uy .

For Kolmogorov flow, ;=0 and u " <<u?. We as-
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FIG. 1. Density distribution (particles per cell) of the Kol-
mogorov flow at times: T'=0, 1, and 1 of the oscillation period
with initial velocity of 0.2: (a) at constant initial density; (b) at
constant initial pressure.
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FIG. 2. Streamwise kinetic energy for Kolmogorov decay
flow vs time in cell update units. The dashed line describes the
behavior for constant initial density. The solid line describes
constant initial pressure. For both cases, the maximum velocity
is 0.3.

sume that the fractional fluctuation of density and veloci-
ty are the same order of magnitude and have the same
propagation speed, i.e., the sound speed

n'=8n +n expli(kx —wt)] ,
uV=bu, +1, expli(kx —w1)] , @
uy:ﬁuy+ﬁy expli(kx —wt)] .

Here, 8n, du,, and 8u, are the fluctuations due to the
finite-size supercell average. Wavelength equals 27 /k
and frequency equals 27w. 7, u,, and u, are the ampli-
tudes of the perturbations corresponding to propagation
waves. From the dashed line in Fig. 3, we see that the os-
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FIG. 3. Cross-stream kinetic energy for the Kolmogorov
flow in Fig. 2 (normalized to the total initial streamwise kinetic
energy).
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cillation due to the pressure wave sits on the top of a
background caused by the supercell average. We see
that, for example, these two groups of fluctuations have
the same order of magnitude.

Substituting Egs. (3) and (4) into E, and E,, we obtain,

to the leading order in n’ and u‘V),

E =3 (nouimz-f-n'u;mz) ,
v

Ey=2nou}f”2 . ©®
v

We see that E, has the oscillation frequency 27w, while
E, has an oscillation frequency 47w. Moreover, 7, #,,
and #, are directly related to the velocity amplitude
through Eq. (1). Hence the oscillation may or may not
dominate the exponential decay of the energy. There is
no energy increase in the Kolmogorov flows when
Uy, =0.2 [see also (5)], but for U,=0.3, we see from the
dashed line in Fig. 2 that the kinetic energy can increase
with time.

In addition, we see that the oscillation behaves like a
typical sound-wave process. This can be checked by
measuring the propagation speed from the oscillation
period of the cross-stream part of the kinetic energy (see
Fig. 3). Using the distance between a point of zero veloc-
ity and maximum velocity, / =256V'3, and the oscillation
period T =624, we obtain a speed of propagation,
¢ =1/T=0.711, which is within 1% of the theoretical
sound speed.

III. MINIMIZATION OF UNPHYSICAL
OSCILLATION BY CHOOSING OPTIMAL
INITIAL CONDITIONS

Lattice-gas hydrodynamic equations consist of a con-
tinuity equation and the Navier-Stokes equation. They
have been derived for incompressible fluids for which
V-u=0. This incompressibility condition combined with
the Navier-Stokes equation requires the following Pois-
son equation for the pressure:

Vp =—nyg(ny)V-(u-Vu) . (6

It can be shown that V-u=0 and (6) are sufficient con-
ditions to satisfy on /3¢ =0 for the initial conditions, ig-
noring viscous effects. The vanishing of this time deriva-
tive is what is required to significantly reduce the effect of
the unphysical oscillations.

A. Optimal initial conditions for the Kolmogorov flow

Using (1), the equation of state, we can also write (6) in
the following form:

V' =nog (no)[ —2V-(u-Vu)+ V2] . 7

For the Kolmogorov decay flow with a constant initial
density, the left-hand side of Eq. (7) vanishes, but the
second term on right-hand side does not vanish initially.
One method of reducing the unphysical oscillations for
energy decay is to require Eq. (7) to be satisfied for the in-
itial condition, for example,



39 BRIEF REPORTS

B QR RAARS RARRE RARES IULLE RERRE LRSI
0.99
0.98
0.97

...........

0.96

KINETIC ENERGY

0.95

0.94

A I AT AT AT AW A IR ST AT

. o

T
T L 7T
0
0
0
Q
Q
0

0.93 IllllllllllllllllllllllIllllllllll]114:21-

500 1000 1500 2000

o

TIME

FIG. 4. Normalized total kinetic energy for Green-Taylor
vortex with U, =0.3 vs time in cell update units. [solid line for
Eq. (10) initial density; dashed line for constant initial density].

n'=nyg(ngu? . ®)

In Fig. 1(b) we show the density distribution at
different times, starting from a density distribution given
by (8). We can see here only small fluctuations around
the initial density due to the finite supercell average. This
is a much improved result compared with the large global
density oscillations of Fig. 1(a). The initial density (8)
produces a constant pressure distribution. There is no in-
itial unbalanced force in the system. In Figs. 2 and 3 we
give the streamwise and cross-stream components of en-
ergy decay for this Kolmogorov flow (solid lines). The
streamwise kinetic energy decays exponentially. The
cross-stream energy remains constant. We conclude that
by requiring constant initial pressure loading, we can
eliminate the unphysical oscillation. Note that the max-
imum speed here is 0.3 and the Mach number is 0.424.

B. Optimal initial conditions for Green-Taylor vortex flow

For a more general test of the constraint, Eq. (6), we
consider a vortex flow with the stream function given by

Y=U, sin(x) sin(y) . 9

2727

We call this a two-dimensional Green-Taylor vortex flow.
This flow initializes to a nonuniform pressure, in contrast
with the Kolmogorov flow. The solution of (7) gives the
following initial density profile:

n'=nyg(ngu+nyg(ny)U3 COS(ZX);LCOS(zy) .

In Fig. 4 we show the time dependence of the total ki-
netic energy using (10) as the initial condition. The con-
stant initial density loading gave a large oscillation in the
energy decay (dashed line), while the equation (10) initial
density decays exponentially (solid line).

(10)

IV. CONCLUSIONS

The reduction of unphysical oscillations is important
for lattice-gas simulations of incompressible flows, espe-
cially at moderate Mach number. If the Kolmogorov de-
cay flows are used to measure the lattice-gas viscosity,
large errors in the inferred viscosity can occur if the un-
physical oscillations are not properly treated. When the
density oscillation in the Kolmogorov flow is eliminated
by choosing an optimal initial condition, we obtain a
viscosity of 0.682 for density n =1.2. This result is
within 1% of the theoretical result.®

In simulations of incompressible hydrodynamics using
lattice-gas methods, Eq. (6) should be approximately
satisfied at all times in order to minimize unphysical den-
sity oscillations. Because there is no general analytic
solution to Eq. (6), it is nontrivial to obtain an optimal in-
itial density loading.

Even though the effects of unphysical oscillations can
be significantly reduced by the methods in this paper, it is
possible to eliminate the dominant cause of these unphys-
ical oscillations, the « 2 term in the pressure equation, by
adding speed two particles.” This additional speed model
has been shown to decrease the amplitude of the unphysi-
cal oscillation in the energy decay even more satisfactori-
ly than the optimal initial condition described in this pa-
per.
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