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Associative memory with high information content
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An extension of Hopfield's model with adaptive threshold and inhibitory interactions yields a net-

work capable of nearly optimal storage of patterns of low activity. A replica symmetric solution of
the mean-field equations is presented for' the noise-free case. The following properties are demon-
strated: For a low level of activity a the storage capacity increases as —(a lna) ', up to 0.38 bits

per synapse can be stored; spurious states can be suppressed; the network is not opinionated, i.e., it
can categorize inputs as not similar enough to patterns stored.

The Hopfield dynamic spin model' with symmetric,
nonlocal heterogeneous spin-spin interactions presents an
extreme abstraction of biological neural networks. It can
be analyzed by methods of statistical mechanics of spin-
glasses and by techniques of coding theory. Such
analysis has provided most important information on
storage capacity, role of noise, and recall performance.
Cognitive science and artificial intelligence are beginning
to embrace dynamical models like neural networks for in-
formation processing, since these models provide some
understanding of collective computation in systems with
a large number of simple elements, and since they share
some properties of biological networks, such as fault
tolerance, massive parallelism without a system-wide
clock cycle, and high connectivity.

Recent work on spinoidal networks focuses on two im-
portant aspects: (i) storage of sequences of patterns and
(ii) optimization of storage capacity and recall behavior.
In this paper we will be concerned with the latter, al-
though our approach is also relevant to the former as-
pect. ' One approach to optimal storage and recall in-
volves iterative learning algorithms for the interaction
matrix of a network. ' This approach certainly leads to
the best results, albeit requiring a computationally inten-
sive learning phase. We want to propose an alternative
method for optimal storage based on a simple relation-
ship between patterns stored and the interaction matrix.
The network model proposed is most suitable for storage
of correlated patterns of small activity level a, i.e., so-
called biased or "sparcely-coded" patterns which involve
only a small fraction of neurons firing. We have provided
our network with an adaptive neural threshold and global
inhibition between neurons. These features bear most im-
portant properties: high (close to optimal, see below)
storage capacity, no spurious states, a special state for
"no recognition. " By adjusting the threshold one can
further choose between effective storage and good associ-
ativity. Storage capacity of the network, as judged by
criteria derived by Gardner, is optimal for small activity
levels a. Recall quality of stored patterns is nearly op-
timal as well. The network bridges the gap between ma-
trix memory and Hopfield models; it can be interpreted
as a generalization of the original Hopfield model' for an
arbitrary level of activity a.

There exist several other proposals for effective, associ-
ative storage of sparsely coded patterns. ' The model of
Moopenn et al. involves a storage prescription with lo-
cal inhibition, where the space of possible patterns is re-
stricted to diluted patterns which differ from biased pat-
terns. Supression of spurious states is also observed in
that model. Another approach to storing biased patterns
in Hopfield models had been investigated in Ref. 10, how-
ever the assumed dynamics did not yield high informa-
tion content.

The network we propose is composed of N neurons de-
scribed by dynamic variables S=

I S, J, , Neuron i is ei-
ther firing (S, =1) or quiet (S;=0). The variables are up-
dated asynchronously according to a probabilistic rule.
The rule is based on a molecular field h;=gk W&S„
which represents the interaction of neuron i with all oth-
er neurons. With probability f; =

t 1+exp[ —(h; —U)I
T]I neuron i fires at time t+b, t, otherwise it is quiet.
The parameters U and T are the threshold potential and
the network temperature. The patterns g = I(;I, , to
be stored are chosen according to the distribution
P(g;)= 5a(g; —1)+(1—a)5(g;) Vv, i with a representing
the fraction of firing neurons. For a& —,

' the patterns are
biased. We have recently suggested a network model to
store and recall sequences of M biased patterns. Since
pattern sequences appear to comprise a most important
data format for information processing by networks,
low-activity pattern storage deserves special attention.
Observations on biological neural systems in the state of
normal function also reveal low levels of neural activity. "

The synaptic connections between neurons are chosen
according to a hypothesis of Hebb which postulates as-
semblies of cooperating neurons, i.e., of neurons with mu-
tual excitatory interactions, and competition between
such assemblies, i.e., inhibitory interactions between neu-
rons belonging to different assemblies. In the present
model the interaction matrix is defined by the rule

P
W;k= (g, —a)(Q —a)—,i &k . (1)

a(1 —a)N, ' aN'

The first term in (1) describes excitatory interactions and
favors firing patterns S=P. The sets Jkt"= Ii ~g= 1)
correspond to Hebb's neural assemblies of cooperating
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neurons. The second term in (1) introduces global inhibi-
tion between all neurons of the network, in particular
also between neurons belonging to different A, '.

The interactions W, & in (1) between two neurons i, k
are symmetric, i.e., W;I, =8'&;, self-interaction is forbid-
den ( W, , =0). Accordingly, an energy function

& W, &S,SI, + U g, S, exists. In the case of a
finite number p of stored patterns a standard analysis re-
veals that the network state is described by two parame-
ters

rn '=

and

x= g(S, )
QN

x measures the total activity in the network and m'
essentially the overlap of the network state S with the
pattern state g . (( )) denotes an average over quenched
random variables g' and ( ) thermal averaging. The
sum

m +ax=, S,

counts the number of active neurons in a network state S
which are also active in pattern v. The analysis proves
that at T=O and for the parameter range defined by
U+y (1—a all states exhibiting macroscopic overlap
with one pattern are stable states.

Network states which one seeks to avoid during associ-
ative recall are those which involve macroscopic overlaps
with more than one pattern. In the Hopfield model such
so-called spurious states become stable in the order of
three, five, etc. , overlaps when temperature is lowered.
In the present model the most stable of such unwanted
states are the ones exhibiting overlaps with two patterns.
A stability of these states is particularly ruinous for recall
of pattern sequences. In the limit of small a values
(a ((0.1) for sufficiently strong inhibition
[y) y, =(1—U)/2] such network states are always un-
stable.

The standard analysis also showed that for positive
threshold U )0 the network state with no activity
(m =0 Vv, x =0) is always an equilibrium state. This
state emerges asymptotically if the initial state of the net-
work does not exhibit significant overlap with any of the
patterns stored. It plays the important role of an indica-
tor for no recognition. This qualifies our model, in con-
trast, e.g. , to the Hopfield model, as not opinionated since
it does not force every initial state to be recognized as one
of the stored patterns.

We have studied network dynamics in more detail for
the situation that two patterns, say 1 and 2, do not over-
lap with any of the other patterns stored. When the net-
work is in a state of overlap with solely these two pat-
terns the dynamics depends only on m ', m and allows a
characterization of the basins of attraction for pattern 1,
pattern 2, and the state of no recognition. We found that
the basins of attraction are well behaved, i.e. , suKciently
large, of equal size, and become small for large values of

(2)

2

1

a(1 —a) „
2 CXyx+ U+-

a13 2
(4)

The parameter q corresponds to the Edwards-Anderson
parameter in spin-glass theories. r and y characterize the
mean and thermal fluctuations of the overlap between the
thermodynamic state and patterns v)s which are not
condensed. The free-energy density f for our network
model is

U and y. ' This behavior actually holds in the whole pat-
tern space and not only in the subspace of patterns 1 and
2.

We now consider the storage capacity e, =p,„/N of
the network and assume an infinite network with an
infinite number of stored patterns, albeit finite a. A most
straightforward consideration of the signal-to-noise ratio
for a single spin can give insight into the properties of the
network. Let the network be in a state S=g' correspond-
ing to recall of pattern g'. This state should be stabilized
by the local fields h, defined above. h, can be decom-
posed in a signal part h,' and a remaining (random) part
h,", the latter originating from perturbations due to other
stored patterns, i.e., h, =h, +h,'. The signal part together
with the threshold takes on the two values h,' —U
=1—a —y —U for g,'=1 and h —U= —a —y —U for
g,'=0. The overlap of pattern 1 with the infinitely many
patterns v ) 1 results in Gaussian noise with zero mean
and variance (((h,") )) =aa. The resulting signal-to-
noise ratios are then p, =(1—a —y —U)/&aa and
pa=(a+y+U)/&aa for neurons i with g,'=I and

g,'=0, respectively. Recall would be optimal in the case
p&=po. This can be achieved through adaptation of the
threshold to the optimal value U()pt z

a —y. The re-
sulting optimal signal-to-noise ratio is p, , = I/&4aa
which shows that threshold adaptation or adaptive inhi-
bition yield a recall behavior which improves with de-
creasing a. The latter behavior is opposite to that of the
network investigated in Ref. 10. A rough estimate of the
storage capacity can be based on the assumption that p, pt
does not exceed a critical value. This yields the predic-
tion a, -a

A more-detailed analysis bears logarithmic corrections
to this prediction, i.e., a, -a f(1/lna). For this
analysis which follows Amit et al. we assume that the
network state has macroscopic overlap with a finite num-
ber s of patterns. The microscopic overlap with the
remaining p —s patterns is then the origin of additional
noise. The partition function of the network can be eval-
uated with the replica technique (see also Ref. 13). The
network is characterized by order parameters m and x
defined above as well as by (P=aP)
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f= y(m )'+
2(1 —a) 2

1.05

+a U+ —x — (rq —xy )
a aa/3
2 2

1.00 — 1.4 c,

+ ln(1 —C)—a 8q
2P 1 —C 0.95

CO
}

—0.7

with

z ln 1+exp
1

0.90
10.0 20.0 a,

0.0

dz z
2)z = exp2' 2

C=P(x —q),
and

m + (y —r)+&aarz .
1 —a 2

V

1 —a
[erfc( —4, ) —erfc( —4o)], (Sa)

x =
—,'erfc( —4&, )+ erfc( —4o),1 —a

(Sb)

1 —CC= [a exp( —4, )+(1—a )exp( —&Po)]
&2m.aax

with

(5c)

From this expression one can derive the mean-field equa-
tions for the order parameters.

The network storage capacity can be characterized
from a study of the simple case that the network in the
zero-temperature limit has macroscopic overlap with
only one pattern, i.e., m =m6, . The essential order pa-
rameters (r and y yield algebraic expressions and are in-
serted) are solutions of the mean-field equations

FIG. 1 Dependence of the mean-field parameters m, x, and C
on storage density a (a =10 ', U=0. 7, a, =30.16).

m and x due to increasing overlaps with noncondensed
patterns. For a) a, the network relaxes to a state with
high activity and vanishing overlap with any stored pat-
tern v, i.e., x ))1, m '=0 Vv, or to the state of no activi-
ty (m'=0 b'v, x =0).

The entropy at zero temperature S(a)
=(a/2)[ln(1 —C)+C/(1 —C)] remains negative for all
values of a. For U=0. 7, y=0, and a=10 one deter-
mines S(a ) ~ —3.31 X 10 . This small value implies
that the effect of replica symmetry breaking should be
small for our network model, as in the Hopfield model.

The storage properties of a network with U =0.7 and

y =0 are presented in Fig. 2. To focus on the correction
to n, —a ' the axes a a and —1/lna are chosen. The
area below the solid curve (labeled aa, ) corresponds to
networks with satisfactory recall behavior, the area above
to networks incapable of recall. The phase boundary cor-
responds to the storage capacity multiplied by a. This
line would be constant if a, -a ' would hold exactly.
The phase boundary at small a values is linear. This most
remarkable behavior coincides with the upper bound

erfc(x) = —f exp( —t )dt,
77 x

and

1 —C
&2aax

1 —C
1 &2aax

1 —a
o. C

m —U —yx+—
2 1 —C

a C
m —U —yx+—

2 1 —C

0.03

0.02
A

o 0.01

The order parameters resulting from numerical solu-
tions of Eqs. (5) for different storage density a are
presented in Fig. 1. The results show that m +ax and x
at low storage density approach unity, i.e., recall is pre-
cise. Increase of a first reduces m and x slightly, i.e., the
recall state adopts a small, but increasing fraction of false
bits. Further increase of storage density results in a sud-
den destabilization of the solutions of Eqs. (5). The densi-
ty for which the breakdown occurs yields the storage
capacity a, of the network. The value of a, depends on
a and U. The breakdown is preceded by an increase of

0.00
0.1 0.2 0.3 0.4

—1/1n a

FIG. 2 Storage capacity a, multiplied by a (bold line) as a
function of —(lna) '

( U =0.7, y =0.0). The thin lines denote
(a, a) values with constant information (0.1,0.2,0.3 bits) stored
per synapse. The symbols indicate contour lines of (a, a) values
for which networks recall with 0.95 (0), 0.97 ( ), and 0.99 (E)
accuracy.
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a, ——(a lna) ' derived by Gardner. ' This suggests
that storage in our network for small a is nearly optimal.

In order to test this supposition we consider the infor-
mation content of the network which is obtained by cal-
culating the entropy of the pattern states S=g' dimin-
ished by the information deficit due to recall errors. The
entropy per neuron of a network state with m =m 6, is

Sz = —am ln(am )
—a (1 —m )ln(a —am )

—a ( x —m ) ln( ax —am )

—[1—a(1+x —m )]in[1—a(1+x —m )]

with m =m +ax. The entropy per neuron of a pure pat-
tern g' is Sp = —a lna —(1—a)ln(1 —a), the entropy loss
due to recall errors is AS =S~—Sz, and the information
content per synapse is I(a, a) =a(SP —b,S)/1n2 (in bits).
In Fig. 2 we have presented the contour lines for
I(a,a)=0. 1,0.2, 0.3. The results show that in the vicini-
ty of the linear phase boundary assumed to present op-
timal storage more than 0.3 bits per synapse are stored.
We have found that the information stored per synapse
could be as large as 0.38 for U=0. 75, a =5.6X10
This value is close to the bounds determined for asym-
metric networks in the limit a ((1 by Gardner. ' '

The proposed network does not recall with complete
precision. In order to judge its storage behavior the re-
call error measured by the deviation of m +ax from the
value one needs to be investigated. This information is

also included in Fig. 2. The areas below the lines desig-
nated by circles, squares, and triangles correspond to a
and a values for which networks recall with more than
95%, 97%, and 99% of correct bits, respectively. The re-
sults show that the price for better recall precision is a
reduction in storage density.

To judge the efficiency of the associative memory one
needs to solve the mean-field theory of networks with
clipped synapses, i.e., synapses with strength
W;„E I W W+ I. In this case, not only the stored infor-
mation, but also the information necessary to build the
network can be evaluated. Our network with clipped
synapses can be treated similar to the clipped Hopfield
model' and yields a reduction of information content
due to an additional noise source originating from the
synaptic nonlinearity. We have found that after clipping,
optimal storage at U=0. 75, a =10, is reduced from
I=0.38 to I=0.28.

Finally we would like to emphasize again that the pro-
posed network provides a nearly optimal associative
memory for strongly biased patterns, i.e., for sparse cod-
ing. Since many interesting information processing tasks
involve sparse coding the network appears to be a most
promising candidate for practical applications.
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