
PHYSICAL REVIEW A VOLUME 39, NUMBER 1 JANUARY 1, 1989

Phase transitions on strange irrational sets

Roberto Artuso* and Predrag Cvitanovic
Niels Bohr Institute, Blegdamsuej 17, DK-2100 Copenhagen @Denmark

Brian G. Kenny
James Franck Institute, The Uniuersity of Chicago, Chicago, Illinois 60637

(Received 11 April 1988)

Nonanalyticities in the generalized dimensions of fractal sets of physical interest are interpreted
as phase transitions. We apply the thermodynamical formalism to the fractal set formed by the irra-
tional winding parameter values of critical circle maps and introduce and investigate in detail
several distinct fractal measures on this set. The thermodynamic functions associated with different
measures are distinct: We discover that, in all cases that we study, they exhibit phase transitions.
The numerical estimates of the Hausdorff dimension from various versions of the thermodynamical
formalism and a variety of circle maps yield DH =0.8701+0.0003 and are consistent with the con-
jectured universality of DH.

Nonlinear physics presents us with a perplexing variety
of complicated fractal objects and strange sets. Notable
examples include strange attractors for chaotic dynami-
cal systems, regions of high vorticity in fully developed
turbulence, and fractal growth processes.

The aim of this paper is to point out and discuss in
some depth the fact that some sets of physical interest
have nonanalytic scaling spectra, a phenomenon which
we interpret as "phase transitions" on fractal sets. More-
over, this phenomenon has a direct analogy to the
phenomenon of phase transitions in condensed-matter
physics. The fact that such a phenomenon can occur in
physically important settings, such as the mode-locking
problem, was discovered first in Ref. 1, and is discussed
in detail in this paper. That the identical kind of phase
transition can also appear in problems of purely
mathematical interest, such as Julia sets, was subsequent-
ly observed by Katzen and Procaccia. Other examples
of phase transitions on fractal sets have since been stud-
ied in Refs. 3 —7. The recent work by Feigenbaum on
the scaling theory of strange sets clarifies the nature of
these phase transitions.

Our starting point is the conjecture of Jensen et al. ''
that the Hausdorff dimension of the irrational windings
parameter set of the critical circle maps is universal,
DH ——0.87. . . . From the experimental point of view, the
extraction of DH is an efficient way of averaging over all
available data, as DH estimates utilize aO mode lockings
accessible in an experiment, in contradistinction to
theoretical predictions such as the golden mean universal-
ity. '' ' However, here we are interested not so much in
the calculation of this Hausdorff dimension per se: we use
this problem as a convenient testing ground to gain in-
sight into new interesting phenomena implicit in the use
of "thermodynamic" formalism.

The straightforward numerical estimate of the Haus-
dorff dimension of Jensen et al. uses no-knowledge about
the structure of the set; the mode-locking intervals are or-
dered according to their width and counted. Such calcu-

lations yield numerically good estimates of DH, but they
offer no clue as to why DH should be universal. Howev-
er, the set of rationals P /Q clearly possesses rich
number-theoretic structure, which we utilize to introduce
and carefully examine several novel thermodynamic for-
mulations of the mode-locking problem. These are based
on different partitionings of rationals.

(1) Farey series.
(2) Farey tree levels.
(3) Continued fractions of fixed length.

These are standard number-theoretic concepts; their
properties are summarized in Appendix A.

Here we investigate the Farey series and the Farey tree
partitionings in some detail. Farey series thermodynam-
ics is introduced here for the first time. The Farey tree
partitioning was introduced in Ref. 14 and independently
investigated by Feigenbaum. ' The continued-fractions
partitioning will be discussed elsewhere it has also been
utilized by Lanford in his mode-locking renormalization
theory. '

In Sec. II we establish by a simple argument that DH is
bounded and smaller than 1; this is by no means obvious
a priori, as we also find that a precise numerical deter-
mination of the Hausdorff dimension of the set of irra-
tional winding parameter values is hampered by logarith-
rnically slow convergence. We use the thermodynamical
formalism to elucidate the nature of this convergence:
the main new theoretical insight is that the thermo-
dynamic sums undergo "phase transitions. " We model
such sums by analytically tractable number theoretical
models. These models play a crucial role in the next
step —they gauge the performance of various conver-
gence acceleration algorithms. We apply the most
effective algorithms to the evaluation of DH for a number
of different circle maps and obtain a much larger spread
in the estimates than the numerical stability of each
separate estimate would suggest. We give many examples
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of the procedures employed, and we hope to encourage
experiments to follow these lines. '

I. PARTITION SUMS

Consider a "partition" sum over mode-locking inter-
vals defined by

(1.2)

Alternatively, one may consider the sum

N

Zx(r)= g i (1.3)

where lz, is the parameter interval between the Az;
and A~, mode lockings. Since the intervals l~,- cover all
parameter values corresponding to irrational winding
numbers, we refer to them as the covering intervals, and
to the critical value of —~ for which the N~ ~ limit of
the sum (1.3) diverges as the covering dimension Dz. If
the choice of covering intervals l, is optimal (for rigorous
definitions, see Ref. 19) D„ is the Hausdorff dimension
D& of the fractal set; otherwise it is an upper bound to
DH.

Conversely, the mode-locked intervals A~, create
holes between irrational winding parameter values. The
Nth estimate of the value of —r for which (1.1) diverges
will be referred to as the hole dimension D~.

The choice of holes in (1.2) is largely arbitrary. Ideally
one chooses Az, - such that for asymptotic N, the cover-
ing intervals in (1.3) are of comparable magnitude.

The two sums (1.2) and (1.3) behave quite differently
for su%ciently negative ~. For example, as holes and cov-
ers are complementary sets, Z~( —I)+Zz( —1)= l. If
DH &1, Z~( —1)~0, but Zz( —1)~1. However, as the
cover in (1.3) is refined by punching holes Az. , in covers
l~; (where the initial cover has N intervals, and the
refined cover has N'~N intervals), the narrowest holes
scale in size as the covering intervals. As the divergence

Z(T) = g g 6pyg
0=& (pl Q)=&

The sum (1.1) is over all irreducible rationals P/Q, P & Q,
and Aping is the width of the parameter interval for which
the iterates of a critical circle map lock onto a cycle of
length Q, with winding number P/Q.

For sufficiently negative ~, the sum (1.1) is convergent;
for ~= —1, Z( —1)=1 since for the critical circle maps
the mode lockings (are conjectured to) fill the entire 0
range. However, as w increases, the narrow (large-Q)
mode-locked intervals Ap&& get blown up to Eppes and at
some critical value of ~ the sum diverges. This occurs for
~ & 0, as Z(0)~ ~.

Although the sum (1.1) is infinite, in practice the exper-
imental or numerical mode-locked intervals are available
only for small finite P and Q. Hence it is necessary to
truncate the sum (1.1), and present the set of irrational
windings hierarchically, with X intervals in a given trun-
cation,

of (1.1) is caused by the narrowest intervals we expect the
hole dimension D to coincide with the cover dimension
D . For simple fractal sets, such as the original Cantor
set, or the sets with two scales, this is indeed easily
verified by explicit calculation. We wish to determine the
limit of the sums (1.2) and (1.3) for N ~ ~: in order to do
this effectively, we need to recall a few facts specific to
circle maps.

II. MODE LOCKING IN CRITICAL CIRCLE MAPS

Dynamical systems possessing a natural frequency co]

display very rich behavior when driven by an external
frequency cuz, as the "bare" winding number A, =co]/co& is
varied, such systems sweep through infinitely many
mode-locked states. Both quantitatively and qualitatively
this behavior is already present in simple models such as
the sine map

k
x„+i——x„+II— sin(2'„) (modl ), k =1 (2.1)

and the piecewise cubic map

A+ 4x„(0& x„&—,
'

)

"+' 0+1+4(x„'—1) ( —,
' &x„&1) .

(2.2)

~iong Q
—3 (2.3)

and so does the covering interval l]z& which spans the
parameter values between 6

& && and 6,&[&,l. This
should be compared to the subcritical circle maps in the
number-theoretic limit [k =0 in (2.1)], where the interval
between 1/Q and 1/(Q —1) winding number value of the
parameter II shrinks as 1/Q . For the critical circle
maps the l, && interval is narrower than in the k =0 case,
because it is squeezed by the nearby broad Apyi fixed
point interval.

The widest interval corresponds to P/Q =F„,/F„,
the nth continued fraction approximant to the golden
mean. The reason for this is that the golden mean sits as
far as possible from any short-cycle mode locking. This
interval shrinks with a universal exponent

2~ m
~pzg ~ ipzg ™Q ™ (2.4)

As 0 is varied from 0 to 1, the iterates of a circle map ei-
ther mode lock, with a winding number given by a ration-
al number P/Q C(0, 1), or do not mode lock, in which
case the winding number is irrational. The complement
of the set of parameter values 0, for which the map mode
locks is the set of irrational findings, whose dimension
we wish to determine. Circle maps with zero slope at the
inflection point [e.g. , x =0 in (2.1)] are called critical:
they lie on the borderline of chaos. In the numerical cal-
culations presented here we concentrate only on the
physically relevant case, the maps with cubic inAection
points.

For a given cycle length Q, the mode-locked intervals
vary considerably in size. The narrowest interval shrinks
with a power law}o, i4, 2P
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where P=F„,, Q=F„, and p is related to the univer-
sal Shenker number' ' and the golden mean (A10) by

p = = 1.082 18. . . =2. 833 612. . . .1n5

2 lnp
(2.5)

The closeness of p „, to 1 indicates that the golden-mean
approximants barely feel the fact that the map is critical
(in the k =0 limit this exponent is p= 1).

The preceding estimates motivate rewriting the limit of
the sum (1.1) as

The functions Zz(r), q(r), and s(p) are interrelated in
the same way as the thermodynamic partition sum, free
energy, and Gibbs free energy, hence the name "thermo-
dynamic formalism. " We follow the notational conven-
tions of Halsey et al. , with exception that here we al-
ways assume uniform probability p =1/N and so the
quantities p and s(p) are more convenient in the present
context than a and f(a) from Halsey et al. They are re-
lated by

Q ""~, Q'=Nz =+(Q),
Q=& (Plg)=~

with exponents of bounded variation

pgni & ppzQ &
2

(2.6)

(2.7)

a=lip, f(a)=s(p)lp . (3.6)

The scaling spectrum s(p) is a highly irregular function
of p for finite X; in practice one computes q, (r), which is
a monotonically increasing function of ~, and replaces
s(p) by its convex envelope S(p), evaluated from the
t ~ oo saddle estimate of (3.1)

In the crudest approximation, one can replace pp&Q by a
"mean" value P and the sum (2.6) can be evaluated in
terms of Riemann g functions,

rq, (&) 2irt
e ' =Ct)

S,"(r)
1/2

t[St (P)+rP(r)]
e (3.7)

g( 2' —1—

Q= 1 g( —2'�) (2.&)

DHp —1 (2.9)

While this does not enable us to compute DH, it does im-
mediately establish that DH for critical maps exists and is
smaller than 1, as the p bounds (2.7) yield

As the sum diverges as —~ approaches the Hausdorff di-
mension, the "mean" scaling exponent p and DH are re-
lated by

where P(r) is the solution of the extremum condition

dS, (p)
dp

(3.8)

As we shall see in Sec. V, the distinction between the
scaling spectrum s(p) and its convex envelope S(p) is
crucial: it offers one way of diagnosing phase transitions.
In the X~ ~ limit q, (r) and S,(p) approach finite limit-

ing values q(r) and S(p) which satisfy the usual thermo-
dynamical Legendre transform relations

—(DH &0.9240. . . (2.10) q(r) =S(p)+rp, (3.9)

(These bounds are of experimental relevance, ' as finite

Q estimates of Dti are sensitive to the choice of mode-
locked intervals. ) To obtain sharper estimates of Dtt, we
need to describe the distribution of ppyg within the
bounds (2.7); this we shall do by means of the thermo-
dynamical formalism.

III. THERMODYNAMICAL FORMALISM

tq, (. . ) ) max t[s, ((c)+pr]Z~(r) =e ' = dp e
i' min

(3.1)

The "thermodynamical formalism" arises from
the observation that it is advantageous to reorder the sum
(1.3) by increasing interval size t and rewrite it as

dq!r) dS(p)p=, 7=-
dp

(3.10)

d q(r) d S(p)
dp,

(3.1 1)

The Hausdorff-dimension condition can now be restated
in terms of quantities finite in the N ~ ~ limit,

q( Dtt)=0 . — (3.12)

p(r), the effective scaling exponent at r, grows monotoni-
cally from r= —~ (where the sum (3.1) is dominated by
the widest intervals) to r= ~ (where the sum is dominat-
ed by the narrowest intervals). Hence the second deriva-
tive of q(r) is strictly positive. It is related to S"(p) by

where

t= lnN, (3.2)

Equivalently, by (3.9) and (3.10), the Hausdorff dimension
is the slope of the tangent to S(p) at p =ptt satisfying

1
p = ——lnl, (3.3) dS(p)

dp
(3.13)

1
q, (r) = —1nZ„(r),

s, (p) = —1n&(p), 0(s, (p) (1,1

(3.4)

(3.5)

The dimension associated with the most numerous scal-
ing exponent can be interpreted as the information di-
mension, with

and X(p)dp is the number of intervals whose scaling ex-
ponent p falls into the range [p,p+dp].

Dl= 1 ~pt S(pl)=1 .

pi is the average scaling exponent at ~=0;

(3.14)
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(3.15)

The asymptotic q ( r ) is invariant under rescaling of 1, ;

however, the finite N estimates q, (r) pickup corrections
of order 1/t,

A. Farey arcs

In the k =0 limit the mode-locked intervals have zero
width, and the covering intervals (4.1) are the Farey
arcs, i.e., the differences of successive rationals in a
Farey series of order Q (see Appendix A),

l, ~e
Z~(r )~e 'Z~(r ),
q, (r)~q, (r)+ar/t .

(3.16) It is plain that

P;

Q;

1

Q;Q;

Z~( —1)=1, Z(0)=N=4(Q) .

(4.2)

(4.3)

The finite-N effect can be eliminated by computing q(r)
from ratios of different Z~(r},

1 Zx(r)
q, , (r)=, ln (3.17)

rather than from (3.4). In our numerical work we use
two choices of N'; either we take

For the Farey series of order Q the broadest Farey arc is

1(1,Q) = 1/Q. Hence the minimum scaling exponent (3.3)
1s

p„,„=p(1,Q)= —,
' . (4.4)

As Q grows, each rational with a small denominator k is
bracketed by a pair of broad Farey arcs of size

N = [2N'] (3.18) 1(k,Q')=, , k «Q, Q'=Q1

(brackets stand for the integer part) or we normalize by
the overall covering interval Z& (r) =1 1

pq,
———,'+ —ink,

(4.5)

(3.19)

Beyond that, we accelerate convergence by methods de-
scribed in Sec. V B.

The best method for extracting thermodynamics from
the intrinsic scales of a strange set is the transfer-matrix
technique ' ' which utilizes scaling factors. As a scal-
ing function for the Farey series partitioning is not avail-
able, and the Farey tree scaling function' ' suffers from
slow logarithmic convergence, the computations here are
carried out directly on the sums (1.2) and (1.3).

IV. FAREY SERIES THERMODYNAMICS

The Farey series couering set thermodynamics is ob-
tained by deleting all mode-locked intervals Ap && of cy-
cle lengths 1 & Q' & Q, and forming the partition sum (1.3)
from the remaining covering intervals

(4.1)

The number of intervals is N&
——@(Q)~ Q (see Appendix

A), and P„/Qo =0/1.
As the widths of the mode-locked and covering inter-

vals shrink exponentially with Q, partitioning of rationals
into sets with bounded Q is appealing both from experi-
mental and theoretical points of view. They are also of a
number-theoretical interest, because they provide uni-
form coverings of the unit interval with rationals, and
because they are closely related to the deepest problems
in number theory, such as the Riemann hypothesis.

Number theorists have carefully examined the thermo-
dynamics of Farey series in the number-theory limit
[k =0 in (2.1}]. Their analytic results are instructive, so
we review them first, before examining the thermo-
dynamics of the critical map.

where Q' is either the preceding or the next denominator
in the Farey series. The number of times k appears as a
denominator is given by the Euler function P(k) (Appen-
dix A). Hence we can estimate the scaling spectrum s(p, )

for p close to p

g l(k, Q') '=2 g P(k)(kQ)' for R «Q .
k =]

Approximating this sum by the integral
+

d E(2P —1+7P)pe
1/2

(4.6)

we find that close to p;„ the scaling spectrum is given by

s(p) =28 1 p=p +e
ds

dp

(4.7)

(4.8)

pmax —1 .

1

Q(Q —1)
' (4.9)

(4.10)

Therefore q(r) has slope 1 for ~~ ~; by (4.7) and (4.3) it
must pass through q( —2) = —1, q( —1)=0, q(0)=1; and
it must be strictly convex. Hence q(r) consists of two
straight sections

~/2, « —2
q(~)= '

1+~, v-& —2 . (4.1 1}

The finite slope of s(p) at p=p, ;„ implies that the parti-
tion sum (1.3) is dominated by the broad Farey arcs (4.5)
for all r & —2, and by (4.6) q(r) is given by a straight line
q =~/2 over this entire range.

For r large and positive, the partition sum (1.3) is dom-
inated by the narrowest arc



272 ARTUSO, CVITANOVIC, AND KENNY 39

We see that q(r) for the Farey arc thermodynamics un-
dergoes a first-order phase transition at ~= —2. A more
careful number-theory analysis' (Appendix A) leads
to the same result. We conclude that in the N~ ~ limit
the Farey arc thermodynamics is simple.

The question of great practical importance is the size
of finite-N effects. In this case the Hausdorff dimension is
always equal to 1 by (4.3). The finite-N effects for
r~+co are easily estimated; for r~ —~ (4.5) yields
correction of order I/lng, and for r~+ ~ (4.9) yields
corrections of order 1/Q. At the phase transition point
r= —2, the corrections are of order lng/Q. The
"Euler noisiness" of X=@(Q) introduces further errors

B. Farey series for critical maps

For critical maps the 1/Q mode-locked intervals lie on
a parabolic devil's staircase, ' ' yielding the broadest
covering interval l( l, g) =kg, with the minimum scal-
ing exponent (3.3)

P'min

The convergence is in practice very slow. '

(4.12)

of order lnQ/Q. These finite-Ã error estimates agree
with the numerically observed finite-N effects, Figs. 1 and
2.
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FIG. 1. Numencal estimates of the Farey arcs (4.2) thermodynamic functions, with convergence accelerated by (3.17). (a) q, (~)
computed from Q=250 and Q'=177 (Nz, o =19024 and N, 77=9566). The asymptotic q(r), (4.11), is indicated by the dotted line;
there is a first-order phase transition at ~= —2. By (4.3) the Hausdorft' dimension equals 1 for all X. (b) The scaling exponent

p, (r)=q,'(r), evaluated for Q:Q'=250:177 and 62:44. Slow convergence toward the asymptotic p(r) (dotted line) is manifest. (c)

q,"(~) evaluated for 250:177, 177:125, 125:88, 88:62, and 62:44 gives a finite-N scaling indication of the first-order phase transition at
v. = —2. (d) The scaling spectrum S, (p), calculated from q, (r) and p, (~) by the Legendre transform (3.9), for 250:177 and 62:44. The
asymptotic S(p) (dotted line) is concentrated on the points ( —',0) and (1,1).
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The narrowest covering interval is

l(Q, Q —1)=kQ
(4.13)

3
Pmax

2The Q behavior arises for the same reason as the Q
scaling leading to (4.12); the successive mode-locked in-
tervals 1/Q, 1/( Q —1 ) lie on a parabola, so their
difference is of order Q . Numerical estimates of the
thermodynamic functions (see Fig. 2) exhibit the same
slow convergence and "Euler noise" as the finite-N Farey
arc computation, and indicate a first-order phase transi-
tion.

However, the finite-N Hausdorff dimension estimates
exhibit surprising numerical stability; for example, the
sine map Dz estimate (Fig. 3) for 240 & Q & 250 is
D =0.87012+0.00001. For the cubic map we obtainN

3D =0.87002+0.00001, and for the sine with 0.075 sin
term we obtain DN ——0.869 68+0.00001. Of course, as it
is obvious from Fig. 3, such numerical stability is decep-
tive, as the computation is not asymptotic. Varying the
ratios of Q and Q' in (3.17) has no significant effect on the
numerical stability of the preceding estimates.

This completes our numerical investigations of the
Farey series thermodynamics. We next turn to the other
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0 8rt

\ y~ ~ ~ '\ g ql((

3 innp;„= ~0 .
n ln2

(5.3)

0.869—

0 868-

I
\

'I

l
I

l

I

cubic

'~

I
I

0.866—

0.866—

a =0.075
I

I 1

I

I
I
I
I
\

1

I
I
I

I

\

0 864 ill l I I I 1 I

I

1/Ln(95&2) 1/Ln, (Z56) r/&~(c4y

partitioning of the rationals employed here, the Farey
level thermodynamics.

FIG. 3. Finite-N estimates of the Farey series thermodynam-
ics Hausdorff dimension (3.12), with convergence accelerated by
use of (3.17) and (3.18), for the sine map (2.1), the cubic map
(2.2), and the sine map of Ref. 10, Eq. (4.1), with a =0.075. The
"noise" is entirely due to the irregular growth of %=4(Q) as a
function of Q (Appendix A). D~ is computed for all Q:Q',
20 (Q & 250, Q' = [Q /l. 41 ].

So for finite n, q„(r) crosses the r axis at —r=D„, but in
the n ~ cc limit q(r) exhibits a phase transition; q(r) =0
for ~ ~ —DH, but is a nontrivial function of ~ for
—D~ &w.

The thermodynamics developed here is radically
different from that for the fractal sets which scale every-
where geometrically, such as the period-doubling attrac-
tor, ' where both small and large scales approach a
universal limit, and the q(r) zero crossing is smooth.
Here the Hausdorff dimension is determined by the tran-
sition from geometric scalings (where we know that at
least the quadratic irrationals lead to universal scalings)
to harmonic scalings, which we know are not universal. '

More precisely, our problem is that we know that the
nonuniversal effects in circle-map scaling functions are
numerically small; hence it would be desirable to have (as
long as there is no theory for the universality of this
Hausdorff' dimension) high-precision evaluations of DH.
As we shall see, the presence of the phase transitions
makes this task difticult.

A. Order of the phase transition

In order to develop intuition about the nature of this
phase transition, we first introduce the "Farey model"
and then consider a series of approximations both to the
critical circle-map sum (1.2) and to the Farey model. In
the Farey model the intervals lpz& are replaced by Q

Z„(r)= g Q, '. (5.4)

V. FAREY LEVEL THERMODYNAMICS

AF /F ~ 6 (5.1)

shrinks exponentially, and for & large and positive it dom-
inates q(r) and bounds p(r) [see (3.3)]

The Farey level hole thermodynamics is obtained by
forming the partition sum (1.2) from the N=2" mode-
locked intervals 6&&& belonging to the nth level of the
Farey tree (definition 3, Appendix A). The Farey level
covering set thermodynamics (1.3) is obtained by remov-
ing all mode-locked intervals up to the nth level of the
Farey tree.

At level n =0, the sole I interval is obtained by deleting
the 0 values for which the circle map converges to a
fixed point. At level n =1, A values corresponding to the
cycle of length 2 are deleted. By deleting the Farey medi-
ant mode-locked interval (P+P')/(Q+Q') we obtain
two I intervals, and so on.

The narrowest mode-locked interval at the nth level,
the golden-mean interval (2.4),

Here Q, is the denominator of the ith Farey rational
P, /Q, . For example,

Z, ( —,')=4+5+5+4 .

The Farey model is motivated by the observation that
the scaling exponents are of bounded variation, with
bounds given by (2.7). With r replaced by p, r, the Farey
model can be thought as a "mean" P approximation (2.8)
to the sum (1.3). Alternatively, the Farey model can be
thought of as the covering thermodynamics for the trivial
(k =0) map, as in Sec. IV A. Regardless of the interpre-
tation, the Farey model gives valuable insights into the
Farey level thermodynamics: the qualitative behavior is
the same in the "trivial" (k =0) and the critical (k =1)
case, but the Farey model is analytically tractable. The
sum (5.4) can be evaluated explicitly for positive integer
and half-integer values of r (Appendix 8), or evaluated
with high precision numerica11y for any value of
Analogous to the critical case bounds (5.2) and (5.3), the
largest and the smallest scaling exponents are given by

p „= =1.502642. . . .ln6
(5.2) p „= = 1.388 848. . . ,

ln2
(5.5)

However, for ~ large and negative, q(~) is dominated
by the interval (2.3) which shrinks only harmonically,
and p(~) approaches 0 as

2 inn
dmin =

n ln2
—+0. (5 ' 6)

The Farey model also has a phase transition at ~= —D~~.
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For the Farey model the Hausdorff dimension equals 1,
as the irrational numbers have all the measure on the unit
interval. Formally this follows from the divergence of
the sum Z(r) =QZ„(r) at r= —1 [see (2.8)].

The first rough bound on DH can be obtained by con-
sidering

Z„(r)=e '"+Re (5.7)

In this approximation we have replaced all Ipyg except
I

& j the widest interval, by the narrowest interval
IF &F . The crossover from the harmonic dominated to

n —1 n

the golden mean dominated behavior occurs at the ~
value for which the two terms in (5.7) contribute equally,

1
D n

9'max Pmin

=D+0 (5.8)

D = =0.7002. . . (Farey model)
Pmax

=0.66549. . . (critical maps) .
(5.9)

As the sum (5.7) is the lower bound to the sum (1.3) for
negative ~, D is a lower bound on DH. The size of the
level-dependent correction in (5.8) is ominous —the finite
n estimates converge to the asymptotic value logarithmic-
ally,

D„—D 1=1+0
D, +) —D n

(5.10)

1+(1+4x')'"
o(x) =

2x

(5.12)

and (5.11) can be approximated by the integral (here we
use the Stirling approximation)

1/2

Z(r) = I dx
o 2rrx(1 —x)

t f f(x)+ 7.P(x)]

f (x }=s(p(x) }=—x lnx+(1 —x) In(1 —x)
(5.13)

ln2

Such excruciatingly slow convergence cannot be over-
come by brute computation, but requires an understand-
ing of the phase transition.

There is an improvement of the preceding bound
which exhibits an analytically tractable phase transition.
We partition all Farey rationals on the nth Farey level
into subsets of fixed continued-fraction length,

n
Z„(r)= g k Q„'. (5.11)

/c =0

For a fixed continued-fraction length k and fixed Farey
level n, the denominator of [a, ,az, . . . , ak ] is equal to or
less than Qk, the denominator of [a,a, . . . , a],
a =(n +2)/k. Asymptotically, Qk approaches the kth
power of the larger root of o. —o. /x —1 =0,

Qk~o(x)", x =kin

q(r) is given by the saddle point estimate
q(r) =f (x)+rp(x), where x is the solution of the ex-
tremal condition

0=f '(x)+ rp'(x)

1 —x 1= ln +2r ln(o )—
X 2xo. —1

(5.14)

1
D

Pl
)0.7864. . .

However, for the Farey model a much better lower bound
on Dt is obtained by substituting lnQ with lnQ in (3.15).
Q grows as 3" (see Appendix B), so

Dt &, =0.8547. . .
ln2

(5.17)

Numerical methods of Sec. V B yield

Dt ——0. 874 716 307. . . ( Farey model ), (5.18a)

Dt ——0.795 08. . . (critical maps) . (5.18b)

The bound (5.15) is not a significant improvement of the
simple golden-incan bound (5.9), and is still far from
DH =1, but we have included the preceding exercise to il-
lustrate how existence of a concave segment in the
interval-counting function s(p, ) implies a first-order phase
transition. While we are not able to evaluate analytically
s(p) either for the Farey model or for the critical circle
maps, we offer the following argument that s(p) starts
out concave at the p;„end.

p;„arises from the smallest denominator on the nth
Farey level, Q[„+2]—n +2. Other denominators that are
proportional to n in the n ~ ~ limit arise from continued
fractions of form

Q[a|a2 . . a, n, b . . . b2b&] Q[aia2. a ]nQ[b~b& b ]

The saddle point dominates the integral (5.13) as long as
f(x)+r]p(x)) 0. At r= DH—

0=f (x)+DHp(x) =f'(x)+DHp, '(x)
(5.15)

DH ——0.8031. . . , pH ——1.2009. . . ,

a first order p-hase transition takes place, and for r &0 the
integral (5.13) is dominated by the x ~0 (harmonic) end.
This phase transition is shown in Fig. 4(b). In Fig. 4(d)
we plot s(p). As it is easily checked, s(p) cannot be con-
vex, as it has slope —,

' at p, ~0. The scaling spectrum S(p)
(3.9) is the convex envelope of s(p) computed from (5.13),
and the straight segment from @=0to p& implies a first-
order phase transition.

DH in (5.15) is an improved lower bound to the Haus-
dorff dimension. Similarly, from the fact that s(p(x)} is
maximum at x = —,', we obtain a lower bound on the infor-
mation dimension for the Farey model

p, (p( —')= ln( 1+&2)
1 2

—= 1.2715. . . ,

(5.16)

2x ln[o. (x)]p(x) =
ln2

+const, a, , b; (&n, (5.19)
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related by

2 ink
Pk Pmin

(5.21)

series sums of Sec. IV, while they work extremely well
applied to the Riemann g(s) function.

We compute the nth level HausdorA dimension from
(3.17) taking either successive Farey levels,

~(Pk )=dmin+ 2(Pk dmin)
1 =Z„~,(D„)/Z„(D„) (5.23)

Hence, in the k «n, k~ ~, limit the initial slope of
s(iu) is given by

ds (iu, ,„)
dp

1

2
(5.22)

As for the Farey model D& ——1, and DH is the slope of the
tangent of s(iu ) passing through the origin, s(p) starts out
concave at p;„. However, as the range of its applicabili-
ty shrinks toward p =0 with increasing n, this argument
is not sufficient to establish the existence of a finite gap in

p(w) in the n ~ ~ limit.
The same counting argument applies to the critical

maps as well. The only di(ference is that the g depen-
dence is now given by (2.3), and the initial slope at s(p;„)
is —'. This is smaller than DH ——0.87. . . , and again we ex-

pect a first-order phase transition.
Such arguments are further strengthened by numerical

computations. Both the numerical convergence accelera-
tion methods of Sec. V B and the finite scaling methods
applied to 5"(p) dependence' on the level n consistently
yield a finite gap in p at the phase transition; for example,
they indicate that for the Farey model p( DH +e)—
~0.64+0.03. Still, recent studies indicate that this
phase transition is not of a first order, but logarithmic of
infinite order, and the failure of our numerical and
heuristic arguments serves as a warning of how delicate
such phase transitions can be.

or the Hentschel-Procaccia definition,

1 Z (DHP)/Z (DHP} (5.24)

VE. CC3NCLUSZQNS

We have investigated the set of irrational windings in
two distinct thermodynamic formulations: the Farey

(The n =2 sum consists just of the single 1 covering inter-
val between 0/1 and 1/2. ) We use these two definitions of
D„and the two acceleration algorithms to estimate DH
for the Farey model (5.4), the critical sine map (2.1), the
critical cubic map (2.2), and the family of sine maps'
with an additional term —a sin (2nx ) added to the right
side of (2.1). The numerical results are summarized in
Figs. 5 —7 and Table I.

Finite level estimates of D for the cubic map (2.2) do
not converge as smoothly as for the sine map, and the ac-
celerated convergence estimates appear unreliable. In
particular, it can be shown that in this case Levin's u

transformation converges to a local minimum in D at
finite n, rather than to the asymptotic n. The speed and
the stability of the Levin u transformation is illustrated
by Fig. 7. However, this numerical stability is deceptive,
as for the other maps in the sine-family one obtains a
variety of similarly stable, though mutually difT'erent esti-
mates of Hausdorft' dimension.

B. Numerical results 0 880

The convergence of truncated-sum approximations to
the arithmetic functions such as a g function is notorious-
ly slow, and no accurate estimate of DH can be obtained
by a mere increase in the number of levels used in the
computation (note that computation time grows exponen-
tially fast with the Farey level). As it is unlikely that
tractable integral representations for the sums (1.2) can
be obtained, the standard Riemann function evaluation
methods are inapplicable, and we are forced to resort
to the logarithmic convergence acceleration algo-
rithms. Their basis is heuristic, and performance
uncertain. Fortunately, for the Farey model (5.4) we
know the Hausdor6' dimension: DH ——l. This enables us
to test and develop confidence in the performance of such
algorithms.

We estimate the asymptotic D by two methods: the
Levin's u transformation and the alternating e algo-
rithm. ' The u transformation performs remarkably well
on all test problems: for example, for the first six Farey
levels (5.4), the u transformation yields DH ——1 to five
significant digits. The alternating e-algorithm perfor-
mance is consistently poorer by several significant digits,
and more unstable. Acceleration convergence algorithms
presume smooth convergence towards the limit. In par-
ticular they are inapplicable to the "Euler noisy" Farey

0 875—

0 870-
0= -O. t

0 865—

o e60-

0 850—

0 845—

0 840 RiIIII I I I I I I

1 t

1/L71(66536) 1//'Lw(64)

FIG. 5. Finite-N estimates of the Farey tree levels' therrno-
dynarnics Hausdorff dimension (5.24), for the sine map (2.1), the
cubic map (2.2), and the family of sine maps of Ref. 10, Eq. (4.1),
with a = —0.4, —0. 1, 0.05, and 0.075, for Farey levels with
N & 32768. While quite stable, these estimates are far from the
asymptotic D„compared to Farey series estimates, Fig. 3.
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0 880

0 875—

0 870-

0 865—

TABLE I. Levin u-transformation estimates of the Hausdorff
dimension for Farey levels thermodynamics computed from
finite-D estimates (5.24) and D» estimates (5.25). Numbers in

parentheses indicate the variation in the last digit among all
Levin transforms on the last five raw D„values. Number of dis-
tinct mode-locked intervals used in the evaluation of the dimen-
sion varies from 4096 to 32 768.

D"' O86O-

0 855—

0.850—

0.845—

sine

map

sine, a = —0.4
sine, a = —0. 1

sine Eq (2 1)
sine, a =0.005
sine, a =0.075
cubic, Eq. (2.2)

Hausdorff dimension estimates
DHP

0.86 805(4)
0.8686(1)
0.8705(2)
0.871(2)
0.871(2)
0.864(5)

0.8693(4)
0.8671(8)
0.8701(1)
0.870(1)
0.870(1)
0.868(1)

SIIIII I I I I I I

I f

1/Ln(66536) 1/Ln{64)
I

1/Ln(4)

FICx. 6. Same as in Fig. 5, except that Dz is computed from
(5.25).

0.872

0 871—

0 870—

0 869-

0 868-

O 867-

0 866-

0 865—

series (all mode lockings with cycle lengths up to Q) and
the Farey /evels (2" mode lockings on binary Farey
tree). The analytic results for a number-theoretic model
are helpful in elucidating the thermodynamics" of the
nontrivial critical maps, which we investigate here nu-

merically.
The fractal set discussed here, the set of all parameter

values corresponding to irrational windings, has no "nat-
ural" measure: for each distinct partitioning of the set of
all rationals, we take the probability to be uniform. The

thermodynamic functions q(w) and S(p) are diferent for
each distinct partitioning. The only point they have in
common is the HausdorfF dimension, which does not de-
pend on the choice of measure.

The Farey series thermodynamics turns out to be an
excellent method for computing the Hausdorff dimen-
sion, but is "number-theoretically" noisy, and does not
seem amenable to renormalization treatments. In the
Farey level partitioning of rationals, D~ plays a double
role —it is both the Hausdorff dimension and the location
of the phase transition. The second property is the cause
of a very slow convergence of D„ toward the asymptotic
limit DH, and, despite the claims of Refs. 46 and 21,
makes DH experimentally inaccessible if data is parti-
tioned into Farey levels. Instead, we suggest that from
the Farey levels data the experimentalists extract the in-
formation dimension (3.14) which, for critical circle maps
with cubic inflection, converges quickly (geometrically) to
DI =0.795 08. . . .

Our main result is the discovery of phase transitions.
They were not anticipated, their identification requires a
careful examination of the thermodynamic sums, and
while they were overseen in earlier investigations of the
same mode-locking problem, we find them in every case
that we have studied. To date we are not aware of any
other approach that can lead to such a strong conclusion.
Not only do the phase transitions enrich our conceptual
vocabulary, they should enrich our experimental vocabu-
lary as well. Their measurement should result in new
tests of scaling theories of nonlinear systems.

0.864— ACKNOWI. KDGMENTS

0 863—

Illlll l l l l

1/Ln(66536) 1'/Ln(64) 1/Ln(4)

FIG. 7. Finite-N estimates for the sine map, from Fig. 5,
compared with 2, 3, . . . , 10 term Levin estimates fo the asymp-
totic Dz. The estimates are numerically very stable (see Table
I).
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APPENDIX A

Theorem 3 (Hall ). For integer r & —3

Z, (r)= Q'+O(Q" 'ln'Q),2g( —r 1—)
(A5)

Here we collect some number-theory results used in
this paper.

Definition l. The Euler function $(Q} is the number of
integers not exceeding and relatively prime to Q. For ex-
ample,
P(1)=1,$(2)=1,$(3)=2, . . . , $(12)=4, $(13)= 12, . . . .

Definition

2. The Farey series of order Q is the mono-
tonically increasing sequence of all irreducible rationals
between 0 and 1 whose denominator does not exceed Q.
Thus P, /Q, belongs to F& if 0 & P, & Q, & Q and
(P;

~ Q; ) = 1. For example

k

g a, =n+2. (A6)

For example,

T, =
I [4],[2,2],[1,1,2],[1,3]I =( ', ', =', -'

)

where 0= 1 for ~= —3 and 6I =0 for ~ & —3.
Definition 3. The nth Farey tree level T„ is the mono-

tonically increasing sequence of those continued frac-
tions [a, , az, . . . , ak] whose entries 0&a; n,
i =1,2, . . . , k —1, 1(aA n +2 add up to

PQ;, P;,Q;—=1 . (A 1)

The number of terms in the Farey series F& is given by

g 3g2
N(Q)= g (5(Q)= +O(g lng) .

n =]
(A2)

If P, , /Q, , and P, /Q, are consecutive terms of F&,
then

The number of terms in T„ is 2". Each rational in T„
has two "daughters" in T„,given by"

[at ia2~

[a&,a2, . . . , al, +I] (A7)[a, , az, . . . , ak —1,2] '

Iteration of this rule places all rationals on a binary tree,
labeling each by a unique binary label. The smallest
denominator in T„ is

Z, (r) =
Q

6 +O(Q" ln Q)
772

. 1—I (2+r)
I (3+2') z(i+~)

(1+r)'

(A3}

As P(Q) is an irregularly oscillating function of Q, the
asymptotic limits are not approached smoothly. We refer
to this fact as the "Euler noise. "

Let l(Q, , Q, )=P, /Q, P, , /Q, —
, =l/(Q;, Q, ) be

the ith Farey arc. Then the Farey arc partition sum (1.3)
is given by

Theorem l (Hall and Tenenbaum' ) For r&.—1,
7& —2,

[n —2]= 1

fl —2

and the largest denominator is a Fibonacci number

F„+)
[1,1, . . . , 1,2]=-

F„+2

Fo=0 F]:1 F +[:F+F
~

(x:p

where p is the golden-mean ratio

= 1.618 03. . .1+&S
2

(A8)

(A9)

(A10)

where

(2+r) —2 (v( —1
6

2+7
. 2(2 —r)

-1~~~0

0&g( 1
2 —7

1, 1~~.

Theorem 2 (Hall ). Hall's estimate gives

Z, ( —2) = Ing+y+ —,
' — Q +012 g(2)

g(2)
ln Q
Q'

(A4)

APPENDIX 8

The Farey model sum (5.4) can be evaluated exactly for
r= k /2, k non-negative integer. Z„(0)=2", trivially. It
is also easy to check that Z„(—,')=Q,. Q, =2X3". More
surprisingly, Z„(—', )=Q,. Q =54X7" '. Such "sum
rules" are consequence of the fact that the denominators
on a given level are Farey sums of denominators on
preceding levels. For example, the denominators on a
Farey subtree bracketed by a pair of rationals P/Q and
P'/Q' are generated by the Farey mediant rule

2Q+Q'
3Q+ Q'3Q+2Q'

where y is the Euler constant (for a sharper estimate, see
Ref. 33).

and the corresponding thermodynamic subsurns are given
by
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Z, (k /2) = ( Q+ Q')";

Z~(k/2) =(2Q+Q') +(Q+2Q')";
(B2)

k

Z, («2)=Q" X k.X-, X=Q'/Q.
m=0

APPENDIX C

A variety of methods for accelerating logarithmic con-
vergence (5.10) is reviewed in Ref. 39. Given a finite
truncation of an infinite sum

s„= g a„.= g a~ —R„,
k =1 k =1

where logarithmic convergence means that

R, /R„]~1

(C1)

(C2)

one attempts to make good estimates of R„. We use two
methods.

(1) Vanden Broeck and Schwartz transformation: '

given s ~, s2, s3, . . . , s, estimates

n

s„=[n,0]—= g a~, [n, —1]—=0
k =]

(C3)

the [N, M + 1] estimate is given by

For any finite integer k, ck are computable combina-
tions of Farey numbers and binomial coeScients, and the
dependence of Z (0/2) on y can be eliminated in favor
of Zj ] Zj 2 . . This yields recursion relations in Z
Such recursion relations for k =0 to 7 are summarized
in Table II.

The same results have been independently obtained by
functional methods in Ref. 8.

TABLE II. Analytic evaluation of the Farey model Z„(~) for
A 1 1 7

7 M) 2 p L) ~ ~ e p Z
o

0
I

2

1
3
2

2
5
2

3
7
2

Z +i(&)
lim

Z„(v)

2
3

(5+&17)/2
7

(11+&113)/2
7+4&6
26.202 49. . .
41.018 3. . .

Recursion relation

Z„(~)

2Zn —
1

3Zn —
1

5Z„)—2Z„
7Zn —

1

10Z
&
+9Z 2 2Z 3

14Z ] +47Z
20Z„ i + 161Z„2+40Z„3—Z„4
29Z

&
+485Z 2 +327Z 3

a=0 corresponds to the Shanks transformation, a=1 to
a Pade transformation, and u= —1 accelerates logarith-
mic convergence and is used here.

(2) Levin transformation: given estimates s„,
s„+,, . . . , s, +k, the s =u„k estimate is given by

k
k —2

k Sn+jn+j
n+k n+jj=0

(C5)unk =
k —2

( —1)'
J

n+j
n+k n+j

In all our tests on analytically known sums, Levin
estimates are better than Vanden Broeck and Schwartz
by several orders of magnitude. For example, from

,n, g(2) is estimated by Levin method to accura-

cy 10 . A truncated sum would need 10 terms for the
same accuracy.

1 ~m

[N, M +1]—[N, M] [N, M —1]—[N, M]
1 1

[N+1,M] —[N, M] [N —1,M] —[N, M]

(C4)
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