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A new experimental technique, fluorescence cross correlation, is proposed to directly measure
correlations in motion of pairs of interacting particles. The theoretical basis of the technique is
worked out, taking into account, in addition, nonideal features of the experiment. Preliminary ex-
perimental results are obtained on latex suspensions. They demonstrate the possibility of measuring
not only a distinct correlation function but also the corresponding self-contribution as well as a col-
lective correlation function of the suspension simultaneously in one experiment.

I. INTRODUCTION

Important aspects of the microscopic dynamical be-
havior of a homogeneous and isotropic system of pairwise
interacting particles, such as a simple liquid or a colloidal
dispersion, can be conveniently described in terms of Van
Hove’s space-time correlation function G(r,7)."'? De-
pending on the experimental situation one of the various
representations of G(r,7) turns out to be convenient, the
choice in the present paper being the intermediate
scattering function (sometimes also called the dynamic
structure factor)
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Here N is the number of particles in a macroscopically
large volume V and r;(7), r;(0) are the positions of the
particles j,i at times 7 and 0. Angle brackets denote the
thermal average. Experimentally observable with various
quasielastic scattering methods is the related quantity
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The Fourier variable q assumes here the physical mean-
ing of the scattering vector and b; are the scattering am-
plitudes.

The (collective) correlation function S(q,7) can be
decomposed into two contributions called the self and
the distinct,
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Both correlation functions depend on interactions be-
tween the particles. The distinct contribution S,(q,7)
vanishes in the absence of interactions (except for a
singularity at q=0) and appears thus to reflect the in-
teractions more directly than the self-contribution
Ss(q,7). It is therefore somewhat unfortunate that, in
scattering experiments, S is accessible only indirectly.
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Assuming the particles differ only in their amplitudes b;
the experimental structure factor S'(q,7) can be written
as a sum of the so-called coherent and incoherent contri-

butions? 3
S! . =0%Ss(q,7), (4a)
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Here b is the average particle amplitude and o the stan-
dard deviation of {b;}. S|, can be measured in situations
where g2>>b2, e.g., in tracer experiments where all but a
few of the particle amplitudes vanish. In principle, both
parts of S’(q,7), and thus also Sp, can be inferred in-
directly from a series of experiments with varying o and
b23 Such a separation requires accurate knowledge of
both parameters and is therefore rather tedious.®

The aim of the present paper is to demonstrate the pos-
sibility of measuring a distinct time correlation function
directly in a single experiment. This requires the possibil-
ity of distingushing between the particles of the system.
The desired distinguishability is naturally offered when
the particles are tagged by fluorescent dyes. The pro-
posed method is a simple generalization of a technique
called number-fluctuation spectroscopy.

The theoretical basis of the proposed technique is
developed in Sec. II. In its present form the technique is
particularly suited for investigations on colloidal suspen-
sions. Their properties are briefly discussed in Sec. III.
Section IV contains experimental details on the apparatus
and the sample used in preliminary experiments. In Sec.
V the results demonstrating the feasibility and usefulness
of the method are discussed.

II. THEORETICAL BACKGROUND

A. Principles of number-fluctuation spectroscopy

The number-fluctuation spectroscopy encompasses two
related techniques measuring signal fluctuations caused
by movement of suspension particles with respect to the
intensity profile of a probing light beam. In fluorescence
correlation spectroscopy”® (FCS) such movements are
the only source of signal fluctuations. In the laser light
scattering variety of the technique’!! the signal contains
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also the much faster interference fluctuations which can
be suppressed by preaveraging over a sufficiently long
time. Though both number-fluctuation techniques have
been proposed as early as 1972,'%!2 they never became as
popular as the closely related quasielastic light scattering
(QLS). We therefore review the basic principles, focusing
on the example of FCS and keeping in mind the applica-
tion to dynamics of interacting particles. We proceed
along the lines discussed in Refs. 9 and 13, adapting the
results to the needs of the present paper.

In a FCS experiment one excites fluorescent particles
contained in a small open volume by a narrowly focused
laser beam. The fluorescence light is collected in a solid
angle as large as possible. Fluorescence is incoherent and
the resulting detector signal can be written as a sum of
contributions from individual particles:

1= [F(r) 3 b;8(r—r,(n)dr . (5)

The function F(r) is the product of the position-
dependent intensity of the illuminating beam and the col-
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lection efficiency of the detection optics. F(r) is an im-
portant characteristic of a FCS setup; it influences the
form of the measured correlation functions. The particle
visibilities b; depend on the sensitivity of the detector to
the chosen wavelength of the fluorescent light, on the
amount of dye per particle, and on the photophysical
properties of the dye. They correspond to the scattering
amplitudes from Sec. I. Though in outlining the theory
we focus on the fluorescence case, Eq. (5) applies also to a
light scattering experiment, providing the detector inter-
cepts an area much larger than the coherence area or the
signal is preaveraged over times longer then the correla-
tion time of interference fluctuations.’ !

As the particles move around in the illuminated space
the signal I(¢) fluctuates. The intensity fluctuations are
processed to obtain an estimate of the correlation func-
tion

C(r)={(I(t)I(t+71)) . (6)

Expressing the & functions in Eq. (5) as Fourier integrals
one obtains

C(T)=—1;f f F(q)F(q,)<22bibje+iq’rjm+iqr,.(0)>dqdq, ’ o)
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where F(q) is the spatial Fourier transform of F(r). In a homogeneous isotropic and pairwise interacting system the

bracketed average vanishes if not q+q’' =0 and therefore
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In the second part of the equation we have introduced p,
the average number concentration of the particles and ab-
breviated F(q)F(—q) by ®(q). The function ®(q) is a
filter through which S’(q) is viewed. The shape of the
filter is a characteristic of the apparatus. Usually the
filter is set to measure S'(q,7) around q=0 (a possibility
of working at higher q is discussed in Ref. 14).
The integration in Eq. (8) encompasses q=0, where 2

S'(q=0,7)=(2m)%pb28(q) .

As usual,” we remove this singularity redefining S’(q,7)
as being analytically continued through q=0 [this corre-
sponds to writing p(r) as p+Ap(r)]. In contrast to
scattering theories, however, we do not drop the 8(q)
contribution. The final expression for the FCS correla-
tion function becomes

C(T)=(~2P7f¢(q)S'(q,r>dq+cp(0)p2b2. )
w q

The second term, originating from the 8(q) contribution
to S, is the base line (I )? of a FCS experiment.'> Equa-
tion (9) applies to pointlike particles but its generalization
to finite-size fluorescent objects is straightforward.'®
Defining an effectively observed volume V4 as
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the normalized FCS correlation function c¢(7) can be
written as

1 J®@@)s(q,ndq
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The first term in Eq. (11) contains the information on
particle dynamics. To make the dynamical term easily
measurable in the presence of the base line, the number of
particles in effective volume pV 4 must be kept low.

Since S(q,0) is the static structure factor, the ampli-
tude ¢(0)—1 of FCS correlation function can be written
(assuming all particles are equivalent) as

d(qlh(qldq
c(0)—1=—1— 4! / . (12)
Veip Veg f<1>(q)dq

The second term originates from the distinct part of
S(q,7); h(q), defined by S(q)=1+ph(q), is the Fourier
transform of the pair correlation function. Assuming the
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correlation length of the particle suspension is smaller
than the size of V., the filter ®(q) cuts out a narrow
portion of A(q) around q=0. Defining the correlation
volume V,= fh(r)dr=h(0), Eq. (12) reduces to

—_— . (13)
Vetfp Veﬂ'

We recall that V. is negative for repulsive interactions.
When p and V4 are known and the distinct term V. /V
is sufficiently large compared to the self-term 1/pV g, Eq.
(13) can be used to determine V,, a measure of the corre-

lation length.

B. Fluorescence cross correlation

An important feature of FCS, distinguishing it from
the light scattering methods, is it’s selectivity. Once the
chemistry of labeling is mastered it is easy to equip the
detector with an appropriate light filter to detect only the
fluorescent light. An application of this feature to in-
teracting particles has been suggested already in the early
days of FCS.!” By mixing labeled and plain particles one
can vary b? and o2, varying thus the contributions of
S.on and S;,.. In this section we exploit further the selec-
tivity, introducing a new technique—the fluorescence
cross correlation.

Consider a mixture of fluorescent particles some of
which are labeled by, say, a blue dye and the remaining
labeled green. Consider further a FCS apparatus
equipped with two detectors, one responding ideally to
the blue light only (detector B) and the other responding
to green (detector G) (see Sec. IV and Fig. 2 for an experi-
mental realization). Assume for simplicity that the detec-
tion optics is realized in a way that we have
Fp(r)=Fs(r)=F(r). With the two detectors, three
different correlation functions can be measured.

(1) The autocorrelation function of the blue detector
(superscript i stands for “ideal”) reads

= 2% [ g <22
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Here by is the visibility of blue particles as seen by the
detector B (in the ideal case b; =0) and p, is the blue
concentration. By S;,(q,7) we denote the partial dynam-
ic structure factor of the blue particles, keeping in mind
that it is modified by the presence of the green ones.

(2) An analogous equation applies for the ideal auto-
correlation function measured in the green channel,

Clglr)= ggG 5 [ o@S,lardataOpisd . 13)
The Visibility of green particles in the green channel is
denoted by g; (again gz =0).

(3) A third correlation function one can measure is the
cross correlation function of fluctuating signals of the
blue and green detectors,
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Here p is the total particle concentration p=p,+p,.
Sg5(q,7) is the purely distinct dynamic structure factor
describing the blue-green space-time correlations,

N, +N, <2 Se

Sep(q,7)=
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The suffixes b and g guarantee the summation encom-
passes only distinct terms. We note that the normalized
amplitude of C;p(7) now contains only the distinct con-
tribution and is thus directly proportional to V,

vV,

c

cp(0)—1= (18)

eff
The perfect selectivity expressed by gz =0 and b;=0
cannot be expected in a real experiment. Fortunately the
stringent fulfillment of this condition turns out to be un-
necessary. Using a simple algebra and employing the sta-
tionarity of the observed processes the measured correla-
tion functions Cgp, Ciy, and Cl; can be shown to be
linear combinations of the ideal functions defined in Egs.
(14)-(16). The linear relationship can be expressed in
closed matrix form as

Csp Cis
Cép |=M |Cép |,
Cée Cé
(19)
1 2y 9
M=\|B 1+yB v
g 28 1

The ratios y =g /g8 and B=b; /by appearing in the
transformation matrix M characterize the selectivity of
the experiment. They can be measured easily. Providing
vB=1 the matrix M can be inverted and the ideal corre-
lation functions calculated from the set of the measured
correlation functions.

III. COLLOIDAL SUSPENSIONS
WITH COULOMB INTERACTIONS

To make the distinct correlation function readily ob-
servable with a typical FCS apparatus the ratio V_/V g
[Eq. (18)] should be at least 0.01. For the apparatus de-
scribed in Sec. IV this implies a correlation length of ap-
proximately 0.5 um. On the hand, the particle diameter
should be smaller than 0.1 um to avoid complications
with the particle form factor.!® Both requirements can be
met with suspensions of charged colloids.

The static structure factor of such suspensions resem-
bles closely the structure factor of a simple liquid (see
Fig. 1 for an illustrative example). Since this fact has
been recognized!® the charged colloidal systems have be-
come the subject of numerous experimental and theoreti-
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FIG. 1. Static structure factor of a deionized latex suspen-
sion. An illustrative example. (Particle diameter 100 nm, con-
centration approximately 2 particles/um?®)

cal studies. Two recent reviews of the subject are Refs. 4
and 19. Unlike a simple fluid the dynamics of suspended
particles is strongly influenced by the viscous drag of the
surrounding solvent. The term ‘“Brownian dynamics”
was coined to characterize this behavior.?®?! The
Coulomb interactions can easily be controlled by chang-
ing the ionic strength of the solution and the concentra-
tion of the particles. This makes the charged colloids a
convenient model system for studying the Brownian dy-
namics in two important limits. In dilute solutions only
the Coulomb pair interactions are important, whereas at
higher concentrations the hydrodynamic interactions be-
tween the particles have to be taken into account.

“Drosophila” among the charged colloidal systems are
lattices consisting of sulphonated polystyrene particles
having a typical diameter of 100 nm.??~?* In commer-
cially available aqueous suspensions the Coulomb interac-
tions are screened by ionic impurities; they are barely
strong enough to prevent the aggregation of the particles.
By means of a rigorous deionization the interactions can
be “turned on.” The range of the interaction grows to
several particle diameters. Fluorescent polystyrene lat-
tices are commercially available and therefore we have
chosen this system to demonstrate the feasibility of the
proposed cross correlation technique.

IV. EXPERIMENT

A. The sample

Fluorescent polystyrene lattices of the desired diameter
of =100 nm can be purchased at Polysciences Inc.
(Fluoresbrite particles). Two colors are available. While
the green fluorescing particles (dye unknown) were found
to be suitable for present needs, the orange particles
proved very unsatisfactory. The dye is only adsorbed to
the particles instead of being covalently bound. In a mix-
ture of the green and orange particles the orange dye
quickly redistributes, contaminating strongly the green
particles. Fortunately Eq. (19) permits us to employ stan-

dard nonfluorescent latex particles as the “blue” sort in
the system and observe the scattered light instead of
fluorescence in the blue channel. However, one has to
make sure the interference fluctuations can be neglected
(see Sec. IV B).

The investigated suspensions contained mostly the blue
particles, i.e., polystyrene latex (Dow Chemical Co.) of
100-nm diameter (approximately 20 particles/10 pm?),
whereas the green particles of 64-nm diameter were add-
ed as tracers (approximately 2 particles/10 um?. The
densities are estimated from the nominal concentrations
of original suspensions. To deionize the sample 0.1 g of a
mixed ion exchange resin (Biorad AG 501-X8) was added
to 2 ml of the suspension in a quartz cell. The cell was
sealed and gently shaken for approximately 48 h. The
success of the procedure was checked by observing the
static structure factor. All measurements were per-
formed at room temperature.

B. Apparatus

The experiments were performed using a FCS ap-
paratus described in detail in a previous publication.?®
The apparatus consists of a fluorescence microscope (Fig.
2) into which a laser beam is directed through a
monomode optical fiber. A semitransparent (usually di-
chroic) mirror M, reflects the beam into the objective
which in turn focuses it into a narrow spot of approxi-
mately 1-um diameter. The fluorescent light is collected
by the same objective. A pinhole in the image plane of
the microscope determines the axial size of the observed
region. The function F(r) of such an apparatus can be
well approximated by a prolate Gaussian

_FLUORESCENCE
MICROSCOPE

\._SINGLE MODE
FIBER

SAMPLE

FIG. 2. Schematics of the fluorescence cross correlation ap-
paratus. M,, dichroic mirror reflecting the laser light and
transmitting fluorescence light; M,, dichroic mirror separating
two wavelengths of fluorescence; FB, FG filter completing the
wavelength selection. (B and G refer to blue and green light.)
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F(r)=exp(—2r*/w—z%/£%)

(cylindrical coordinates, z axis coincides with the optical
axis). The waist w is determined by measuring dilute
solutions of fluorescent latex spheres calibrated by QLS.
The effective volume V.4 is calculated from the ampli-
tude c(0)—1 obtained with a dilute dye solution of
known concentration. Having a Gaussian F(r) with
&>>w the normalized FCS correlation function of nonin-
teracting Brownian particles reads’

1 1

pVer 1+ 4Dt
w?

c(r)=1+

) (20)

where D is the diffusion coefficient of the particles. The
exponential dynamic structure factor exp(—q?Dr) is
transformed into a hyperbola upon application of Eq. (8).

For cross-correlation measurements the apparatus de-
scribed in Ref. 25 was modified as indicated in Fig. 2.
The light transmitted through the pinhole is split by a
long-pass dichroic mirror M, and coupled into two
optical-fiber bundles leading to two photomultipliers
(PM B, PM G). The wavelength selection is completed by
appropriate filters FG and FB selecting the green or blue
light, respectively.

The apparatus was not designed for scattering experi-
ments. One has to cope with the back reflection of laser
light on the optical surfaces of the microscope. A make-
shift solution to the problem was to shift the laser beam
slightly out of the optical axis. The resulting distortion
of F(r) (an increase in V,; to 17 um? and w to 0.5 um)
and a decreased stability of the setup were accepted in
these preliminary experiments. Some residual stray light
was taken into account in evaluation of parameters 3 and
v and the correlation functions.

The light source was a stabilized argon laser; the line
459 nm was chosen for the present experiments. A satis-
factory detection wavelength selection was achieved by
the following filter combination: Dichroic mirror M,
(acting as a semitransparent mirror for the laser light),
long pass, edge 460 nm; dichroic mirror M,, long pass,
edge 510 nm,; filter B, interference filter 459 nm,; filter G,
2XSchott KV 520. The values of the selectivity parame-
ters ¥ <0.001 and B=0.13 were found to be small enough
to observe the relevant effects even before the correction
of the correlation functions.

Knowing the parameters of the setup one can estimate
the influence of interference fluctutations in scattering
measurements. The correlation time of these fluctuations
reads 7;,=1/2Q0%D =A%/327*D (backscattering), whereas
the correlation time of number fluctuations from Eq. (20)
is 7,=w?/4D. Since w=A, 7, /7;~100. Working with
sample times in the order of 7,/10 the interference fluc-
tuations will contribute significantly only to the first
channel of the measured correlation function.

V. RESULTS AND DISCUSSION

Figures 3-5 show the three resulting correlation func-
tions cg(7)—1, cgp(T)—1, and cgp(7)—1. They are the
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FIG. 3. Corrected [Eq. (19)] correlation function cgg(7)—1
of the green particles. Curve a, prior to deionization; curve b,
after the deionization. Amplitudes: a,=0.31, a, =0.26. Corre-
lation times: 7,=9.4 ms, 7,=20.3 ms. The concentration of
green particles is low; the self-contribution dominates.

ideal correlation functions obtained from the raw data by
application of Eq. (19). Figure 3, curve q, is the correla-
tion function of the green particles as measured prior to
the deionization. We recall that the concentration of the
green particles is low (V. is estimated further below).
Therefore the self-term dominates [see Eq. (13)] and the
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FIG. 4. Same as Fig. 3 but for the blue particles. Ampli-
tudes: a,=0.03, a,=0.01. Correlation times: 7,=10.5 ms,
7, =4.6 ms. The concentration of blue particles is high; cpp is a
collective correlation function.
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FIG. 5. Distinct correlation function ¢gz(7)—1. Prior to the
deionization (curve @) motions of the blue particles do not corre-
late with the green ones. After the deionization (curve b) there
occurs a strong negative correlation, indicating repulsive in-
teractions. a, = —0.02, 7, =21.4 ms.

correlation function cgg(7) is essentially a self-correlation
function. The amplitude 1/pV =0.31 corresponds to
the concentration of particles estimated from the concen-
tration of original suspensions. The solid line is a fit by a
hyperbola 1/(1+4D7/w?). The correlation time of 9.4
ms is somewhat longer than the 8.7 ms expected for a
freely diffusing particle with a radius of 32 nm. The
curve b shows the result after the deionization. The am-
plitude is slightly diminished, reflecting the presence of a
small negative distinct contribution. The functional form
of a hyperbola is preserved but the relaxation time is ap-
proximately doubled to 20.3 ms. These findings are in ac-
cordance with the known results on the self-diffusion in
charged suspensions.* Note that we are observing the
particles moving across the l-um diameter beam, i.e.,
over many particle diameters and measure thus the corre-
lation functions in the long-time limit.

Figure 4 shows the results for blue particles. These
particles make up the gross of the suspension. The corre-
lation function cgg(7) is therefore approximately the full
(collective) correlation function of the suspension (i.e., Sg
and S may become comparable). Prior to the deioniza-
tion (curve a) the results are qualitatively the same as in
Fig. 3(a). However, whereas the amplitude of 0.03 is con-
sistent with the concentration of the blue particles, the
relaxation time of 10.5 ms is considerably smaller than
the 13.5 ms expected for particles of 50-nm radius. This
may indicate that repulsive interactions are present even

in the nondeionized sample (the suspension was diluted
by high quality deionized water) or that the interference
contribution to the signal cannot be completely neglect-
ed. A drastic change is observed after the deionization
(Fig. 4, curve b). The amplitude decreases three times
and the relaxation time is shortened by a factor of 2.3.
Again this behavior is consistent with the known features
of deionized lattices. The decrease of the amplitude
reflects the decrease of S(q) at @=0 which is caused by
repulsive interaction (see Fig. 1). The relaxation time fol-
lows approximately the relation 7,=7,S(q) (1 is the
correlation time of a free particle) established for the first
cumulant of a collective correlation function. The hy-
perbola fit still provides a reasonable approximation to
the form of the correlation function; some deviation,
however, can be observed at short times.

While both types of correlation functions, the collec-
tive correlation function of the suspension [here, approxi-
mately equal to cpg(7)] and its self-contribution [here,
approximately equal to ¢;;(7)] can be obtained with con-
ventional techniques, the results in Fig. 5 are new. Fig-
ure 5 shows the directly measured distinct correlation
functions describing the correlations in movements of the
blue and green particles. Prior to the deionization (curve
a) the particles move almost uncorrelated. After the
turning on of the repulsive interaction (curve b) we ob-
serve a strong anticorrelation. While there are many blue
particles in the observed volume, the green ones are ex-
cluded and vice versa. From the amplitude we estimate
the correlation volume ¥V, to be —0.35 um®. Comparing
with the concentration of the particles we find there are
approximately 0.6 particles in the correlation volume,
slightly less then the limit of 1 for repulsive interactions.
Lacking a theoretical basis for the time dependence of the
distinct correlation function we simply state that the
shape is well approximated by a hyperbola and the relax-
ation time is somewhat longer than the self-relaxation
time of the deionized green particles.

The observations illustrate nicely the behavior of repul-
sively interacting Brownian particles. For a quantitative
interpretation a better characterized system where all the
particles are of the same size and carry the same charge
would be desirable. Also the complication of measuring
fluorescence in one channel and light scattering in the
other should be avoided in future work.

Despite the preliminary nature of the present experi-
mental work the results demonstrate clearly the possibili-
ty of measuring directly a truly distinct correlation func-
tion. Moreover, when the concentrations of the two sorts
of fluorescent particles are suitably chosen the corre-
sponding self-contribution as well as the collective corre-
lation function of the suspension can be obtained simul-
taneously in the same experiment.
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