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The organization of multiple coexisting basins of attraction in two-dimensional driven dynamical
systems is studied. This study is carried out, in particular, for the laser with modulated parameter
and the Henon map. Basin organization is governed primarily by the ordering of heteroclinic and
homoclinic connections of regular saddles. This organization is complex yet systematic, with accu-
mulation structures governed by the order of saddle connections. We study the evolution of a basin
in the presence of multiple coexisting basins, from (before) birth to (beyond) death. Many of the
processes that occur are canonical. These include the reorganization of existing basins in prepara-
tion for the creation of a new basin by saddle-node bifurcation, the increased intertwining, in Poin-
care section, of the components of a basin, and the increased wrinkling of each component as the
basin evolves from birth to death. These also include the processes that mark disintegration and the
ultimate demise of the basin, beginning at homoclinic tangency and terminating in its disappearance
or enlargement in a crisis.

I. INTRODUCTION

Extensive experimental investigations have been car-
ried out on laser systems in various configurations in or-
der to shed additional light on the behavior of nonlinear
dynamical systems. ' One configuration which has been
extremely convenient for such studies has been the laser
with modulated parameters. The usefulness of this sys-
tem arises, on the experimental side, from its stable be-
havior under a wide range of operating conditions' and
its extremely fast response time compared with fluid sys-
tems (milliseconds compared to hours, days, or weeks)
and, on the theoretical side, from the existence of a very
simple model which describes the behavior of the system.
The model equations are

8x =[z —R cos(Qt)]x,
dt

dz = (1—e,z) —
( 1+ezz)x,

where x represents the laser output intensity, z the popu-
lation inversion, and 0 the driving frequency of the
electro-optic modulator. The experimental, theoretical,
and numerical properties of this system have been de-
scribed extensively elsewhere. ' ' '

A complete understanding of this system must involve
a deep understanding of three types of structures. These
are (a) the periodic orbits, both stable and unstable; (b)
the basins of attraction which surround the stable attrac-
tors; and (c) the boundaries which separate basins.

We must understand each of these three structures at
two levels, a kinematic and a dynamic level.

At the kinematic level, we must understand (a) how to
characterize their components; (b) how they are organ-
ized; (c) their multiplicity; (d) their topological properties;
and (e) their scaling properties. At the dynamical level,
we must understand (a) how each comes into existence,

x =a Jp x

y'=x .
(1.2)

The return map of the laser appears to belong to the same

(b) evolves, and (c) is finally destroyed.
We must also understand the precursors to the birth of

each structure, as well as the residuals after its death. We
must finally understand how the basins are organized
around the stable orbits, and the boundaries around the
basins.

Many of these questions have now been resolved for
the periodic orbits of the laser system (1.1) and, by exten-
sion, for other two-dimensional driven damped dynami-
cal systems. " The dynamics are organized by a Smale
horseshoe. The formation of the horseshoe in a Poincare
section governs the development and organization of the
spectrum of periodic orbits, both stable and unstable. A
matrix of topological indices, the relative rotation rates,
has been introduced to describe the global organization
of these orbits. These indices, related to the flow, are
determined up to a single overall integer by the horseshoe
map. This integer is the relative rotation rate of the two
period-1 orbits.

The relative rotation rates have been useful for identi-
fying different orbits with the same periodicity which
have been observed in the laser. For example, two dis-
tinct period-5 orbits have been observed. One is clearly a
Newhouse orbit, the other is not. The logical sequence
name of the second orbit provided a tentative
identification of this orbit which was confirmed by com-
putation of its relative rotation rates with all coexisting
orbits. '

We turn our attention in the present work to an under-
standing of the basins of attraction of the laser system.
Our understanding of the properties of basins has evolved
by studying the basins of the laser flow (1.1) and those of
the Henon orientation-preserving map'
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class of mappings as the Henon map, since the two
dynamical systems have the same hyperbolic horseshoe.
As a result, the general qualitative features of the laser
map, which can be obtained only after extensive numeri-
cal integration, are more readily obtained from the
Henon map. The map (1.2) has been particularly useful
for studying the precursors to saddle-mode bifurcation,
where numerical studies are bedeviled by long-term tran-
sients.

Knowledge of basin organization is necessary to pre-
dict the statistics of basin occupation under a variety of
initial conditions. For example, if the initial time evolu-
tion of an orbit shows transients of several different
periods, we would like to be able to predict the probabili-
ty distribution for the final state to occur in each of the
accessible basins. As another example, if a system has
coexisting orbits of periods 1,3,4,5, . . . and the initial
state is in the period-4 basin, we may ask for the statistics
of the final state when the period-4 orbit is destroyed by
changing a control parameter. Both questions can be ad-
dressed only after the organization of coexisting basins of
attraction is known.

In the present work we study the local and global or-
ganization of basins of attraction. This organization is
governed by a very small number of constraints. These
constraints, discussed in Sec. II, involve heteroclinic and
homoclinic saddle connections and the order in which
these crossings occur. The global organization of basins
is discussed in Sec. III. This organization is modified by
the birth and death of individual basins. The evolution of
a basin, from (before) birth to (after) death, is described in
Secs. IV —VI. We study the precursors to its birth in a
saddle-node bifurcation and the properties of a basin at
its birth in Sec. IV. The evolution of a basin, including
its increased wrinkling due to impending homoclinic
tangencies, is studied in Sec. V. Its old age, disintegra-
tion in a homoclinic tangency, death in a crisis, and the
remnants of the basin after its death, are described in Sec.
VI. In Sec. VII we discuss several additional properties
of basins of attraction.

Of course, different nonlinear dynamical systems differ
in detail —that is why they are so interesting. However,
many features are common throughout an entire class of
systems. In this work we discuss those features which are
common to the class of two-dimensional periodically
driven damped dynamical systems whose dynamics are
governed by the development of a hyperbolic horseshoe.
This class includes a number of important models of laser
systems which have been studied both experimentally and
theoretically.

We define periodic attractor as a periodic orbit with a
neighborhood N of initial conditions that remain in N un-
der forward iteration and converge toward the attractor
in the limit of the time going to infinity. '

The properties of the basins of attraction are largely
determined by the insets and outsets of the regular
periodic saddles. We define the basin of attraction as the
set of points that map into the neighborhood X of the
periodic attractor under forward iteration, i.e., the union
of the preimages of N. The insets are important since
they form part of the basin boundary of the correspond-
ing attractor until that attractor is annihilated in a crisis.
The outsets are important since a single homoclinic or
heteroclinic crossing of stable and unstable invariant sets
requires a countable number of additional crossings.
This in turn causes extensive bending and folding of both.
The basins of the coexisting attractors of periods 1, 2,
and 3 of the laser are shown in Fig. 1. The saddles and
boundaries are clearly marked; these boundaries oscillate
extensively because the insets intersect the outset of the
period-1 regular saddle. The boundary between two sets
U and V is the intersection of their closures:
B(U, V)=UP V. Equivalently, it is the set of points p
with the property that every e neighborhood of p has
nonzero intersection with both U and V: N(p, e) A U&E,
N(p, e) f1 V&K. The boundary of a set U is the boundary
between U and its complement: BU = U A U'.

The inset of the period-p regular saddle consists of two
components, psL and ps~, separated by the saddle (Fig.
2). Each component is two sided, in the sense that every
neighborhood of a point in it always has nonzero inter-
section with the basin on the same side of the inset. Fac-
ing the direction of Aow toward the saddle, this preferred
side remains always on the left of one component (ps& )

II. INVARIANT SETS AND THEIR CONSTRAINTS

For the laser (1.1) all attractors belong to a branch
born in a saddle-node bifurcation except for the attractor
belonging to the period-1 branch. " In the period-1
case, the period-1 saddle inset is the line x=O, which
separates the basins of all bounded motion (the physical
states with x & 0) from the basin of "infinity" (the unphys-
ical states with negative intensity, x (0). For the Henon
map (1.2) similar statements apply, except that even the
period-1 attractor is born in a saddle-node bifurcation.

FIG. 1. Basins of coexisting attractors for the laser equations
(1.1) with R=0.7, e&=0.03, ez=0.009, 0=1.5. The saddles of
periods 1, 2, and 3 are shown. The boundary between the
period-1 and -2 basins is the period-2 saddle inset; the boundary
between the period-2 and -3 basins is the period-3 saddle inset.
The boundaries of the basins of period 1, 2, and 3 are, respec-
tively, 1s V 2s, 1s V 2s V 3s, and 1s V 3s.
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and on the right for the other (psL), as shown in Fig. 2.
In a sense, the right-hand boundary of the period-p basin
is ps„,the left-hand boundary is psL.

The outset of the period-p saddle consists also of two
components, pul and puz, separated by the saddle (Fig.
2). Immediately following the saddle-node bifurcation
one component (pui) lies completely within the basin of
attraction, while the other (puz) is completely outside.
The interior component is intimately involved in the
period-doubling cascade (Fig. 3). It undergoes a homo-
clinic tangency associated with the cascade, followed
eventually by heteroclinic tangencies with insets of other
regular saddles as the period-p horseshoe is formed. The
exterior component is involved in the heteroclinic cross-
ings described below; these are followed by a homoclinic
crossing as the horseshoe is formed.

When the stable-invariant set of the regular period-p
saddle (ps) crosses the (exterior) unstable-invariant set of
the regular period p' saddle (psL or psR Xp'uz), the in-
variant set ps accumulates on the stable-invariant set of
the regular period p' saddle, and conversely

ps Xp'u

(2.1)

are the principal periodic orbits seen in laser experi-
ments. ' We have observed the following crossing rela-
tions:

3sL X4uz 3s„X4uz

4sI X5u& 4s& X5uz

5sL X6uz 5s~ X6uz

6sL X7uz 6sz X7u&
(2.2)

1ui XpsL 1ui XpsR

These crossings occur whenever the saddles of periods p
and p+1 exist. A heuristic reason for the existence of
these crossings is shown in Fig. 5. The crossing lu Xps
implies that all stable insets ps accumulate on 1s, the
boundary between bounded orbits in phase space and the
attractor at "infinity. " This in turn implies that the basin
of the period-p branch accumulates on the boundary of
the attractor at infinity, for each p. This in turn requires
that the coexisting basins of attraction must be in-
tertwined in a rather complicated way.

There is a reverse sequence of crossings

ps&p s pucp u

These accumulation relations are shown in Fig. 4. We
are able to make precise statements about the crossing re-
lations for a particular class of periodic orbits generated
by the development of a Smale horseshoe in the laser and
Henon systems. These are the Newhouse orbits, ' which

3ui X4sL or 4sz

4ui X5s„,
5ui X6s„,
6ui X7

(2.3)

FICi. 2. A regular saddle has a stable invariant set with two components. Each component is two sided, in the sense that every
neighborhood of any point of psL or ps& always has a nonempty intersection with the basin on the same side, as long as the basin ex-
ists. If the basin is sufficiently convoluted (right), there may be nonzero intersections on the other side as well, as shown in the inset.
The additional nonzero intersection is shown dotted.
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U

FIG. 5. Saddle-node bifurcations occur systematically in the
fingers of the outset of the period-1 saddle. In this formation
process, (p + 1)u& crosses ps& (for the orientation shown) when-
ever both saddles exist. For suSciently high periods, the re-
verse crossing also takes place. In this figure puI X(p + 1)sL but

(p —1)u, does not cross psL.

PS PU

PS

l)

P PU

)l PS

pU p P U

PS,

FIG. 4. A single saddle crossing requires an infinite number
of additional crossings. Here ps Xp'u, requiring pu C:p'u and
p's Cps.

FIG. 3. The interior unstable component of the period-p sad-
dle is involved in the period-doubling cascade based on the
period-p branch.

These crossings do not always occur, but for some po,
they occur for all p &po, as indicated in Fig. 5. As the
homoclinic tangency approaches, p ~~. At and beyond
the homoclinic tangency ls X lul, there is the additional
set of crossings

ls Xpu (p )pp)

For Newhouse orbits the value of po decreases as the
homoclinic tangency of the period-1 saddle approaches
and is passed.

When two or more basins of attraction coexist, the or-
der of crossing of the invariant sets of their regular sad-
dles provides a natural ordering for the saddles them-
selves. ' This is important because the order of the sad-
dles is responsible for the organization of the basins
among themselves. We can define order either dynami-
cally or topologically. We define saddle A to precede
saddle 8, or say A is interior to 8, or write A 8, if al-
most every point in the inset of A approaches the inset of
B arbitrarily closely under reverse iteration (or flow).
Equivalently, A precedes 8 if the inset of A accumulates
on the inset of 8: As DBs. The reasons for the term "is
interior to" will be made clearer in Sec. III. Saddle order
is transitive: if A 8 and 8 ~ C then A C. Saddle or-
dering is illustrated in Fig. 6.

The crossings given in (2.2) determine the saddle order:
3 ~ 4 ( 5 ( . . . 1. This order together with the fact
that the period-3 basin lies between 3sL and 3s„,which
both accumulate on 4sL and 4s&, which in turn accumu-
late on 5sL and 5sz, . . . , determines the basin organiza-
tion. ' The period-3 basin accumulates on the period-4
basin, and so on, all accumulating on the inset of the
period-1 saddle.
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B

FIG. 6. The saddle inset of A accumulates on the saddle in-
set of 8, and 8 on C, so that 3 precedes 8 precedes C or
A ~ B ~ C. In fact, the accumulation is much more complicat-
ed, since the inset of B, as it accumulates on the inset of C, car-
ries with it the inset of A.

The organization of the period-3 basin within that of
the period-1 attractor of the Henon map is shown
schematically in Fig. 7. Since lu~ X3sL and 3s~ [Eq.
(2.2)), both components of the inset of the regular
period-3 saddle accumulate on the stable-invariant mani-
fold of the period-1 saddle. These two components alter-
nate as they accumulate on Is (1sL and Is+ ), alternative-
ly confining the period-3 basin between 3sL and 3s„and
its complement, the period-1 basin, between 3s~ and 3sL.
This alternation is shown in the inset of Fig. 7.

The period-3 basin is formed within the original
period-1 basin. Iterating backwards, the three com-
ponents of the period-3 basin spiral outwards toward the
boundary of the attracting region and the attractor at
infinity, with the transverse sections becoming increasing-
ly thin as accumulation is approached.

The global organization of the period-4 basin is similar
to that of the period-3 basin. However, when the period-
1, -3, and -4 basins coexist, their organization is as shown
schematically in Fig. 8. The invariant sets 3s~ and 3sL
accumulate on 4s (both) which, in turn, accumulate on is,
carrying 3s with it. The components 4sL and 4s„enclose
the period-4 basin, while 4s~ and 4sL enclose the comple-
ment. The complement consists of the intertwined
period-1 and -3 basins, which accumulate on 4s. The ac-
cumulation structure of the intertwined basins is illustrat-
ed in Figs. 8(b) and 8(c). In Fig. 8(b) we take a line seg-
ment between two successive strips of the period-4 basin

When some of the reverse crossings indicated in (2.3)
occur (e.g. , 4u X5s, 5u X6s, 6u X7s), they determine the
saddle order: 4~5~6~7. In this case the saddles be-
come equivalent in the sense that the inset of each accu-
mulates on all the others. Any of these basins of attrac-
tion which exist are intertwined in a very complicated
manner.

1S

III. GLOBAL ORGANIZATION OF BASINS

In this section we describe the global organization of
multiple coexisting basins of attraction in the flow (1.1)
and the map (1.2). This is done to set the stage for the
description, in the following sections, of what occurs
when new basins of attraction are created when multiple
basins already exist.

In the flow (1.1), the basin of each period-p stable-
invariant set is a connected open set which is not simply
connected. In Poincare section, and in the map (1.2),
each period-p basin consists of p disjoint connected and
simply connected open sets. This remains true as the
period-p attractor evolves through its usual evolutionary
process (period-doubling cascade, accumulation, noisy
period-halving inverse cascade, etc.). A point belonging
to a period-p regular saddle exists in each of the p com-
ponents of the basin boundary. Both two-sided com-
ponents of each regular period-p saddle inset form part of
the boundary of each of the p components of the period-p
basin.

1S L
1

hXXXXXXXXXXXXX%

R
l

1

1

FICx. 7. The period-3 basins spiral outward (in reverse itera-
tion) in the fashion shown, to accumulate on 1s. The period-3
basin is contained between the saddle insets 3sL and 3s& while
its complement in the bounded region, the period-1 basin, is
contained between 3s~ of one component and 3s~ of the preim-
age component. The inset shows the alteration of basins as they
accumulate on ls.
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and look at the organization of the period-1 and -3 basins
as they intersect the segment. In Fig. 8(c) we take a seg-
ment between the invariant sets 4s and 1s and look at the
organization of the basin structure along that segment.

Iterating backwards, the four components of the
period-4 basins spiral outwards toward the boundary of
the attracting region. The three components of the
period-3 basins also spiral outward. Whenever one- of
them "gets between" a component of the period-4 basin
and the boundary, 1s, of the attracting region, it is folded
back around the period-4 component so that this com-
ponent gets between the period-3 basin and ls (cf. Ref.
16). This extensive folding is required by the crossing

(a)

4uE X3sL and 3s~ and results in the accumulation of 3s
on 4s while in addition 4s accumulates on 1s. In a very
real sense, the period-3 saddle "is interior to" the period-
4 saddle, . . . , which in turn "is interior to" the period-1
saddle.

Although the intertwining among basins is complicat-
ed, it is highly organized. The organization is completely
determined by the accumulation organization of the
stable-invariant insets [Eq. (2.2)], which in turn is deter-
mined by the saddle order. For exam~le, 3s accumulates
on 4s which accumulates on 1s, or 3s D4s D ls, which is
required by the saddle order 3 ~4~ 1. To illustrate this
simplicity in complexity, we show in Fig. 9 the organiza-
tion of the basins of attraction of coexisting Newhouse
orbits of periods 6, 5, 4, 3, and 1. As can be seen, the
elegant organization of the basins is determined by the
saddle order 3 4 & 5 ~ 6 ~ 1 and can be summarized in
the form

(6+ (5+ (4+ (3+ 1) ) ) ),
with . p + ( U) . indicating "the set U accumulates

(6+(5+(4+(3+1))))

1s R L R L R L R 6sL 6sR

6 6

6s

I I I ~
L R 5s 5s L R

L R
----. 6s

L

~ ~:II s.(

(b)

4sL

Ss

II ~ ~
L R4s 4s L R

---4 4

5sL

~ ':~:l l s.(

13 1 3 1 3 1 3 1 3 4sR L R 3sL 3s L R

1 3 1 3 1 3 1 3

{c)

1s

II::I -5
L R L R

4 1+3 4 1+3

L 4s 4s Accumulation

6u X 5s
L and R

5u X 4s
L and R

4u X 3s
E L and R

Accumulation

FIG. 8. (a) The basins of the period-3 and -4 orbits spiral out-
ward in reverse iteration to accumulate on 1s. However, when
the period-3 basin passes "outside" a component of the period-4
basin, it "detours" to the "inside*' of that component. This pro-
cess is shown for just one of the components of the period-4
basin for clarity. In this way the period-3 basin accumulates on
the period-4 basin while both accumulate on 1s. (b) Intersec-
tions of the period-4, -3, and -1 basins with the line segment b
have the structure shown. (c) Intersections of the period-4, -3,
and -1 basins with the line segment c have the structure shown.

1 u X psL p=3, 4,5,6

Saddle order 3c4c 5& 6&1

FIG. 9. Although coexisting basins of attraction are highly
intertwined, there is simplicity in their complexity: the organi-
zation of the basins is determined by the order of the saddle
crossings, or equivalently, by the saddle order.
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the initial conditions will evolve into the basins interior
to the period-1 saddle with relative probability

P(6):P(5):P(4):P(3):P(1). (3.1)

on the period-p basin, " and (3+ 1) indicates the intertwin-
ing of the basins of the period-1 and -3 attractors.

This organizational structure allows us to resolve
several of the questions raised in the Introduction. If a
small ball of initial conditions near the period-1 saddle
(or more generally near its inset) is allowed to evolve, the
initial conditions will evolve into each of the coexisting
basins with well-defined relative probability. For exam-
ple, in the case

(6+(5+ (4+ (3+1)) ) )

tion takes place rearrange themselves as the critical con-
trol parameter value is approached, what occurs at the
saddle-node bifurcation, and what takes place immediate-
ly after the saddle-node bifurcation.

We consider the occurrence of the saddle-node bifurca-
tion within the context of Newhouse orbits. Incorpora-
tion of non-Newhouse orbits within this descriptive
framework is possible once their saddle order is known.
Organization of the non-Newhouse basins among the
Newhouse basins is governed by crossing relations of the
type (2.2), or equivalently, of their saddle ordering. For
concreteness, we assume that the saddle-node bifurcation
creates a period-4 basin in the presence of coexisting
basins of periods 1, 3, 5, and 6. The basin organization
after the saddle-node bifurcation is

The actual attractor in any of these basins may be a
period-doubled version of the fundamental periodic orbit
(e.g. , 5X2") or may even be a chaotic attractor based on
that branch. If a small ball of initial conditions exterior
to one of the basins but near its saddle inset (for example,
the period-4 saddle) is allowed to evolve, the only accessi-
ble final periodic orbits are within those basins bounded
by the insets of the saddles interior to the period-4 saddle.
Thus the final state lies within either the period-3 or the
period-1 basin. Further, the relative probability for the
final state to occur in these basins is P(3):P(1), where the
relative probabilities are those given in (3.1) for initial
conditions near 1s. In fact, the relative probabilities
P(3):P(1) can be determined by allowing initial condi-
tions to evolve from the neighborhood of the inset of any
saddle exterior to the period-3 saddle.

Conversely, suppose the system has a stable periodic
orbit of period p and the period-p basin is destroyed by
changing the control parameter. Following transients
whose periodicities are given by all saddles interior to the
period-p saddle, the system will settle into one of the inte-
rior basins. For example, if the basin organization is
again

(6+(5+ (4+ (3+ 1) ) ) )

and the period-4 basin is destroyed by inverse saddle-
node bifurcation, only the interior basins of periods 3
and 1 will be occupied, and these with relative probabili-
ties P(3):P(1). These probabilities are precisely those
determined in the preceding paragraph. This occurs be-
cause, except for the basin undergoing saddle-node bifur-
cation, the relative volume of each of the coexisting
basins changes very slowly during the saddle-node bifur-
cation, as will be seen in Sec. IV. This behavior has been
observed in recent experiments on the laser with modu-
lated parameter. '

IV. BIRTH OF A BASIN

In this section we determine the eAects of a saddle-
node bifurcation on the organization of the basins of a
dynamical system. This study includes a neighborhood
of the control parameter space (R for the laser, a for the
Henon map) containing the value at which the saddle-
node bifurcation occurs. We will determine how the
basins which are present before the saddle-node bifurca-

(6+(5+(4+(3+1)))),
indicated in Fig. 9. Before the saddle-node bifurcation,
the basin organization is

(6+(5+(3+ 1)) ),
with analogous structure. It is clear that the saddle-node
bifurcation forces the drastic rearrangement of the
basins "interior" to the period-4 basin: (3+ 1). The
period-4 basin is born accumulating on the "exterior"
basins, (6+(5)), but does not force their rearrangement.
In order to gain an understanding of the processes in-
volved in the creation of a new basin by saddle-node bi-
furcation, it is therefore suScient to consider only those
basins interior to the basin being born.

As a result of these considerations, it is sufhcient to
consider the birth of the period-4 basin in the presence of
only the coexisting period-3 and -1 basins. When the
period-4 saddle-node bifurcation occurs, we have the fol-
lowing crossing relations:

(i) luI X3sI and 3sR

(ii) lur X4sL and 4sz, New

(iii) 4uz X3sI and 3sL, New .

(4.1)

The first relation requires that the period-1 and -3 basins
accumulate on the boundary 1s of the attractor at
infinity. It also requires that 1uI accumulates on 3u.
This crossing, and its accumulation implications, is
present before the period-4 saddle-node bifurcation.

The second crossing relation, new after the saddle-node
bifurcation, requires that all three basins accumulate on
1s in the intertwined manner shown in Fig. 8. It also re-
quires that 1ur accumulates on 4u.

The last crossing relation requires that 3s accumulate
on 4s as well as 1s.

The two new crossing relations requires that 3s accu-
mulates on 4s, and lu accumulates on 4u, at the moment
of creation of these two new invariant sets. This requires
a dramatic rearrangement of the invariant sets 3s and 1u
leading up to the saddle-node bifurcation.

This rearrangement appears to take place in a canoni-
cal way. The canonical properties can be determined
from a study of the properties of the fold catastrophe for
a gradient dynamical system. ' The fold catastrophe is il-
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lustrated in Fig. 10. It should be noted that the basin of
attraction is formed with nonzero volume at the saddle-
node bifurcation [Fig. 10(a)]. After the saddle-node bifur-
cation, both the saddle and node have invariant sets.
When the saddle and node become degenerate, the saddle
inset becomes degenerate with one of the nodal insets
[Fig. 10(b)]. Before the saddle-node bifurcation, these in-
sets are no longer present as invariant sets.

There is, however, a natural decomposition of the flow
into two complementary directions which is valid in a
neighborhood of (before, during, after) the saddle-node
bifurcation. This decomposition is easily constructed be-
ginning at the saddle-node bifurcation. Linearization of
the flow at the doubly degenerate critical point yields one
zero eigenvalue and a nonzero eigenvalue. The center
manifold passes through the degenerate critical point and
is tangent to the eigenvector with vanishing eigenvalue.
The flow direction corresponding to the eigenvector with
nonzero eigenvalue is the contracting direction. Under
perturbation, which splits the degenerate critical point
into nondegenerate critical points, the center manifold
evolves into the slow manifold. This consists of the
outset of the saddle which feeds the node, together with
the collinear invariant sets of the saddle (an outset) and
the node (an inset). The contracting direction is deter-
mined by the eigenvectors of the saddle and node which
have "large" eigenvalues, that is, which evolve continu-
ously from the nonzero eigenvalue of the degenerate criti-

cal point. Under a perturbation of the degenerate critical
point which causes the critical points to disappear, the
slow manifold and contracting direction are the continua-
tions of the center manifold and the contracting direction
of the degenerate critical point. This decomposition is il-
lustrated in Fig. 10. The center manifold is the horizon-
tal axis (a=O), the slow manifold is its continuation
(a(0, a) 0), also the horizontal axis. The contracting
direction is the vertical axis in all three cases. A more
precise definition of slow and center manifolds is the fol-
lowing: The center manifold is associated with the eigen-
values with zero real part in the linearization of a flow
around a fixed point. ' In the study of the bifurcations at
p=O of dx/dt =f (x,p) around x=O it is convenient to
reduce the flow to the center manifold of the augmented
set of equations in phase and control parameter space
dx/dt =f(x,p), dp/dr=0 Th. e slow manifold of the
original equation dx/dt =f (x,p) is the intersection of
the center manifold of this augmented set of equations
with planes of constant control parameter value p =po.

These properties of a gradient dynamical system apply
to the saddle-node bifurcations for the systems (1.1) and
(1.2), and can be used to determine the canonical proper-
ties in the neighborhood of a saddle-node bifurcation. It
is possible to determine how 3s approaches the impend-
ing accumulation point in this slow manifold as the
saddle-node bifurcation is approached. To this end, we
let x measure the distance from the critical point centroid

a( 0

y(x) -1/3x —ax3

s - ~ x

FIG. 10. (a) The fold catastrophe, A2(x) = —'x' —ax, has the canonical form shown. The saddle-node bifurcation occurs at a=0.
Immediately following the saddle-node bifurcation the basin of attraction, which is the set of x with —&a (x, has nonzero volume.
(b) Flows dx;ddt = —BV/Bx; have the form shown for the potential V(xl, x2)= A2(xl )+ —,'x2. Degenerate saddle and node insets

(x& =0) are created at a=0. The slow manifold is the line x, =O.
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tion approaches, the invariant manifolds 3s are "ex-
pelled" from the regions in which the period-4 basins will
be formed, as shown by the arrow in Fig. 12. At the
same time, increasing numbers of folds of 1 u approach
the impending period-4 saddle-node bifurcation, as
shown by the other arrow in Fig. 12. The region in
which the period-4 basin is about to be born is one of
very long transients, with the duration of the transients
increasing as the critical value for saddle-node bifurca-
tion is approached. At saddle-node bifurcation, 3s accu-
mulates on 4s, which has just come into existence, and lu
accumulates on that part of the slow manifold which has
become the period-4 saddle outset. The period-4 basin is
born with nonzero measure. Beyond the saddle-node bi-
furcation, the node moves from the boundary of the
period-4 basin into the interior of the basin in the direc-
tion of the component of 4s which has locally the max-
imum curvature, as shown in Fig. 3 ~

V. EVOLUTION GF A BASIN

In this section we describe the evolution of a basin of
attraction between its birth in a saddle-node bifurcation
and the onset of its disintegration in a homoclinic tangen-
cy. As aging progresses, the basin boundary becomes in-
creasingly wrinkled. A principal result is that the strips
of basins shown as solid regions in Figs. 7 and 8 are not
solid at all. Rather, the boundary becomes so folded it
appears that "fingers" of the complementary basins are
inserted into the original basin. These fingers become so
numerous as homoclinic tangency is approached that
they also accumulate. This increasing wrinkling occurs
in a systematic way.

There are at least four mechanisms responsible for the
increasing distortion of a basin boundary during this
stage of the evolution of a basin. In the context of New-
house basins, for a basin of period p the following are the
crossings:

(1) lui XpsL and psR,

(2) p'ul Xpsl and ps& (p') p),
( 3 ) puI XpsL or ps„(homoclinic crossing ),
(4) jul Xp's~ or p'sL (p')p) .

These mechanisms are listed in the order of increasing
complexity in the sense that (4) implies (3) which implies
(2) which in turn implies (1). The organizational hierar-
chy of the basins is a direct consequence of the crossings
(2.1), (2.2), and (5.1). The manifestations of these cross-
ings have characteristics which are common to all sys-
tems as well as features which change from system to sys-
tem. We concentrate on these characteristics which are
common to all systems.

A. Mechanism (1)

The crossing 1 ul XpsL and ps~ occurs at the moment
the period-p basin is created in a saddle-node bifurcation.
The crossing of lul with both psL and ps~ means that the
period-p basin accumulates on 1s, as discussed in Sec. III.
In Fig. 13(a) we illustrate the crossing 1ul X4s~ and 4s„.

The intersection of lul with the inset 4sL of basin com-
ponent 2 occurs at a, while lul intersects 4sR at b.

Additional heteroclinic crossings of the type 1ul XpsL
or 1ul Xps„occur as the basin evolves. These additional
heteroclinic crossings of one or the other period-p saddle
inset with lul are associated with increased wrinkling of
the period-p basin. These additional heteroclinic cross-
ings occur in pairs involving the same branch (L or R ), in
contrast with the original crossings which involve one (or
odd) crossing with each of the two saddle insets. In Fig.
13(b) we illustrate the heteroclinic crossing of lul with
the component 4sl of the same basin component
which occurs at c and d. Additional heteroclinic cross-
ings of psL or ps& result in increased wrinkling of the
period-p basin boundary and insertion of fingers of other
basins into a component of the period-p basin, as illus-
trated in Fig. 13(c). These figures include also other com-
ponents of the period-p basin.

In the context of the approaching homoclinic tangency
lu X 1s, this mechanism is responsible for folding the four
disconnected components of the period-4 basin into each
other. A global view reveals the connectivity of the four
components of the period-4 basin as well as that of the
period-(1+3) basin. However, the basins become so nar-
row that their structure is not apparent except under
high magnification associated with a local view. Under
such conditions it appears that fingers of the period-
(1+3) basin are injected into the period-4 basin. Local
organization of the basins of coexisting period-[4+
(3+ I)] attractors is illustrated in Fig. 14. The four com-
ponents A4, B4, C4, and D4 are intertwined and separat-
ed by strips of period-1 and -3 basins (components A3,
B3, and C3 of the period-3 basin are similarly in-
tertwined) separating the period-4 segments and accumu-
lating on 4s. The effect of folding the four basins into
each other is illustrated in Fig. 15.

B. Mechanism (2)

The crossing p'ul Xpsl and ps& (p') p) occurs at the
moment either is created in the presence of the other.
These crossings require the period-p basin to accumulate
on the period-p' basin, and both to accumulate on 1s, as
described in Sec. III. In addition, it is possible for one of
the insets psl or ps~ to have additional pairs of hetero-
clinic intersections with p uI. The remarks made above
(for the period-p basin) about the wrinkling and insertion
of fingers of other basins required by the crossings
1uI XpsL or ps~ now apply, mutatis nutandis, to the
period-p basin forced by the crossings p'ul XpsL or ps~.

C. Mechanism (3)

As the homoclinic tangency lu X ls approaches, each
Newhouse orbit formed in this process is forced into its
own homoclinic tangency: pu Xps. The evolution of one
component of the period-p basis is shown in Fig. 16. The
basin is shown at the instant of its creation in Fig. 16(a).
As it evolves, the saddle and node separate in the canoni-
cal way, as shown in Fig. 16(b). The node moves in the
direction of the more highly curved saddle insets: ps, [for
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(b)

tc)

FIG. 13. (a) If component 3 of the period-4 basin of attraction has intersections at a, b with lu near the period-4 saddle-node pair,
then its preimage, component B, has intersections at a', b'. (b) As homoclinic tangency lu X ls approaches, one inset of the period-4
saddle, 4s„is "pushed across" lu, creating a pair of additional intersections at c,d. Their preimages at c', d' create a period-(1+3)
"finger" in component B, and their preimages c",d" create an even more elongated finger in component C. (c) As the approach to
homoclinic tangency lu X ls continues, strips from the other components 8, C, D, 3, . . . are pushed across lu, as indicated by the
arrow. These crossings are responsible for "intertwining" the four components of the period-4 basin among themselves. The high
degree of intertwining appears as the insertion of alternating fingers of period-4 basin and intertwined period-(1+3) basins "within"
the period-4 basin. As the homoclinic tangency lu X ls approaches, an increasing number of strips of the period-4 basin cross lu in
the neighborhood of the "head" of component A. Components B, C, and D have similar structure. As a result, the four components
become increasingly entangled.
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FIG. 14. General local organization of the components of the

period-4 basin. --0

the Henon map (1.2) ps, =psi ', the other, straighter sad-
dle inset is labeled ps, (straight)]. Initially, pul terminates
on the stable node. Its curvature is associated with the
period-doubling cascade which this node undergoes on
the way to homoclinic tangency, pui Xps, . It is the com-
ponent ps, which becomes wrinkled as the homoclinic
tangency pui Xps, approaches.

As puz approaches ps„both become increasingly dis-
torted, as shown in Fig. 16(c). At this stage, the basin ex-
hibits a characteristic "dragonfin" profile. During the
approach to homoclinic tangency a new sequence of
"Newhouse orbits" is generated. These have period
p Xp', p' 3 within the initial Newhouse basin of period
p. At homoclinic tangency there are several kinds of ac-
cumulation. These are shown in Fig. 16(d). The inset ps,
accumulates on ps, . The outset pui accumulates on itself.
The outset puz does not participate in these accumula-
tions. In addition, the secondary Newhouse orbits of
period p Xp' accumulate (p'~ac ) onto ps, within the
fingers of pui, as well as into the period-p regular saddle.
Further, the insets and outsets of these secondary New-
house saddles accumulate on the inset and outset of the
initial Newhouse saddle of period p.

The eCect of the homoclinic tangency 4s X4ur on the
period-4 basin is illustrated in Fig. 17. As in Fig. 8, this
represents the intersection of the period-(1+3) and -4
basins with a line segment. As this homoclinic tangency
approaches, one component of the saddle inset becomes
increasingly distorted, so that increasing numbers of in-
tersections of the (1+3) basin and the same component of
the period-4 basin occur. This progression is shown in
Figs. 17(a)—17(f). The component of 4s which becomes
distorted in this process is the same component of 4s
which is distorted in the process described above and il-

(e)

8

FIG. 15. The intersection of the intertwined basins
(4+ (3+ 1) ) with a line [see, for example, Fig. 13(a)] has increas-
ing complexity, as the homoclinic tangency 1u X 1s approaches.
Here (a) —(c) correspond to Figs. 13(a)—13(c). The general struc-
ture is shown in (d). Each of the strips may itself be "fingered"
(e). If so, the structure shows the canonical organization indi-
cated in (a). Inserted fingers may intersect the line more than
once; each successive intersection occurs closer to the other
component of the saddle inset.

lustrated in Fig. 16. However, in this process the "insert-
ed" fingers do accumulate on the other component of 4s
at the homoclinic tangency 4s X4u. As this tangency ap-
proaches, many (secondary) Newhouse and non-
Newhouse orbits are created in the period-4 basin. All
these basins accumulate on 4s. They are not explicitly
shown in Fig. 17, as their presence is not important for
the ensuing discussion of how the period-4 basin is des-
troyed following the homoclinic tangency 4s X 4u. How-
ever, the saddles created in these bifurcations play a very
important role in the disintegration of the basin after
homoclinie tangency. It should be borne in mind that the
processes generated by the crossing 1u Xps and pu Xps
occur simultaneously, so that the folding and intertwin-
ing of basins can appear extremely complicated, as sug-
gested in Fig. 17(b), even when no more than two basins
coexist.
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FIG. 16. Each Newhouse orbit undergoes its own homoclinic tangency before the homoclinic tangency ( lu X 1s), responsible for
its birth, occurs. (a) Basin at birth. (b) The saddle and node move away from each other with canonical half-power-law dependence
in the neighborhood of the saddle-node bifurcation. (c) As its homoclinic tangency 4s, X4uz approaches, the basin assumes a canoni-
cal "dragonfin" appearance, with 4s, and 4uz becoming increasingly distorted. A sequence of secondary Newhouse orbits of period
4Xp' (p' 3) is born within the period-4 basin. (d) At homoclinic tangency, 4s, accumulates on 4s, and 4ul accumulates on itself.
All secondary Newhouse basins of period 4Xp' have been destroyed, leaving behind only the secondary Newhouse saddles of period
4Xp' (shown) and a constellation of flip saddles (not shown). Secondary non-Newhouse basins and orbits may exist but are not
shown. Hatching indicates coexisting basins of periods (1+3) as well as strips of other components of the period-4 basin.

D. Mechanism (4)

The crossing pu Xp's typically occurs after the period-
p basin has disintegrated. This crossing would be respon-
sible for further very complicated contortions of the
basin, should it still exist. These further distortions have
not been fully analyzed.

VI. DEATH OF A BASIN

Extensive wrinkling of the boundary of a basin is a sign
of its old age, a prelude to its impending death. The
death of a basin begins at homoclinic tangency and con-
cludes with a crisis. ' ' ' Many of the events which

happen during this interval occur in a standard way. In
this section we discuss the disintegration of a basin,
which begins with homoclinic tangency. For specificity,
this discussion is carried out for the basin of period 4.

At the homoclinic tangency, the fingers of 4sI are lined
up along 4ur, with the "tips" of the fingers making
nongeneric (parabolic) contact with 4ul [cf. Fig. 16(d)t.
At homoclinic tangency, 4sI accumulates on 4sR. Before
tangency, 4sL does not accumulate on 4sz ', after tangency
it accumulates on both 4sz and 4sL.

As homoclinic tangency is passed, the fingers of 4sl
poke through 4ul. The nearer the finger passes to the
period-4 saddle, the longer and thinner it is. Since 4sL
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accumulates on itself, every neighborhood of a point in
4sL has nonempty intersection with other fingers of 4sL.
That is, accumulating on a point in any finger of 4s~ are
longer and thinner fingers of 4sL. The nature of this ac-
cumulation is shown in Fig. 18. Thinner fingers wrap
around fatter fingers. This structure forces the intertwin-
ing of basins of periods 4 and (3+ 1) in a complicated and
organized way, as shown in Fig. 17. The result is that the
intersection of 4uI with 4sL has the structure of a Cantor
set. In short, the boundary of the period-4 basin has be-
come so wrinkled that it has a fractal structure. ' '

We define a boundary to be strange if it includes an in-
variant Cantor set. In this sense, a basin boundary can be
strange even if there is no other attractor present. For
example, if the remnants of a strange attractor after its
death in a boundary crisis are immersed in a second basin
of attraction, the boundary will be strange, since there
are unstable Cantor sets which are limit sets of points in
the basin.

FIG. 17. The intersection of the line segment shown in Fig.
16(d) with component 3 of the period-4 basin is shown. The se-
quence progresses from its birth in a saddle-node bifurcation (a),
through increasing distortion caused by the impending homo-
clinic tangency 4u X4s (b) —(e), to homoclinic tangency (f), at
which 4s, accumulates on 4s, . The basin between successive
"fins of the dragon" is not simply the intertwined basin (1+3),
but includes also strips from other components of the period-4
basin, as indicated in (b).

FIG. 18. After homoclinic tangency, the inset psL accumu-
lates on itself. Long thin fingers poke through pul into the re-
gion formerly occupied by the period-p basin. Longer and
thinner fingers wrap around the shorter fingers, ad infinitum.

Two of the accumulation points in this Cantor set can
easily be identified. The exterior accumulation points (a
in Fig. 19) in the Cantor set in the neighborhood of any
finger are the intersections of the finger of 4sL with 4ur.
The interior accumulation points (b) are more interest-
ing. Through these points passes a limiting curve which
is, in a rough sense, the "exterior" boundary of the
period-4 basin. To make this notion more precise, we
note that a series of secondary Newhouse saddles (4Xp,
p ~3) exists within the period-4 basin and accumulates
on 4sL at homoclinic tangency. These secondary New-
house saddles have an ordering identical to the ordering
of the primary Newhouse saddles. Furthermore, the
heteroclinic connections to increasing periodicity (2.3)
are all satisfied; the heteroclinic connections 4(p+1)s
X4pu to decreasing periodicity are also all satisfied down
to some minimum value of p, po. All secondary New-
house saddles 4p (p ~ po) are thus joined in a heteroclinic
tangle. ' ' This means that the insets and outsets of each
accumulate on all the others in this cycle.

Immediately following homoclinic tangency, 4sL accu-
mulates on itself from inside the region of the period-4
basin. This requires fingers of 4sL to pass through the
series of secondary Newhouse saddles which accumulates
on 4sL. These fingers of 4sL must intersect the unstable
manifolds of some secondary Newhouse saddles, 4pu, for
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FIG. 19. The intersection of the inset psL with pul has the
structure of a Cantor set. The points a and b correspond to a
and b in Fig. 18. Top shows structure of the fingers of the com-
plement C of the period-p basin in the neighborhood of the
points a and b. Complement C consists of all basins "interior"
to p, organized as shown in Fig. 9. Bottom shows steps in con-
struction of the intersection of psL with puz obtained by remo-
val of increasingly elongated fingers a, P, y, 5, . . . , of C. This
construction clearly indicates the existence of a Cantor set in a
transverse section of the period-p basin boundary.

p sufficiently large. Since all insets of the secondary New-
house saddles intersect 4u~, the period-4 saddle also be-
longs to the heteroclinic tangle of secondary Newhouse
saddles 4p (p ~po). Therefore 4sL must accumulate on
4ps for each secondary Newhouse saddle in the hetero-
clinic tangle. Since the lowest periodic orbit among these
secondary Newhouse saddles is the "most interior" orbit,
the interior limit points (b in Fig. 19) of the Cantor set
are the intersections of (4po)s with 4ui. In somewhat
different terminology, the most interior saddle, 4po, in
this heteroclinic tangle is the saddle accessible from the
interior of the period-4 basin. ' '' ' ' (A saddle is acces-
sible from a basin on one side of the stable manifold if
and only if there exists a one-sided neighborhood of the
saddle that belongs to the basin of attraction, with the
only exception being those points belonging to the stable
manifold itself. This concept was introduced by Grebog-

gi and co-workers ' and formalized in a different way
using ideas of path continuity. A basin 3 is accessible
from another basin B if the saddle whose inset bounds 3
is interior to the saddle whose inset bounds B. )

As the control parameter is further increased, addition-
al heteroclinic connections, typically with the secondary
Newhouse orbit of next lower periodicity (e.g. , 4p',
p'=po —1), may occur. When this happens, 4sL accumu-
lates on (4p')s, so that the interior of the basin boundary
appears to make a sudden jump inward from the initial
accumulation set (4po)s to a more interior accumulation
set, which is (4p')s. ' '' The most interior of the secon-
dary Newhouse saddles is 4p' with p'= 3. Once this limit
set is reached, there are no further small changes in the
basin boundary due to more interior (secondary) New-
house saddles, since there are none.

The process of upward closure [i.e., saddle connections
4(p+1)s X4pu, with decreasing period] of the secondary
Newhouse orbits is responsible for the increasing disin-
tegration of the period-4 basin. Death or expansion of
the (strange) attractor comes about when the attractor
touchs the basin boundary in a crisis. Which one occurs
depends upon the nature of the boundary.

When an attractor A collides with the common bound-
ary of the basins of A and B, the attractor 3 is destroyed.
The neighborhood of the former attractor A is embedded
in the basin of B. In the place of attractor A are long-
time chaotic transients. We call a region of chaotic tran-
sients a zone in phase space that contains transients of
any time length and the limit of these transients is an
unstable-invariant Cantor set. These transients mimic
the periodicities present in this region just prior to the
crisis. That is, for the period-4 basin the transients are of
periods 4, 3, 1 [or period-doubled versions, neglecting all
secondary (non-)Newhouse basins]. This process is illus-
trated in Fig. 20 in the case of the death of the period-4
strange attractor in the presence of the period-3 and -1
attractors for the Henon map.

When attractor A reaches a strange boundary (for ex-
ample, a region of chaotic transients) it expands into it
and generates a new strange attractor that visits both the
former region of transients and the region previously
visited by A. This process has been reported for the laser
system in theoretical work. '

VII. ADDITIONAL STRUCTURES

While each period-p basin evolves, the attractor within
the basin also evolves. Typically, the attractor undergoes
a period-doubling cascade. This cascade induces a fur-
ther refinement in the basin structure. This refinement is
illustrated in Fig. 21. After the first period doubling,
each of the p components of the period-p basin is split in
two by the inset of the period-p flip saddle [Fig. 21(a)].
Each half of a period-p component is mapped into the
other by the pth iterate of the map. Following a second
period doubling, each of the p components is divided into
four parts by the period-p and -2p flip saddles [Fig. 21(b)].

Another circumstance which induces modifications in
the basin structure is the phenomenon of snaking. This
occurs when a branch undergoes one or more inverse
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FIG. 20. Coexisting basins of attraction of the Henon map for J=0.3S. (a) For a=1.135 there are three coexisting basins of
period-1 (light), -3 (medium), and -4 (dark). (b) For a= 1.15 the period-4 basin has disappeared, leaving in its place highly intertwined
period-1 and -3 basins. (c) Enlargement of (b), showing intertwining of period-1 and -3 basins at an ever finer level.

saddle-node bifurcations, as illustrated in Fig. 22(a). This
can occur in two ways, one involving a bubble diagram,
or isola (not shown), the other as indicated in Fig. 22(a).
The topological constraint on the snaking process is that
all critical points belonging to the same branch lie on the
same invariant set and satisfy the usual index theorems.
The snaking phenomenon is governed by a cuspoid catas-
trophe along this invariant set. ' This means in practice
that the saddles and nodes must alternate along the in-
variant set, as shown in Figs. 22(b) —22(e). Any organiza-
tion consistent with these constraints is feasible (e.g. ,
multiple snakes). The snake illustrated in Fig. 22(a) is re-
lated to the A3 (cusp) catastrophe, as seen by rotating
Fig. 22(a) counterclockwise by 90'.

When the dynamics of a system is governed by a
horseshoe there are no regular saddles of period 2 and
only one each of periods 3 and 4 when the horseshoe is
completed. Therefore if a period-2 saddle-node bifurca-
tion is observed, it must be connected by a snake to the
period-doubled orbit from the period-1 branch. If two or
more saddle-node bifurcations of period 3 occur, they
must be related by a snake, and similarly for period 4."

VIII. SUMMARY AND CONCLUSIONS

We have studied the structure of the basins of attrac-
tion for coexisting Newhouse attractors. This discussion
is based on the heteroclinic structure that is common to
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(ps, ), which exhibits the characteristic dragonfin shape.
These two mechanisms, the one intertwining the com-
ponents, the other wrinkling the components, occur in a
highly correlated way. Both mechanisms are responsible
for the "insertion of fingers" of the complementary basins
into the period-p basin.

New basins are born into, and old basins removed
from, this rigidly organized structure in a systematic
way. New basins are introduced by saddle-node bifurca-
tion. At birth, new basins have nonzero measure and are
organized with respect to those basins already present in
a way determined by their order of saddle crossings. As
the birth of a basin approaches, insets of the interior sad-
dles rapidly reorganize themselves so that accumulation
on the new saddle insets will occur when these new sad-
dle insets are born. This reorganization occurs in a
canonical way which is described quantitatively by the
fold catastrophe. This description is presented in Sec. V
and illustrated in Figs. 11 and 12.

When a basin is born in a saddle-node bifurcation, its
boundary is smooth and accumulates on all exterior
basins (i.e., whose outset crosses the inset of the new sad-
dle). In addition, its boundary is the accumulation of the
insets of all coexisting interior saddles (i.e., whose insets
cross the outset of the new saddle). As the control pa-
rameter increases, the basin and its attractor evolve. The
attractor evolves through a period-doubling cascade
which is correlated with, but not directly determined by,
the evolution of the basin and its boundary. The basin
becomes increasingly wrinkled and convoluted through
the two mechanisms summarized above. This evolution
is responsible for the insertion of fingers of lower period
(more generally, interior) basins "into" higher-period
(more generally, exterior) basins. In fact, such fingers are
typically so narrow they can only be seen with high-
resolution graphics, which precludes the global viewing
necessary to identify the process as folding rather than
"insertion. " It should always be remembered that the
saddle insets are two sided, with the associated basin on
only one side and its complement on the other.

Disintegration and death come to a basin beginning
with the homoclinic tangency of the regular saddle in-
variant sets. Just beyond homoclinic tangency the com-
plement of the basin is mixed into its interior, accumulat-
ing on the former boundary from both sides. The thick-
ness of this accumulating layer changes discontinuously
as the invariant set ps crosses secondary Newhouse
outsets (p Xp')u of successively decreasing period, until
the last (lowest) saddle outset has been crossed. At this
point the next major change in the basin is its destruction
in a crisis. Remaining after the destruction of the basin
are the invariant sets of the regular period-p saddle, to-
gether with the invariant sets of the secondary Newhouse
orbits. These measure-zero invariant sets govern tran-
sient behavior of the phase space in the neighborhood of
the defunct attractor.

The order in which new attractors are born as a func-

tion of the parameters is known not to be canonical. In
contrast, the organization of their manifolds, and with
them, the organization of their basins of attraction, is
canonical (at least for Newhouse attractors). This organi-
zation will manifest itself whenever two or more New-
house saddles exist regardless of their periodicity. The
fingerprints of their presence range from an accumulation
process of basins onto basins to the existence of fractal
boundaries between basins and regions of strange (fractal)
transients.

As an additional example of this organization we can
mention the DuSng oscillator. For that matter, any sys-
tem resulting from adding dissipation and harmonic driv-
ing to a one-degree-of-freedom Hamiltonian system will
present the heteroclinic structure given by (2.1) and (2.2).
It can be shown that this structure results from the reso-
nant bifurcations of the Hamiltonian orbits. This con-
sideration puts a lower limit to the scope of this work.

The systematic organization of coexisting basins of at-
traction allows us to predict the behavior of the laser
with modulated parameter, and other driven dynamical
systems as well, when initial conditions are allowed to
evolve to their final states. For initial conditions in the
neighborhood of a period-p saddle inset but exterior to
the basin of a period-p branch, the final state can occur in
any accessible basin. Accessible basins are those basins
bounded by saddles interior to the period-p saddle. The
relative probability of occupation of the accessible basins
can be determined by carrying out this experiment from
the neighborhood of the period-p saddle inset or the inset
of any saddle exterior to the period-p saddle. Such exper-
iments have been done by initializing the system in the
period-p basin and adding noise until the system is
"bounced out" of that basin. They have also been done
by changing the control parameter value until the
period-p basin has been annihilated in an inverse saddle-
node bifurcation. In both cases population of only those
basins interior to the period-p basin (basins accessible
from p) has been observed. '

In summary, basins evolve. They make their presence
known before birth by a distortion created in the preex-
isting structures (cf. Fig. 12). Upon birth their surfaces
are smooth. As they evolve their surfaces becomes in-
creasingly wrinkled. After their death they leave re-
minders of their existence.
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