PHYSICAL REVIEW A

VOLUME 39, NUMBER 5

MARCH 1, 1989

Evolution of attractors in quasiperiodically forced systems:
From quasiperiodic to strange nonchaotic to chaotic

Mingzhou Ding, Celso Grebogi, and Edward Ott
Laboratory for Plasma Research, University of Maryland, College Park, Maryland 20742
(Received 15 September 1988)

As a model displaying typical features of two-frequency quasiperiodically forced systems, we dis-
cuss the circle map with quasiperiodic coupling. We present numerical and analytical evidence for
the existence of strange nonchaotic attractors, and we use examples to illustrate various types of
dynamical behavior that can arise in typical quasiperiodically forced systems. We investigate the
behavior of the system in the two-dimensional parameter plane of nonlinearity strength versus one
of the driving frequencies. We find that the set in this parameter plane for which the system exhib-
its strange nonchaotic attractors has Cantor-like structure and is enclosed between two critical
curves. One of these curves marks the transition from three-frequency quasiperiodic attractors to
strange nonchaotic attractors; the other marks the transition from strange nonchaotic attractors to
chaotic attractors. This suggests a possible route to chaos in two-frequency quasiperiodically forced
systems: (three-frequency quasiperiodicity) — (strange nonchaotic behavior) — (chaos).

I. INTRODUCTION

Maps of a circle to itself are highly relevant models for
understanding many interesting physical phenomena.
The most frequently studied of such maps is

¢n+l [¢n+27rK+VSIn¢n] ’ (1)

where K and V are real parameters, and we henceforth
use the square brackets to indicate that modulo 27 of the
enclosed expression is taken. As K and V vary Eq. (1) ex-
hibits a wealth of nonlinear dynamical phenomena:
chaotic attractors, mode locking, period-doubling cas-
cades, quasiperiodicity, intermittency, crisis, etc.! Past
work shows that simple models, such as Eq. (1), exhibit
features that are typical of more complex and realistic
systems.

Our primary concern in this study is to understand
how nonlinear systems respond to quasiperiodic forc-
ing.2”% As a model to reveal typical features to be ex-
pected in this case, we consider a generalization of Eq.
(1),

¢, +1=[¢, +27K + Vsing, +C coso, ], (2)
6,.,=I[6,+2r0], (3)

where K, V, and C are three parameters and w is irration-
al. In our numerical experiments we used the reciprocal
of the golden mean for w, namely, ®=(v'5—1)/2. To
motivate the form used in Egs. (2) and (3) consider a con-
tinuous time system which is quasiperiodically driven at
two incommensurate frequencies. Take the following
pendulum equation as a typical example:

2 )
d_dq:(z—t)“*‘v dd(tt) +g sing(¢)=F + G sin(wt +a,)

+ H sin(wyt +a,) , 4)

where o, and w, are incommensurate. If we sample the
system at time intervals corresponding to one of the driv-
ing frequencies, say, w,¢, =2mn, we obtain a discrete map

for the variables ¢,0=w,t and ¢= d¢/dt The form of
this discrete map is ¢, =F(¢,, N 3 R S
=G(¢,,0,,¢,), 0,+,=[0,+2mw], where w=w0,/v,;.

For not too small v much of the dynamics of (4) can be
modeled by neglecting the dependence of F on qS,,, in
which case the map has the same form as Eqgs. (2) and (3).

It was shown in Ref. 3 that quasiperiodically forced
systems can exhibit strange nonchaotic attractors. These
attractors are not a finite set of points, or a smooth curve
or surface, or a volume bounded by a piecewise smooth
closed surface. Hence they are strange geometrically.
On the other hand, a typical orbit on a strange nonchaot-
ic attractor has nonpositive Lyapunov exponents. There-
fore, they are nonchaotic in the sense that they do not ex-
hibit sensitive dependence on initial conditions. Accord-
ing to the theory developed in Refs. 4 and 5 for first-order
differential equations, these attractors display distinct
Fourier spectral properties. The numerical experiments
performed on both first- and second-order ordinary
differential equations confirm the theoretical predictions
for the Fourier spectra. Furthermore, studies in Refs.
3-6 also showed that strange nonchaotic attractors ap-
pear to be typical for quasiperiodically forced systems.
By “typical” we mean that they occur on a positive mea-
sure set in the parameter space. That is, if we pick a
point in the parameter space at random, the system has
nonzero probability to yield such an attractor.

There are a variety of ways of characterizing attractors
in dynamical systems. Here we review some of them that
we will be using in our study.

(i) Equations (2) and (3) have two Lyapunov exponents.
One of them, corresponding to Eq. (3) is always zero.
The other corresponding to Eq. (2) is

= lim — 2 In|14+ ¥V cosg, | . (5)

n—e =
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(ii) The winding number W for an orbit {¢,} of Eq. (2)
is defined as
W= tim 22 % ©
n—w 2TH
For {6,}, the winding number is always . Physically,
W and o are the average frequencies with which the orbit
circles around in the ¢ and 6 directions, respectively.

(iii) Fourier spectra are calculated using a fast Fourier
transform (FFT) algorithm’ applied to the discrete se-
quence {s,}"= "1, s, =h,P(s,), where P(¢)=cos¢ and
h,=[1—cos(2mn /M )]/2. The multiplication by 4, is a
smoothing technique (the so-called method of leakage
reduction’) which eliminates spurious high-frequency
features that would otherwise be introduced by the
effective sudden turn-on and turn-off of the Fourier trans-
form operation at the beginning and end of the data
string.

To explain the main results of this paper, we refer to
the K — ¥ plane diagram shown in Fig. 1 [cf. Egs. (2) and
(3) for the meanings of K and V]. The hatched areas in
the diagram indicate the set of parameter values for
which the system exhibits negative Lyapunov exponents.
According to the qualitatively different dynamical behav-
ior exhibited by Egs. (2) and (3), Fig. 1 can be divided
into three regions. These three regions are separated
from each other by two critical curves. The meaning of
these curves is discussed below. Region 1 begins at V=0
and extends up to the lower critical curve. We see that at
V=0 the tongues of hatched areas emerge and start to
widen as Vis increased. These tongues apparently touch
each other on a set of points which lie on the lower criti-
cal curve. Note that this lower critical curve is below the
horizontal line V=1 past which the system, Egs. (2) and
(3), becomes noninvertible. Embedded between the
hatched tongues are areas where A is zero (blank). Cor-
responding to the hatched and blank areas in Region 1,
the attractors exhibited by the system are either two-

1
Region 2

jRegion |

FIG. 1. Diagram of the K-V plane showing the three regions
separated by the two critical curves. In region 1, A is either
negative (hatched) or zero (blank); in region 2, A is always nega-
tive; in region 3, A is either negative (hatched) or positive
(blank).
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TABLE 1. Characterization of the K-V plane. (Two-
frequency quasiperiodic attractors exist in all three regions.)

Lyapunov
Region Dynamical behavior exponent

1 three-frequency quasiperiodic A=0

2 strange nonchaotic A<O0

3 chaotic A>0

frequency quasiperiodic (A <0) or three frequency quasi-
periodic (A=0). The structure of the K-V plane in this
region is similar to that of the circle map Eq. (1) (cf. Sec.
II). Between the two critical curves is a region where A
is always negative. We refer to this region as region 2.
Region 2 extends beyond V=1 and ends on the upper
critical curve. In this region the system exhibits only
two-frequency quasiperiodic and strange nonchaotic at-
tractors. Finally, the region above the upper critical
curve is referred as region 3. In this region we find only
two-frequency quasiperiodic and chaotic attractors (cor-
responding to blank areas with A>0). In Table I we
summarize the results concerning the behavior of Egs. (2)
and (3) on the K-V plane. Notice that the above partition
of the K-V plane diagram according to the different
dynamical behavior exhibited by the system indicates the
importance of the existence of the two critical curves in
characterizing the evolution of attractors from three-
frequency quasiperiodic to strange nonchaotic to chaotic.

The organization of this paper is as follows. In Sec. II
we give a brief review of the circle map Eq. (1), for com-
parison with our work on Egs. (2) and (3) emphasizing
the features introduced by quasiperiodic forcing. In Sec.
IIT we present numerical evidence supporting our main
conclusion as exemplified by our above discussion of Fig.
1 and Table I. In Sec. IV we present analytical results for
the case of strong coupling. In Sec. V we discuss and
summarize our conclusions.

II. REVIEW OF THE CIRCLE MAP

If we let =0 in Eq. (1), then the situation is simple.
The system exhibits either periodic or quasiperiodic
motions, depending on whether K is rational or irration-
al. Finite V introduces nonlinearity in the system and
causes the given periodic orbits to persist for a range of K
values. The result is the Arnold tongue structure of the
K-V plane shown in Fig. 2. Inside each Arnold tongue,
there is an attracting periodic orbit and its winding num-
ber satisfies the mode-locking condition: W=m /n with
m and n being integers. Between the tongues the winding
number W of Eq. (1) is irrational and the system exhibits
zero Lyapunov exponent and two-frequency quasiperiod-
ic motions (there are only two frequencies in this sytem).
The Arnold tongues touch each other on the critical
curve ¥V=1. Above this critical curve the tongues over-
lap and the system can display chaotic attractors.

The decoupled system, C=0 in Egs. (2) and (3), corre-
sponds to the circle map with the phase space dimen-
sionality increased from one to two by the addition of the
0 dynamics. This adds an additional frequency to the
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FIG. 2. Diagram of the K-V plane for the circle map Eq. (1)
giving regions where A <O (hatched) and regions where A=0
(blank).

system. Thus, for the expanded system, C =0 in Eqgs. (2)
and (3), the tongues of Fig. 2 correspond to two-
frequency quasiperiodic (rather than periodic) motions,
and the regions between the tongues correspond to
three-frequency quasiperiodic (rather than two-frequency
quasiperiodic) motions. Hence, we may regard the region
in Fig. 2, ¥ <1, as analogous to region 1 of Fig. 1, while
the region with ¥ > 1 (not shown in Fig. 2) is analogous
to region 3.

In the case of Egs. (2) and (3) with C > 0, the transition
from pure quasiperiodicity (A=0) (region 1) to chaos (re-
gion 3) is mediated by the existence of a region where
strange nonchaotic attractors occur (region 2). Thus we
may think of this intermediate transition region (region 2)
as the main effect introduced by nonzero quasiperiodic
forcing. We shall see that the distance between the two
critical curves in Fig. 1 is a function of the quasiperiodic
coupling strength C, and that as C—0 the two critical
curves approach each other and collapse onto V=1 when
C=0.

III. NUMERICAL RESULTS
FOR THE QUASIPERIODICALLY FORCED CIRCLE MAP

As mentioned in Sec. I, there exist two critical curves
in the K-V plane which delineate the transition between
qualitatively different dynamical behavior. In this section
we present our numerical work supporting this and other
associated results, and we use examples to illustrate the
distinct characteristic properties of the different kinds of
attractors that can arise in typical quasiperiodically
forced dynamical systems. We also present detailed argu-
ments on the existence of strange nonchaotic attractors in
terms of Lyapunov exponents and winding numbers.

A. Lyapunov exponents and winding numbers

The K-V plane shown in Fig. 1 was obtained by taking
a grid with 320 values of K and 65 values of V; the orbit
length varies from 10* to 6 10°, depending on the con-
vergence of the Lyapunov exponents. The criteria for
negative, positive, or zero Lyapunov exponents used in
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Fig. 1 are A< —0.00005, A>0.00005, or —0.00005
<A <0.00005. With the grid used we find no parameter
values in region 3 for which the system exhibits “zero”
Lyapunov exponents. Thus the set of parameter values
on which A=0 apparently has zero measure in region 3.
We note that the two critical curves, upper and lower, are
drawn to indicate the existence of the partition of the K-
V plane into three regions, and these critical curves are
not uniquely determined based on our numerical data.

In Fig. 3 we plot W and A as functions of K for fixed V'
and C in region 2 (the region of two-frequency quasi-
periodic and strange nonchaotic attractors). The orbit
length used is 10°. The W versus K curve, Fig. 3(a), is ap-
parently a “‘devil’s staircase’: a continuous nondecreas-
ing curve with a dense set of open intervals on which W
is constant and given by

w=my L ™)

n n
where m, [, and n are integers. Between these intervals
there is a Cantor set on which W increases with K. The
A versus K curve is given in Fig. 3(b), where all the
Lyapunov exponents are negative. Since W is a continu-
ous nondecreasing function of K, it certainly crosses the
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FIG. 3. Curves of (a) winding number (W) vs K and (b)
Lyapunov exponent (A) vs K for C=0.6 and V =1.
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FIG. 4. Phase space plots and frequency spectra corresponding to orbits on a three-frequency quasiperiodic attractor for C=1.2,
V=0.61, and K=0.475 [(a) and (b)], a two-frequency quasiperiodic attractor for C=0.6, ¥=1.0, and K=0.38 [(c) and (d)], a strange
nonchaotic attractor for C=0.6, ¥=1.0, and K=0.216 [(e) and (D], and a chaotic attractor for C=0.6, ¥=1.3, and K=0.3 [(g) and
(h)].
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points where Eq. (7) does not hold. This combination of
negative Lyapunov exponent and the irrational relation-
ship between W, w, and 1 is the criterion for the existence
of strange nonchaotic attractors.

If we decouple Eq. (2) and Eq. (3) by letting C =0, the
resulting system is the circle map [Eq. (2)] with an addi-
tional dimension expanded by 6 and its corresponding
frequency w. In this decoupled case, since the motion
along the ¢ direction is not affected by the motion along
the 6 direction, the mode-locking condition Eq. (7)
reduces to its subset where W=m /n and [ =0. As we
have already seen in Sec. II, this subset corresponds to
the mode-locking condition of the circle map. Therefore,
on the K-V plane, nonzero quasiperiodic coupling in Eq.
(2), allowing nonzero / in Eq. (7), introduces more mode-
locking tongues than in the case of the circle map. (This
may be the reason why the lower critical curve in Fig. 1
occurs below ¥V =1 which is the only critical curve for
the circle map.)

B. Phase space plots and Fourier spectra

For regions 1 and 2 the three distinct combinations of
winding numbers [either satisfying Eq. (7) or not] and
Lyapunov exponents (either negative or zero) give rise to
phase space plots and Fourier spectra with qualitatively
different characteristics, as summarized in Table II.

In case A4 the three frequencies W, w, and 1 are irra-
tionally related and the Lyapunov exponents are zero;
therefore the system exhibits three-frequency quasi-
periodic behavior. A typical orbit generates a smooth
density of points densely filling the (6,¢) plane as illus-
trated in Fig. 4(a). In Fig. 4(b) we plot the frequency
spectrum corresponding to the orbit shown in Fig. 4(a).

In case B the frequencies W, w, and 1 are rationally re-
lated and the corresponding Lyapunov exponents are
negative, therefore the system exhibits two-frequency
quasiperiodic attractors. The attractor in the (6,¢) plane
lies on a smooth multivalued curve. If we take in Eq. (7)
I,n and m,n to be relatively prime integers, then n gives
the multiplicity of the curve in the ¢ direction and / gives
the multiplicity of the curve in the 0 direction. An exam-
ple of a two-frequency quasiperiodic attractor is given in
Fig. 4(c), and in this case (n,/,m)=(1,—1,1). Figure 4(d)
shows the frequency spectrum for the orbit in Fig. 4(c).

In case C the attractor is geometrically strange: It
satisfies the functional relation ¢ =F(68). F can be a mul-
tivalued function. But F is discontinuous everywhere
(hence strange). This can be verified in the following
way. (i) To verify the existence of the relationship
¢=F(0) we initialize a large number of points at a single
initial 6 value but with different initial ¢ values and find
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that after a large number of iterates N, all the orbits are
attracted to a set of values ¢5(}), where i=1,2,3,...,Pand
P is the multiplicity of the function F. (ii) That ¢=F(6)
cannot be a continuous function follows from the fact
that the winding number W is irrationally related to 1
and w. (iii) Finally, that ¢=F(0) is discontinuous every-
where results from the fact that the map Eq. (3) is ergodic
(so if F is discontinuous anywhere it is discontinous
everywhere). An example of a strange nonchaotic attrac-
tor and its corresponding frequency spectrum is given in
Figs. 4(e) and 4(f).

Note that the spectrum of the two-frequency quasi-
periodic attractor, Fig. 4(d), is concentrated on a small
discrete set of frequencies, while the spectra of both the
three-frequency quasiperiodic [Fig. 4(b)] and strange non-
chaotic attractors [Fig. 4(f)] apparently have compara-
tively much richer harmonic content.

It is interesting to note that the information dimension
of strange nonchaotic attractors, as predicted by the
Kaplan-Yorke formula,®® is unity. However, as will be
shown in a future publication,lo there is evidence indicat-
ing that the capacity (box-counting) dimension is two for
these attractors.

The three types of attractors discussed above can arise
in quasiperiodically forced systems which do or do not al-
low chaotic attractors to exist. In the case of Egs. (2) and
(3), which we believe is typical of the quasiperiodically
forced systems which allow chaotic attractors to exist,
chaos (i.e., A>0) is the state the system might transit to
from strange nonchaotic attractors as a parameter is
varied (e.g., V'is increased so as to cross the upper critical
curve). Figures 4(g) and 4(h) are examples of a chaotic at-
tractor and its corresponding Fourier spectrum.

The phase space plots in this section, Figs. 4(a), 4(c),
4(e), and 4(g), are generated by plotting long orbits
(N =4X10* to 2X 10°) in the (6, 4) plane after discarding
the initial 4000 iterates (to eliminate the effect of tran-
sients). The Fourier spectra, Figs. 4(b), 4(d), 4(f) and 4(h),
are obtained by using an fft algorithm (cf. Sec. I) with
M=2"

IV. ANALYTICAL RESULTS FOR LARGE C

To gain insight for the case C>>V, neglect the
“Vsing,” term in Eq. (2). The result is

0 1= +27K +Ccosb, ],
6,+1=[6,+2r0] .

(8)
9

Since the average of {cos0, ] is zero the winding num-
ber W° of Eq. (8) is

wOo=K . (10)

TABLE II. Characteristics of attractors.

Case Winding number Lyapunov exponent Type of attractors Figures
A W % + %a) A=0 three-frequency quasiperiodic 4(a) and 4(b)
W= % + ﬁa) A<O two-frequency quasiperiodic 4(c) and 4(d)
C W~ % + ;la) A<O strange nonchaotic 4(e) and 4(f
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FIG. 5. Curves of (a) winding number (W) vs K and (b)
Lyapunov exponent (A) vs K for C=6000 and V =1.

Figure 5(a) shows the W versus K curve for the system of
Egs. (2) and (3) with C=6000. All the points lie approxi-
mately on the diagonal line W =K, as predicted by Eq.
(10).

In Eq. (5) if we use the orbit {¢%} obtained from Eq. (8)
instead of the actual orbit {4, } obtained from Eq. (2) we
get

n
A%= lim + S In|1+V cos} |

n—-w N k=1

1 27
= 1+ d¢ , 11
e fo In|1+ V cosd|d (11)
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where the last step is arrived due to the fact that {¢°] is
uniformly distributed on [0,27].
Performing the integral in Eq. (11) yields

—In{2/[1+(1—=V)1?]}, V<1

A=), v=1. (12)

Figure 5(b) shows the numerically computed A as a func-
tion of K for C=6000 and V'=1. All points are concen-
trated near the value A°= —0.693 predicted by Eq. (12).

Finally for ¥ >2, Eq. (12) predicts A°>0. Indeed we
find for ¥ > 2 and large C that the system Egs. (2) and (3)
exhibits chaotic attractors. Therefore V' =2 is the upper
critical curve marking the transition from strange non-
chaotic attractors to chaotic attractors for large C.

These results together with the discussion of Sec. II
suggest the following picture of what happens as the cou-
pling C varies: For C—0 the two critical curves collapse
onto the line ¥=1. As C increases they move apart and
region 2 enlarges. For C— o the upper critical curve
approaches V=2, while the lower critical curve ap-
proaches V=0, squeezing region 1 onto the V axis.

V. CONCLUSIONS

In this paper we discuss the existence of strange non-
chaotic attractors for the quasiperiodically forced circle
map Egs. (2) and (3). Various numerical experiments are
performed to illustrate the different types of attractors
that can arise in typical quasiperiodically forced systems.
The central result is that in the two-dimensional parame-
ter plane of K and V, the set for which the system Egs. (2)
and (3) exhibits strange nonchaotic attractors has
Cantor-like structure and is embedded between two criti-
cal curves. One of these curves marks the transition from
three-frequency quasiperiodic attractors to strange non-
chaotic attractors; the other marks the transition from
strange nonchaotic attractors to chaotic attractors. This
forms a possible route to chaos in two-frequency quasi-
periodically forced dynamical systems, namely, (three-
frequency quasiperiodicity) — (strange nonchaotic
behavior) —(chaos).
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