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Nonequilibrium molecular dynamics (NEMD) experiments measuring the shearing forces within

an atomic fiuid undergoing a planar Couette fiow [Hoover, Ann. Rev. Phys. Chem. 34, 103 (1983);
Evans and Morriss, Comp. Phys. Rep. 1, 299 (1984)] are performed by the subtraction method

[Ciccotti et al. , J. Stat. Phys. 21, 1 (1979)] at su%ciently low velocity gradient in order to remain

within the linear response regime. The resulting stress averaged over many hundreds of NEMD tra-

jectories (segments) and the stress-stress time autocorrelation function evaluated along the available

equilibrium trajectory (required for the subtraction method), which are formally related by linear

response theory, are shown to yield compatible estimations of the shear viscosity. This confirms the

correct limiting behavior of the eftective shear viscosity evaluated by similar NEMD experiments at
much larger gradients. At the fluid state point far from the melting line that we consider, no size

dependence of the viscosity is observed in both types of experiments. A comparison of the efficiency

of both methods is not straightforward, as we found that, for a fixed number of time steps, the error
estimated on the viscosity is independent of the system size for the Green-Kubo formula but de-

creases as N ' in the NEMD case.

I. INTRODUCTION

It is now well established that for dense fluids, the nu-
merical evaluation of transport coefficients by molecular
dynamics (MD) simulations can proceed in various ways.
The exploitation of Green-Kubo (GK) relations at equi-
librium (EMD) appears nowadays as the traditional "old
fashioned" method, as, in the last few years, the compu-
tation of transport coefficients via direct application of
the phenomenological laws in nonequilibrium MD simu-
lations (NEMD) has become increasingly popular. '

For the systems accessible to simulation by computers,
i.e., involving a few hundreds particles, bulk fluid-
transport coefficients are more adequately obtained by
methods which preserve space homogeneity in com-
parison with models, closer to real experiments, where
gradients are imposed by an explicit fluid-wall interac-
tion. In the former class of methods, a current of mass,
momentum, or energy is induced throughout the system
by a fictitious external field. This field is chosen in such a
way that the ratio between the specific current and the
field itself (i.e., the susceptibility) corresponds precisely,
in the low field limit, to the transport coefficient of in-
terest. To obtain a strictly homogeneous steady state,
one introduces an additional coupling of the system to a

thermostat removing uniformly the heat dissipated. The
equations of motion are similar to the ones employed in
EMD but contain additional external fields and thermo-
stat coupling terms. It is useful to remind at this point
that, given the high fields required to get a reasonable
signal-to-noise ratio, the effective transport coefficients
are field dependent so that calculations must be per-
formed at various field strengths and subsequently extra-
polated to zero field.

NEMD can, however, also be performed in a dynamic
way at much smaller gradients (largely within the linear
response regime) by using the subtraction method.
Starting from an equilibrium state, the transient behavior
of a system suddenly subjected to the field (either con-
stant or deltalike in time) is followed until a (quasi) sta-
tionary state is recovered. As the coupling is small, the
response emerges out of the noise by averaging the
difference between the currents measured at equivalent
times along perturbed and unperturbed (no field) trajec-
tories, starting from a common configuration. With a
suitable choice of the external coupling, the response in
the linear regime is related to the equilibrium current-
current time correlation function of interest and therefore
to the relevant transport coefficient. The NEMD equa-
tions are similar to those mentioned earlier for the none-
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quilibriurn steady-state simulations, except for the
thermal bath coupling terms which are no longer re-
quired as heating up effects are negligible.

Such methods have been used recently by some of us in
the calculation of thermal conductivity and shear viscos-
ity ' ' using more statistics than in earlier attempts. The
equivalence of these methods with the corresponding usu-
al Green-Kubo method is numerically verified, as predict-
ed by generalized linear response theory. "

Nevertheless, contradictory opinions or doubts still cir-
culate' about the efficiency and sometimes about the
equivalence of the three different techniques recalled
brie(ly above, i.e. , (1) Green-Kubo, (2) large-gradient sta-
tionary NEMD method with extrapolation to zero gra-
dient, and (3) the subtraction NEMD method at small
(essentially zero) gradient. Careful and unambiguous in-
tercomparison of all these methods on simple reference
systems are thus required even if some studies in that
direction have been published recently. Results on hard-
spheres viscosity using high-gradient NEMD' ' ' and
GK methods have always been found in apparent agree-
ment. Evans and Holian' arrived at the same conclusion
for the shear viscosity of a Lennard-Jones fiuid at a su-

percritica1 state again using Green-Kubo and large-
gradient stationary NEMD. In the same context, a sys-
tematic comparison of these methods, including their
efficiency, has recently been published by Erpenbeck' for
the self-diffusion coefficient of a dense liquid. Agreement
between both methods is again observed but only in the
large system limit (in practice for X) 1372), the X depen-
dence being more pronounced in NEMD than expected.
For the same given number of time steps, the GK method
achieves, in this case, the best precision on the transport
coefficient and is therefore considered superior to the
NEMD large-gradient approach. It must be stressed,
however, that this comparison of efficiency is somewhat
biased by the fact that the NEMD method computes a
collective quantity J=g,.e, v, (where v, is the velocity of
atom i and e, a "color label" equal to +1 or —1) while

the EMD method evaluates directly the self-quantity
( v, ( t) v, (0) ) which rigorously puts to zero the cross
terms (v, (t) v (0)) which would appear as a noise
source in the (J(t).J(0)) equilibrium correlation func-
tion.

In this paper we present a systematic comparison of
the GK and NEMD low-gradient (subtraction) methods
for the same Quid and state point considered by Evans
and Holian. ' For reference purposes, we present some
results on the heat conductivity of this system obtained
by both kinds of techniques, but the paper, both in its nu-
merical results and theoretical aspects, will otherwise be
concerned exclusively with the shear-viscosity transport
coefficient. These new results complement the work of
Holian and Evans both by increasing GK statistics and

by testing the subtraction technique as a possible NEMD
alternative. In a recent paper, ' we already reported the
results of nonstationary NEMD methods (at both small
and large gradients) discussing the shear-rate dependence
of the viscosity for the same system (108 particles) at the
same point. In that work we observed agreement be-
tween the Green-Kubo result, the zero-gradient extrapo-

II. THEORETICAL BACKGROUND
AND IMPLEMENTATION OF NEMD

As a way to introduce useful notations, we start with
the Green-Kubo expression of the shear-viscosity
coefficient g, ' used in standard EMD simulations. It in-
volves the time correlation function of the oA-diagonal
elements of the stress tensor o. and for an atomic fluid of
X particles occupying a volume V at temperature T,

rl= lim g(t),

r)(t) =( V/k~ T )j ( o„y(s)o „(0))ds,
0

where ( ) denotes an equilibrium average in phase
space and the stress tensor is given by

o„=—(I/V) g(m, 'p, p,~+f,„y, ); (2)

m, , r, , and p; are, respectively, the mass, Cartesian coor-
dinate, and momentum of atom i, while f; is the total
force acting on this atom.

Alternatively, NEMD simulations of fluids, subject to
shear fiows, have been devised to get g in a more direct
way. ' In this case to minimize surface effects, it is
preferable to choose a method preserving the spatial
homogeneity of the system. The velocity gradient, in-
duced throughout the MD cell by application of a ficti-
tious external field, has then to be accommodated at the
boundaries by appropriate generalized periodic boundary
conditions. What happens to the system is easily de-
scribed as a deformation of the MD cell induced by the
fluid How itself. Just as in the Parrinello-Rahman
method for solid deformation under external stress, ' the

lation estimate of large-gradient NEMD results and the
small-gradient (subtraction technique) result. In the
present paper we focus on the low-gradient subtraction
method. Looking at different system sizes and perform-
ing a detailed statistical convergence analysis, we com-
pare the nonequilibrium results, i.e., the susceptibility to
an appropriate external perturbation, to their equivalent
time correlation function expressions computed along the
equilibrium trajectory.

In Sec. II we describe the NEMD method devised to
measure the shear viscosity of a simple fluid using a 6-
type perturbation, corresponding physically to an impul-
sive shear of the system. The shear viscosity can be relat-
ed to the relaxation to equilibrium of such externally in-
duced shearing force.

In Sec. III we analyze shear-viscosity results obtained
by both GK and NEMD techniques for three system
sizes (N = 108, 500, and 1372) and heat conductivity esti-
mates for the 500-particle system.

Section IV deals with the statistical convergence of the
two methods and the analysis of the data. The paper
ends with a discussion of the drawbacks and the merits of
the NEMD subtraction method.
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primary cell is defined by three noncoplanar basic vectors
H, , Hz, H3 arranged as the columns of a 3 X 3 matrix H
(Fig. 1): The N primary (basic) particles have reduced
coordinates H r lying between 0 and 1 while image par-
ticles, follow as

where 6 is a vector of three integer elements 6, , 62, 63,
specifying a particular replica of the primary cell, each
element giving the number of elementary translations in
the corresponding direction (see Fig. 1).

To impose a particular fluid flow, we resort to the so-
called SLLOD equations

dr, /dt =p, /m, +(Vu) .r, ,

dp, /dt = f; —(VU) .p;,
(4a)

(4b)

p; =p; for all 5, , (3')

it then easily follows that relations (3) and (3') will au-
tomatically persist in time provide the box itself evolves
as

H=(Vu) .H .

r
ra

ra
l

ro
r

ro
~ l

H)

FICx. 1. Periodicity in a shear Aow. The basic cell is either a
parallelipipedic box (containing atoms 1, 2, and 3) or a cubic
one (atoms 1', 2, and 3) with displaced cube images in the x
direction (by a multiple of h) according to the y separation.

where the tensor Vu is the desired spatially homogeneous
velocity gradient. It is possible, quite generally, to ac-
commodate such fluid flow at the boundaries in such
NEMD simulations. To grasp the idea, it is easier to
look the model fluid as an infinite periodic system
throughout which an homogeneous velocity gradient is
set up. Such fluid flow will at the same time deform (in a
macroscopic sense) the primary cell and the image cells in
such a way that periodicity is preserved. This can be
verified explicitly on the basis of Eqs. (4) supposed to ap-
ply to all molecules of the infinite array. If p, /m, , inter-
preted as the non systematic part (thermal part) of the ve-
locity of molecule i, is taken identical for a molecule of
the central cell and all its images, i.e.,

0 0 0

Providing the dimensionless parameter h0 is chosen
sufficiently small, generalized linear response theory
(LRT)" then leads to

(o„(t)) =ho( V/ks T)(o. r(t)o. (0) ) (7)

in which all averages are performed over equilibrium en-
sembles. In Eq. (7) the time evolution involves field-free
equations (equilibrium trajectory) on the right-hand side
(rhs) but perturbed dynamics on the left-hand side (lhs) as
reminded by the caret symbol. Comparing Eqs. (1) and
(7), rj( t ) can thus also be estimated as

i)(t) = lim ho
' f (o. (s) )ds . (&)

ho 0 0

The NEMD experiment exploits Eq. (8) by following a
large number of perturbed segments o (t) over a time t*
sufficiently long for the system to come back to equilibri-
um (typically a few correlation times of the stress auto-
correlation function). The initial conditions are generat-
ed by a standard EMD trajectory along which
configurations are usually selected at equally spaced in-
tervals t* to guarantee the independence of the NEMD
trajectories.

In order to extract a signal out of noise in the evalua-
tion of rt(t) for the small perturbation considered, the
average on the 1hs of Eq. (7) must be computed as
(o (t) rr„(t)), wher—e cr (t) is the xy stress tensor ele-
ment computed along the unperturbed trajectory starting
from the same initial configuration. This subtracting
term, averaging to zero, is indeed highly correlated to the
NEMD response at short times. Note that this quantity
is automatically provided by the EMD mother trajectory
used to generate the set of initial configurations, and no
extra calculations are really implied. It should be

This can be shown by substitution of Eqs. (3) and (3') in
Eqs. (4) written for an arbitrary molecule i in any image
cell: Thanks to Eq. (5), these equations of motion reduce
to those involving molecule i of the primary cell. Equa-
tion (3) with a time-dependent H matrix thus provides
the spatial coherence of trajectories of a family of image
molecules. NEMD reduces thus to the integration of 6X
first-order differential equations (4) and to the box dy-
namics which is usually performed analytically. When a
particle leaves the box (due to thermal motion), it re-
enters at the same time inside at a symmetry-related posi-
tion, its linear momentum p being unaffected in this
operation.

A usual practice' is to simulate a stationary go~, al-

ways chosen so far to be the simple planar Couette flow,

and evaluate the shear-viscosity coefficient as the ratio of
tangentia1 stress and shear rate according to its macro-
scopic definition. Here, we will also consider a planar
Couette flow in which the velocity field is directed along
x and the system sheared perpendicularly to y. However,
we adopt the special case of a 5-like perturbation in time
for the field, i.e., Vu thus takes the form

0 0 0
Vu h06(t) 0 0
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x, (0+ ) =x, (0 )+ hoy, (0 ),
p; (0 )=p; (0 )

—h,p;, (0 ),
y, (0+ ) =y;(0 ), p;, (0+ ) =p ~(0 ),

p,, (0+)=p, , (0 ),

(9a)

1 ho

H(0 )=,0 1

0 0
0 H(0 ).
1

(9b)

As usual, the MD primary cell is supposed to be cubic at
equilibrium with side L, so that H(0 ) takes the particu-
'lar form

L hoZ, 0

H(0+)= 0 L 0
0 0 J

(10)

stressed here that this subtraction technique requires a
continuous force model. Use of an abrupt cutoff in the
pair potential, for example, leads to unphysical peaks in
cr ( t )

—o ( t) when it happens that a pair of atoms is
slightly within the cutoff distance in one trajectory and
slightly beyond this distance in the related segment. This
can be easily avoided by smoothing artificially the discon-
tinuity by a linear or sigmoid function.

The implementation of the NEMD experiment follows
usual practice, and we will only describe here the less
known effects of the 6-like perturbation [Eq. (6)] on the
system and its images around time 0. Direct integration
of Eqs. (4) and (5) for the specific field of Eq. (6) yields

of the velocity field. For a stationary planar Couette
Bow, the usual sliding-bricks picture of Lees-Edwards is
recovered. For the present impulsive field [Eq. (6)], the
displacement of the image cells is frozen once the pertur-
bation is over. On the basis of H(0+) [Eq. (10)], the dis-
placement of an image cell defined by (6i, b, 2, b 3) [see Eq.
(3)] is equal to b, zhoL in the x direction (Fig 1. with
h =hoL).

For its somewhat greater simplicity in the search of
atomic pairs lying within a given radius of interaction,
our program follows the second method. For an initial
equilibrium configuration consisting of X atoms enclosed
in a cubic cell, the explicit treatment around t =0 con-
sists finally in (a) applying Eq. 9(a) to all atoms and (b)
resetting the coordinate of any atom lying now outside
(as a result of the perturbation) by the one of the corre-
sponding image having entered the box through the op-
posite side. During the following dynamics, the search
for the closest image of an atom j with respect to an atom
i located in the primary cubic box requires the minimiza-
tion 'with respect to 6, ,i = 1, 3 of the distance

~r,
—r, ~

= ~r~+(4, +ho42)LI„+bzLl„+53Ll, —r, ~,

where 1„, 1, and 1, are unit vectors pointing along the
three sides of the cubic box. These integers are obtained
by first determining bz and A3 by the usual procedure
minimizing the y and z component of the interatomic vec-
tor. The x component of the same vector is then mini-
mized on 6, for fixed A2.

III. DESCRIPTION AND RESULTS OF MD
EXPERIMENTS

NEMD trajectories are thus produced by applying to
the system its instantaneous modification [Eqs. (9a) and
(10)], followed by a field-free usual MD. The only unusu-
al element in this dynamics is the nonorthorombic char-
acter of the unit cell implying a slightly more complicat-
ed search of a closest-image atom in the force calculation,
even if, for a parallelipipedic box not too far from ortho-
gonality, this search can sometimes be performed as usual
if reduced coordinates are used. For details, we refer to
the Parrinello-Rahman method where the identical
problem is encountered. In the particular case of the
simple planar Couette Bow, the quasi-infinite system con-
sidered in the simulations can be viewed in a well-known
alternative way, originally suggested by Lees and Ed-
wards (LE) (Ref. 4) to accommodate a stationary flow of
this type in MD simulations. Relative to our general ap-
proach [Eqs. (3)—(5)], the LE picture can be reconstruct-
ed at any time by redefining the set of atoms explicitly
followed as those lying inside the unaltered original cubic
box which is thus kept fixed in space. The infinite system
is then reconstructed at any time by translational symme-
try operations [Eq. (4)] based on the same matrix H(t),
solution of Eq. (5) but which, strictly speaking, has lost
its MD box interpretation (see Fig. 1). The picture now
consists of an arrangement of displaced cubic bricks as
each cell, with respect to its original location, has been
displaced in the x direction proportionally to y as a result

We are studying a simple Auid of X atoms interacting
via a pairwise additive potential based on the Lennard-
Jones (LJ) pair interaction U(r) truncated at its inflexion
point r, =( —", )' by a cubic spline reaching 0 smoothly
(tangentially) at r =

—,'„'r, = 1.74. Lengths, and in the fol-
lowing all quantities, are quoted in reduced units based
on the mass of an atom m and the LJ o. and e parameters.
In explicit form, this potential, proposed by Holian and
Evans, ' reads

U(r)=4(r '- —r ) for r &r, ,

U (r) = „',[67—48(r/r, )] [5—24(r Ir, )]

forr, &r &r

U(r)=0 for r) r

It offers two advantages with respect to the usual LJ in-
teraction which is usually truncated at a cutoff distance
between 2.5 and 3.0. (i) Its derivative is continuous, a
property which facilitates the application of our NEMD
method at small gradient, and (ii) it has quite a shorter
range so that the calculation of the forces at each step is
more e%cient. At the same time, this model was precise-
ly the object of a comparison between EMD and the
large-gradient stationary NEMD methods in the compu-
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TABLE I. List of experiments and main results. Shear
viscosity g and heat conductivity A, of the Lennard-Jones Quid

(pair potential truncated at r = 1.74) evaluated by Careen-Kubo
and NEMD subtraction technique. Errors are estimated as one
standard deviation of subexperiments results.

EMD experiments
No. of steps k~T I

ment is reasonable as error bars are only one standard de-
viation.

IV. STATISTICAL CONVERGENCE
OF BOTH METHODS

108'
1O8b

108 '
500'
soob
SOOb

1372
4000'

108
SOOb

soob
1372'

19 500
210000
970 000

18 000
210000
180000
45 000

9000

2.75
2.753
2.753
2.75
2.758
2.75
2.755
2.74

1.26+0.08
1.30+0.02
1.29+0.01
1.24+0.07
1.30+0.04

1.275+0. 10
1.35+0. 16

1400
1400
1200
300

1.28+0.03
1.30+0.01

1.30+0.01

NEMD experiments
No. of

trajectories

5.9+0.2

5.55+0.05

The observed agreement on rI(t) between results ob-
tained by EMD and low-perturbation NEMD techniques
is not really a surprise as both methods rely on two
theoretically equivalent formulations [Eqs. (1), (2), (7),
and (8)].

The statistical convergence of the two methods is not
the same, however, as the EMD experiment probes natu-
ral fluctuations of the system while the NEMD one fol-
lows the decay of artificially induced Auctuations. The
contrast is best illustrated by the striking difference in the
time evolution of the standard deviation on the mean
rl*(t) estimated by the standard formula

'Reference 15.
Our results.

'The first 210000 steps of the trajectory of this experiment are
identical to those used in the previous line.

performed along both kinds of trajectories is identical.
For N = 108 a much longer EMD run was also available.

In the nonequilibrium method, a value of ho=10
was adopted for the perturbation. However, it turns out
that individual segments [&„~(t)—a ~(r)]/ho are in-
dependent of ho until the time limit t*, provided ho lies
below h „=10 but above a minimal value sufficiently
large to avoid significative round-off errors in the subtrac-
tion. Such mechanical linearity implies the required sta-
tistical linearity as the average in the rhs of Eq. (8) is per-
formed over an equilibrium ensemble.

In Fig. 2 [(a)—(c) for N = 108, 500, and 1372], r)(t) and
g(t) are shown with associated uncertainties. The agree-
ment of the two approaches is clearly apparent with a
plateau emerging much before t* from both curves for
each system size. This plateau value is fixed by a sys-
tematic fitting procedure assuming an exponential evolu-
tion of r)(t) towards its asymptotic limit. In Sec. IV we
will explain the method used to analyze the data. Results
concerning g are given in Table I. The relaxation time ~
is always found close to 0.05. In the table we also men-
tion Holian and Evans EMD results' which are con-
sistent with ours. Here again, EMD and NEMD esti-
mates of the transport coefficient appear to agree perfect-
ly with each other.

Quite interestingly, our results do not suggest any size
dependence of g, regardless of which method is used.
This might not be true at state points closer to the melt-
ing line, where this dependence has been for many years
the object of some controversy.

In Table I we also report compatible values of the heat
conductivity A, computed by Green-Kubo' and NEMD
subtraction method ' ' for the same Auid. The agree-

4.0

2.0

0.0

0.0 0.4 0.6
-2.0

0.8

FIG. 3. Exponential divergence in time of the error Aq{t)
and its system size dependence illustrated by the common be-
havior in time of lnA with Q(t)=kg(t)N' N,', , for all none-
quilibrium experiments (,N = 108; 0, N = 500; C, N = 1372).
(All units are usual reduced units; see text. )

(12)

based on N,„,independent estimates gl,. (t). In the EMD
case, b, tl(t) is based on N,„, partial Green-Kubo subex-
periments averages ri(r) while in the NEMD case,
N, „„, is the total number of trajectories r)'(t)
=[o (t) —cr (t)]/ho. For any system size, bg(t) does
not change in a significant way beyond t =0.2, at least
over the period of time investigated while b, g(t) (see Fig.
3) increases exponentially for t )0.2 as a consequence of
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the well-known divergence in phase space of two trajec-
tories starting from arbitrarily close initial conditions.
Attempts to overcome this problem have been unsuccess-
ful up to now.

The size dependence of the error is also totally different
in both methods. In the EMD method, the error on the
autocorrelation function of a collective intensive variable
is expected to be size independent and decreases as T
with the total time T of the experiment. This has been al-
ready verified numerically. ' Taking into account of the
roughness of such error estimates, our results corroborate
this expectation [see Fig. 2 or the error estimation on q
itself (Table I) computed from the plateau value of g(t)].
For the NEMD trajectory method, Fig. 3 clearly demon-
strates that the error on rI(t) scales as

brI(t)=@X '~ X,, '~ [exp(t/r') —1), (13)

where N„ is the number of segments and y and w' two
parameters which turn out to be in the present case 1.492
and 0.163, respectively. Equation (13) implies that the
dispersion of individual segments around the mean de-
creases as the number of atoms in the system increases.
This can be intuitively understood in the following way:
The NE experiment follows the volume average of the lo-
cal tangential stress component (k =0 Fourier com-
ponent) in a system initially sheared homogeneously. The
observed size dependence simply reflects that, at the
present state point, the extent g of spatial correlations of
the local stresses fluctuations (around their nonequilibri-
um mean) is smaller than half the smallest MD box edge
considered, i.e., g( —,'( '0,')'~ =2.7. In other words, for
each NE segment, the average stress evaluated for each
cubic subvolume of side length 2.7 contributes almost in-
dependently to the total volume average. The totally
diFerent size dependences of the error on rj(t) evaluated
by either method is obviously an important point in the
comparison of their e%ciency, a point to which we will
come back in Sec. V.

We now discuss the method adopted for determining
the asymptotic plateau value of rj(t) on the basis of the
information described previously and shown for all exper-
iments in Fig. 2. In the following we will assume, as Fig.
2 strongly suggests, that the relevant rI(t) function has
essentially reached its asymptotic limit below our NEMD
time limit t* in the sense that [g(t ) —g]/rt is much
smaller than the error of statistical origin. This restric-
tion does not favor any one of the two methods even if in
practice t" can be established more easily (a posteriori) in
the EMD method when the recorded stress histot. y is
available. In NEMD the choice of the length of NEMD
trajectories t' must be made at the beginning of the ex-
periment on intuitive grounds: The choice of a too-short
t* is impossible to repair without totally redoing the ex-
perirnent, while too-long NE,MD segments are just a
waste of computing time.

The data indicate that the logarithm of the stress auto-
correlation function plotted versus time is linear for
t &0.05. Accordingly, we performed a weighed least-
square fit of g(t) in the time interval [0.05,0.75] by the
two-parameters function rI[1 —exp( —t /r)] using a
weight cu(t)=[hei(t)] . The estimation of the accuracy
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FIG. 4. Partial results for the X =1372 particles case. Each
curve corresponds to —,

' of the statistics of (i) NEMD g(t) (solid
curves) and (ii) Green-Kubo g(t) (dotted curves). All units are
usual reduced units; see text.

on the g parameter in Table I is based on the dispersion
of values yielded by a similar fitting analysis on subexper-
iments obtained by splitting an actual experiment into
parts: The weight was taken uniform for each EMD par-
tial calculation but based as before on the dispersion of
individual trajectories for a NEMD subexperiment. We
verified that no significative improvement results from
the use of more elaborate fitting procedures and, in par-
ticular, there is no indication of an algebraic decay of the
stress autocorrelation. It must be noted that this situa-
tion is certainly more favorable than in many other
cases. The present simple-fluid supercritical state point
has been purposely chosen to make the purely statistical
comparison of the two methods more transparent.

In the EMD case the error on q turns out to be
equivalent, quite normally, to the typical error bar on the
plateau (Fig. 2). The plateau values obtained from the
NEMD curves turn out to be mainly determined by the
curvature region preceeding the plateau itself as a result
of the highest precision of q(t) in that region. The
much-better reproductibility of the asymptotic evolution
towards the plateau in the NEMD subexperiments ex-
plains, for example, the higher precision of g obtained in
the N=1372 case with respect to the EMD result. This
result is illustrated in Fig. 4 which shows the dispersion
of subexperiment averages in both types of experiments.
A similar behavior was noticed in similar calculations on
n-butane.

As a final illustration of the statistical convergence of
the response measured by the subtraction technique, the
partial average of g(t) for an increasing number of seg-
ments is presented in Fig. 5 where the onset of the pla-
teau can clearly be observed.
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FIG. 5. Statistical convergence of the mean response g(t) to-
wards a plateau behavior for the 500-particles NEMD experi-
ment. The number of segments included in the average is indi-
cated next to the corresponding curve. (All units are usual re-
duced units; see text. )

V. FINAL DISCUSSION

The results presented in this paper provide, if neces-
sary, additional evidence on the equivalence of the equi-
librium Green-Kubo approach and the subtraction
NEMD trajectory method.

We are here more concerned by the comparison of the
statistical convergence of these two methods in the deter-
mination of transport coefficients, in particular, the shear
viscosity. This coefficient is estimated as the long-time
asymptotic limit of the function q(t) corresponding
theoretically to the running time integral of the stress
time autocorrelation. As already observed, at short
times, the error on the function q(t) is always smaller in
the NEMD response, but at longer times there is an in-
version in favor of Green-Kubo results. Because only the
NEMD error is size dependent, the time at which this in-
version occurs is shifted towards higher values when
larger systems are considered.

More generally, in comparison with the well-known
EMD method, the differential NEMD technique used in

the present work has both drawbacks and advantages.
In the first category, we can mention the following. (a)

While all transport coefficients expressible as Green-
Kubo formulas can be extracted from a single equilibri-
um trajectory, each coefficient requires a specific NEMD

simulation experiment. The possibility of combining
various fields is, however, in principle possible, as, in the
linear regime, the response should be the linear combina-
tion of the effects caused by fields applied individually.
(b) The error on the average response in time is growing
exponentially so that it is difBcult to locate the establish-
ing of the plateau. The interpretation as noise or as a real
effect of an oscillation after the onset of a first plateau, for
example, is difficult.

However, many advantages of the method can be in-
voked. (a) It is easy for a new experiment to predict, on
the basis of a few segments, the number of segments or
the system size required to achieve a given accuracy [Eq.
(13)]. (b) For systems of more than a few hundred mole-
cules, the computer time„obviously proportional to the
total number of segments, becomes also linear in X.
Given that the same statistical improvements results in
NEMD from increasing the number of particles N or the
total number of segments, it is never a loss to consider a
very large system: on the contrary, the gain is that
significative finite system errors on the transport
coefficient itself might be avoided in this way. In Green-
Kubo calculations computer time is minimized by choos-
ing the smallest possible system size. This is certainly not
easy to decide a priori.

Our final comment will be that finally both methods
are complementary more than contradictory. The possi-
bility of obtaining information on the same quantity by
two almost completely independent methods is always a
reassuring fact. The difference in the time evolution of
the error on the correlation function obtained by both
methods could also be exploited to combine both esti-
mates with proper weights to get the optimum precision
at each time. In any case, the use of the subtraction tech-
nique also yields easily the Green-Kubo result from the
EMD mother trajectory.

For completeness, it should be noted that a new
27method (transctent correlation method) has recently

been proposed to study of the shear rate dependence of
the viscosity. In the context of the present paper restrict-
ed to the linear response regime, this new technique
would involve in the practice the evaluation of the
stress-stress time correlation function at equilibrium.
Therefore, its performances should be equivalent to those
of the Green-Kubo method discussed above.
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