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Stabilization of the cyclotron autoresonance maser instability by axial momentum spread
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This paper investigates the stabilizing influence of axial momentum spread on the linear growth
properties of the cyclotron autoresonance maser (CARM) instability. The stability analysis is based
on the linearized Vlasov-Maxwell equations for a relativistic electron beam and right-circularly-
polarized electromagnetic waves propagating parallel to a uniform magnetic field Boe, . Detailed
stability properties are investigated for a choice of beam equilibrium fb(p,',p, ) that incorporates
both an inverted population in perpendicular momentum p, and a spread 6 in axial momentum p, .
For simplicity, the analysis neglects the influence of finite radial geometry (k&~0 and no radial
waveguide structure). The resulting dispersion relation is analyzed numerically in parameter re-
gimes of interest for CARM applications, and approximate analytical estimates of the (reduced)
growth rate are presented.

I. INTRODUCTION

Numerical-simulation studies and simple analytical es-
timates indicate that modest values of axial momentum
spread' can have a large effect in reducing the growth
rate and saturation efFiciency of the cyclotron autoreso-
nance maser. (CARM) instability. ' (See, for example,
the numerical simulations by Lin et al. , who investigat-
ed the effects of axial momentum spread on the growth
rate of a CARM amplifier). It is therefore essential that
CARM experiments operating in waveguide cavities uti-
lize high-quality electron beams, or that alternate
configurations be employed, which are less sensitive to
momentum spread, such as in the induced resonance elec-
tron cyclotron (IREC) quasioptical maser. ' The purpose
of this paper is to quantify the stabilizing influence of axi-
al momentum spread on the linear growth properties of
the cyclotron autoresonance maser instability. The sta-
bility analysis is based on the linearized Vlasov-Maxwell

II. DISPERSION RELATION

For perturbation
librium ft, (p i,p, ),
circularly-polarized
parallel to Boe, can

about a spatially uniform beam equi-
the dispersion relation for right-
electromagnetic waves propagating

be expressed as'

equations for a relativistic electron beam and right-
circularly-polarized electromagnetic waves propagating
parallel to a uniform magnetic field Boe, . Detailed stabil-
ity properties are investigated for a choice of beam equi-
librium ft, (pi,p, ) [Eq. (3)] that incorporates both an in-
verted population in perpendicular momentum p~ and a
spread in axial momentum p, . For simplicity, the
analysis neglects the inhuence of finite radial geometry
(ki~0 and no radial waveguide structure). The resulting
dispersion relation [Eq. (7)] is analyzed numerically, and
approximate analytical estimates of the (reduced) growth
rate are presented.
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where k is the axial wave number and co is the complex
oscillation frequency, with Imago) 0 corresponding to in-
stability. Here, co t, =(4srnt, e /m)'r and co, =eB„/mc
are the nonrelativistic electron plasma and cyclotron fre-
quencies, respectively, y=(1+p /m c )'r is the relativ-
istic mass factor, p, is the axial momentum, and

Pi =(P +P )'r is the momentum PerPendicular to Boe, .
Moreover, —e is the electron charge, m is the electron
rest mass, e is the speed of light in Uacuo, and the nor-

malization of fI, (p i,p, ) is

f d'p f„=2'f dp p, f dp fr= 1 .

The dispersion relation (1) neglects the influence of finite
radial geometry and equilibrium self-field effects
(tenuous-beam approximation). In the operating regimes
of current practical interest for CARM's, the dimension-
less quantity
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is typically a small parameter (eb « 1).
For purposes of illustration, we consider the model dis-

tribution function (Fig. 1)

fb = „ fi(p P)6—((p, p,b
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where p, 5, and p,b are constants, p =(pi+p, ) is the
total momentum, and 6(x) is the Heaviside step function
defined by 6(x)=+1 for x &0, and 6(x)=0 for x )0.
Note from Fig. 1 that Eq. (3) incorporates an average axi-
al drift (p,b), a spread of (2b, ) in axial momentum p„and
an inverted population in perpendicular momentum p~,
which drives the CARM instability associated with the
fast-wave solution to Eq. (1). Denoting
(q') =(jd p 'Pfb)/( Jd p fb), it readily follows from
Eq. (3) that

(P. & =P,b

FIG. 1. Schematic of the distbribution function fb in Eq. (3).
Electrons move on surface ~ith (p ~ +p, )' =p= const. Aver-
age axial momentum is p,b, and the axial momentum spread is
2A.

where y=(1+p Im c )' and pi=(p p,b)/y —2m2c2.

«Eq. (4), Vb =p,b/ym is the average axial velocity of
the electron beam and bP, =b, /ymc is a measure of the
normalized axial velocity spread associated with the dis-
tribution function in Eq. (3). Moreover, for sufficiently
small momentum spread [(hP, ) «3Pi], the quantity
Pic can be identified with the average speed of the elec-
trons perpendicular to the magnetic field Boe, .

Substituting Eq. (3) into Eq. (1) and carrying out the
required integration over momentum, we obtain the
dispersion relation for right-circularly-polarized elec-
tromagnetic waves, i.e.,
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Here AP, =5/ymc and SI, is the logarithmic function defined by
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—e), /y

2ck b,I3,
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cu kV„—co, Iy +—ck b,P,
(6)

The dispersion relation for left-circularly-polarized electromagnetic waves propagating parallel to Boe, is identical to
Eq. (5), making the replacement —co, ~co, in Eqs. (5) and (6). In the limit of zero momentum spread with bI3, ~0
[specifically, c k (b,p, ) «~cu —kVb —co, ly~ ], we note from Eq. (6) that Sk-1+—,'c k (Ap, ) l(cu kVb —co, ly)—
+ . ~1. Making use of the definitions eb =co~b/cu, and pi=(p —p,b)/y m c, and rearranging
terms in Eq. (5), it is straightforward to show that the dispersion relation can be expressed in the equivalent form

1 ~b CO 2kVb
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co —kVb ( /cyu)(Sk —1) ~2 c2k2 co —cu, /y+ 1—
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The form of the dispersion relation (7), which is exactly
equivalent to Eq. (5), clearly delineates the effects of
momentum spread through the factors proportional to
(b,/3, ) =5 /y m c and Sk —1. Indeed, for b, ~O, Eq.

I

(7) reduces to the familiar Chu-Hirshfield dispersion rela-
tion' '" for the cyclotron maser instability, extended to
the case of an electron beam drifting with axial velocity
Vb.
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III. ANALYSIS C3F STABILITY PROPERTIES

Equation (7), which we refer to as the full dispersion re
lation (FDR), can be solved numerically (see below) and
used to evaluate detailed properties of the cyclotron
maser instability over a wide range of system parameters
e&, pi, (b,p, ), etc. For eb of order unity, all of the terms
in Eq. (7) usually compete in determining the real oscilla-
tion frequency Redo and growth rate Imago. For eb &&1,
however, which is the regime of practical interest for
CARM devices (where ei, is typically in the range of
10 ), the full dispersion relation (7) can be simplified to

give an approximate dispersion relation that is analytical-
ly tractable. Specifically, for eb &(1 and suSciently small
b,p„ the frequency and wave number of the cyclotron
maser branch in Eq. (7) satisfy
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Typically, the CARM excitation wave number is some-
what less than the wave number k =(to, /cy)/(1 —Vb/c)
determined from the intersection of the light line (to =ck )

with the beam-cyclotron resonance condition
(to=kV&+co, /y). If we estimate k -k in Eq. (12),
then stabilization occurs whenever

b

8 y

' 1/2

pitoc .

Making use of Eqs. (6) and (8), a careful examination of
Eq. (7) shows that the dispersion relation for the cyclo-
tron maser instability can be approximated to leading or-
der by

(to ck ) [(co——kVb —co, /y) —c k (bP, ) ]

1 b 2 2
'

+ coP —0c
y

(9)

0
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Rem =k Vb +u, /y,
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pico, —:I b,
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Imago =

for the unstable branch with Imru&0. On the other
hand, for finite (hP, ) &(eb/2y)(co, /c k )Pi, the ap-
proximate dispersion relation (9) gives

where the right-hand side of Eq. (9) includes contribu-
tions of order Io, e',"p, and to', eb '(k Vb /p&~, )(&p, ) .
While the full dispersion relation (7) can be solved numer-
icaHy in the region of interest for CARM applications,
Eq. (9) constitutes a simple reference dispersion relation
(RDR) with which to compare the more precise numeri-
cal results.

Equation (9) clearly illustrates the stabilizing influence
of increasing the axial velocity spread bp, =6/ymc. For
AP, =O, Eq. (9) gives
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Therefore, for specified wave number k, Eqs. (9) and (11)
predict that the maser instability is completely stabilized
(Imago =0) whenever

FIG. 2. Plots vs ck /co, of (a) Imago/I & and (b)
(Re~ —k Vq —cob /y ) /co, obtained numerically from the full
dispersion relation (7) for system parameters specified in Eq.
(14},and bP, =0.001, 0.00S, 0.007S, 0.010, and 0.014.
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where Pb= Vb/c, y—=(I+P /m c )' =(1—P —P )'
and bg, =b, /ymc For eb «1 and k &k, it is evident
from Eq. (13) that only a modest spread is required for
stabilization.

As an illustrative example, we consider the choice of
system parameters

pi=0. 405, pb =0.8, (14)

I 1 I I
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which corresponds to a maximum growth rate
I'„=(eb /2y)' /3tco, =0.014'„and ck /co, =( I /y)/
( 1 —

Pb ) =2.21. According to Eq. (13), significant
growth-rate reduction already occurs when
b,P, )0.62X10 . The full dispersion relation (7) and
the (approximate) reference dispersion relation (9) have
been solved numerically over a wide range of system pa-
rameters. Typical results are summarized in Figs. 2 and
3 for the choice of parameters in Eq. (14). Shown in Fig.
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FIG. 3. Plots vs ck /co, of {a) Imago/I b and (b)
(Redo —kVt, —co, /y)/co, obtained numerically from the refer-
ence dispersion relation (9) for system parameters specified in
Eq. (14), and b,P, =0.001, 0.005, 0.0075, 0.0010, and 0.014.
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FIG. 4. Plots vs bP, of (a) Imago/yb and (b)
(Redo —k Vb —co, /y ) /co, obtained numerically from Eq. (7)
(solid curves) and Eq. (9) (dashed curves) for fixed ck/co, =2 and
system parameters specified in Eq. {14).
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2 are plots versus ck/co, of the normalized growth rate
Imago/I & [Fig. 2(a)] and the real oscillation frequency
(Reer —kVb —co, /y)/co, [Fig. 2(b)] obtained numerically
from the full dispersion relation (7) for values of axial ve-
locity spread corresponding to EP, =0.001, 0.005,
0.0075, 0.010, and 0.014. Figure 3 presents plots versus
ck /co, of Imago/I b [Fig. 3(a)] and (Reer —k Vb—co, /y')/co, [Fig. 3(b)] obtained numerically from the
reference dispersion relation (9) for the same choice of
parameters as in Fig. 2. Comparing Fig. 2(a) and Fig.
3(a), we note that Imago= I b gives a good analytical esti-
mate of the maximum growth rate [Eq. (10)].

As a general remark, it is evident from both Fig. 2 and
Fig. 3 that only modest values of axial velocity spread
b,/3, are required to cause a substantial reduction in the
growth rate Imago of the cyclotron maser instability.
Moreover, as expected, the larger values of wave number
k (shorter wavelengths) are most easily stabilized as b, /3,
is increased. For example, if we take the excitation wave
number to be ck/co, =2, then the full dispersion relation
(7) [Fig. 2(a)] predicts that the growth rate Imago decreases
from 0.92I b, to 0.651 &, to 0.14I b, as b/3, is increased
from 0.001, to 0.005, to 0.01, respectively. Similarly, for
ck/co, =2, the reference dispersion relation 9 [Fig. 3(a)]
predicts that Im~ decreases from 0.99I b, to 0.69I &, to 0,
as hP, is increased from 0.001, to 0.005, to 0.01, respec-
tively.

Comparing Figs. 2 and 3, it is evident that the refer-
ence dispersion relation (9) does not accurately predict

the detailed structure and (small) magnitude of the
growth rate Imago in the region near k —k =2. 12~, /c.
Specifically, the logarithmic terms proportional to Sk —1

in Eq. (7) result in the secondary growth-rate peaks in
Fig. 2(a) for b/3, =0.01 and bP, =0.014. A correspond-
ing discrepancy is also apparent in the values obtained
for Reer —k Vb

—co, /y [compare Fig. 2(b) and Fig. 3(b)].
Nonetheless, the reference dispersion relation (9) and

Fig. 3 do give a good qualitative description of the
growth-rate reduction produced by increasing the axial
velocity spread b,P, . Indeed, comparing Fig. 2(a) and
Fig. 3(a), the reference dispersion relation (9) provides a
good quantitative estimate of Imago whenever k is some-
what below k =2.21', /e (k &0.9k, say) and the growth
rate is sufficiently robust (Imago)0. 15I b, say). This is
further illustrated in Fig. 4, where Im~/I b and
(Redo —k V„—co, /y)/co„calculated from Eqs. (7) and (9),
are plotted versus b,/3, for the choice of parameters in Eq.
(14) and fixed value of ck/co, =2. Note from Fig. 4(a)
that the full dispersion relation (7) predicts substantial
growth rate reduction to 1m' & 0.02I t, for b,P, )0.02.
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