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Transverse-electric and transverse-magnetic waves in nonlinear isotropic waveguides
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A full theory of the interaction between nonlinear transverse-electric and transverse-magnetic
waves is derived. A new form of third-order tensor that accounts for the presence of the two polar-
izations is described and a mathematical discussion of the first integral is presented. The theory is

illustrated by a full set of numerical results both for single-interface and thin-film structures.

I. INTRODUCTION

There is considerable worldwide interest in nonlinear
waveguide propagation. This is because of the many ad-
vantages that accrue when a waveguide format is used.
Among these are the well-known concentration of energy
in the plane of thin films and in the core of an optical
fiber and the possibility of long interaction lengths. For
some time the emphasis was upon weak nonlinearity but,
in recent years, there has been a growth in activity on
strongly nonlinear guides, in which the changes in the
linear refractive indices across material interfaces can be
matched to achievable nonlinearities. The principal
effort was initially concentrated upon nonlinear TE waves
in isotropic media, ' ' since they are amenable to analyt-
ical analysis, but TM waves are now also well under-
stood. ' In all of these calculations, and in the inter-
pretations of experiments, it is assumed that either purely
TE or TM waves propagate. An inspection of the non-
linear dielectric tensor for isotropic materials reveals,
however, the possibility that both polarizations can prop-
agate simultaneously and that one polarization can some-
times act as a channel for the other.

The question of nonlinear channeling raises a number
of interesting and challenging problems, some of which
have been addressed before. For example, strong waves
can propagate in an otherwise opaque medium through a
kind of nonlinear bleaching action. Of more immediate
interest is the ability of one strong polarization to create
a channel for a weak wave with a different polarization.
In particular, the propagation of a weak TM wave in the

channel created by a strong TE wave has been considered
recently. For this case 100% modulation of the weak
wave by the strong beam was predicted. This new devel-
opment was complemented by a short report of a more
general theory which showed that weak-wave propaga-
tion in the channel of a strong wave was simply one limit
of a whole spectrum of mixed TE-TM stationary states.
This theory was based on a nonlinear dielectric tensor ap-
propriate only to thermal nonlinearities. The present pa-
per seeks to present a full report in which the nonlinear
TE-TM interaction is given for a more general class of
nonlinear dielectric tensor together with a discussion of
the first integral and a detailed set of results for thin-film
guiding structures.

II. BASIC THEORY

In this problem the interaction of two waves, namely,
TE and TM, with different wave numbers p and q but at
the same frequency co is considered. The relevant non-
linear dielectric tensor for isotropic media can be ob-
tained directly from previously published forms of the
third-order electric polarization' but will be derived here
from first principles. This approach shows clearly the
modifications that must be made if nonisotropic media
are to be considered or if harmonic generation and wave
mixing are to be included.

Consider a planar guiding structure whose interfaces
lie in the x-y Cartesian plane supporting a surface or
guided wave whose wave vector is parallel to the x axis,
as shown in Fig. 1.

For a nonlinear medium the third-order electric polar-
ization at position x and time t can be written as

eo f dco& f dco, f" dco3 f dk, f dk2 f dk3+I//j'/( co/ co2 co3lco]yco2yco3)

X 6' (co, , k, )6 k (co2, k2 )8/(co3, 3 )

l' [( k ] + k 2 +k 3 )x —( co
&

+m2 + coXe

where g' ' is the spatially independent third-order susceptibility tensor, 6 is the electric field, and co; and k,- are the fre-
quency and wave number, respectively. Now consider the case

6(co, , k, ) =[ A5(k, —p )+B5(k; '—
q ) j5(co; —co)+c.c. ,

where

A=(@„,0, 6, )
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and

B=(0,6,0), (4)

i.e., the electric field has a single frequency co but the TM and TE components have different wave numbers, p and q, re-
spectively. The polarization is then given by

P(3)(x r ) e ~(3)
( ~ ~ ~ ~ ~ ~ )( A ei(Px —~t)+ A»e —i(Px —cut)+B ei(qx —cut)+B» —i(qx —cot))
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where, of course, the arguments of y' ' take the values +co. Multiplying out the above gives

P(3 (x, r ) =e~,3k((3cci, —tct, —rc), —~)( A . Ak Aie ' P" ' +B,BkB(e ' q ')
)

+3e ~' '(3"co —co —co —co)(A A B e'(' P+q' ')+B B A e'(' q+P' '))
ort. LJkl co~ cod co' 6) j k l e j k le

(5)

+3e(g' ' (co —~ —rc) co)[(A A A'+2A B B' )e' "+BB A*e' ' '" '
]
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Equation (6) has been reduced to this relatively simple form by the use of intrinsic permutation symmetry, which re-
quires that y';, ki(

—tc)) —cu2
—co3,co), co2, co3) is invariant under exchange of the pairs of indices jr'„kcoz, and lco3. Neglect-

ing third-harmonic and non-phase-matched terms, Eq. (6) gives

P' '=3e~'
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(8c)

where the (x, t ) dependence of the polarization and the
complex conjugate have been dropped for clarity. Per-
forming the summations over repeated indices in Eq. (7)
for an isotropic medium leads to

ic" part of the nonlinear polarization, despite the fact
that Eqs. (8) refer specifically to the nonlinear polariza-
tion in an isotropic medium. Hence the second term gives
rise to a nonlinear birefringence. Notice that if the TE
and TM components had the same wave number Eqs. (8)
would take the form

P,'3'=2e~„„b',(,*8,+e(g„„(,(,(;

(,=iE„, ( =E, (,=E, ,

as given in Ref. 15. For a surface or guided wave 6' and
A', are m /2 out of phase with each other. ' Introducing
the substitutions

It can be seen that g describes an "isotropic" part of
the nonlinear polarization. This term alone would give a
nonlinear refractive index change which is the same in all
directions. The coefficient g„„describes an "anisotrop-

Direction of wave pr opagation
X

where E„,E, and E, are all real, and

+=
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Normal to
interface

allows Fqs. (8) to be written in the very simple form

p'3'=e tz(E2+gE2+yE )E e'p"

P(3)=& &(+E&+E~++E~)E e' q
y 0 .r y z y

p' '=e tz(yE +BRIE +E )E e'

(13a)

(13b)
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FIG. 1. Geometry of the guiding structure.

where y= —,', —
—,', and 1, and g=

3 4 and 1 for electronic
distortion, molecular orientational, or thermal nonlinear
mechanisms, respectively. ' The dielectric tensor for a
nonlinear isotropic material can then be written as
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e„0 0
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(14b)

where e is the linear part of the dielectric function. The
presence of all three electric field components in each di-
agonal term causes the TE and TM polarizations to in-
teract with each other. In materials of lower symmetry
TE-TM coupling may occur via off-diagonal elements
leading to hybrid modes, but this is not appropriate in the
present case and hybrid modes do not occur. In general,
the stationary mixed TE-TM waves will have associated
with them two wave numbers, one for the TE and the
other for the TM component, and they must be con-
sidered as interacting but discrete.

BE
~poHx ~ (18a)

2

+ (E„—+E, )+yaE„E, +prME„
Q) Z 2

—
(pTM e)(E„+—E, )

= —2ar) f (E E,dE, +E E,dE„)+CTM, (17)

where CTM is the integration constant.
Maxwell's TE set of equations,

III. FIRST INTKGRAI.
FOR STATIONARY TE-TM WAVES

qE =cop,oH, ,

BH„
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The first integral for stationary TE-TM waves can be
obtained for the isotropic form of the nonlinear dielectric
tensor, Eq. (14), in a similar way to that used for deriving
the first integral for TM waves. ' Maxwell's TM set of
equations,

yield the following differential equation for E„:
'B EyBz, c 2 yy

When integrated with respect to z, this equation gives
'2

c2 BEy

QJ BZ
—(P —e)E + E-TE y 2 y

= —2arI f (E„E dE +E,E dE )+CTF, (20)

yields

BE„BE„ —p2 ]
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BE, BE„
, xxEx .
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where once again CTE is the integration constant and

prE =qc /co.
The unresolved integrals in Eqs. (17) and (20) can be

evaluated by adding them together, i.e.,

2f E E dE +E E dE +E E dE +E E dE»

(16) E2E2+ E2E2
x y y z (21)

where pTM=pc/co. Integrated with respect to z this
equation gives

This final result gives the following first integral for sta-
tionary TE-TM waves:

a(qEzE, +BRIE„E +yE„E,)+ (E„+E +E, )+—e(E +E2+E, )

BE

Z

BE
+CrM+CTE .

Bz

The usual procedure when dealing with surface or guided
waves is to set the integration constants to zero. Howev-
er, it must be noted that for surface or guided waves in
linear semi-infinite media (i.e., a=0) the constants CrM

I

and CTE must both separately be zero in order that all the
field components are zero at infinity. This condition
must also apply in nonlinear media and hence the condi-
tion that the sum of CTE and CTM is zero in Eq. (22) is
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not sufficient because it does not disallow the possibility
that CTE = —CTM and that both are finite. For example,
the application of single-interface boundary conditions to
the first integral for TE-TM waves will yield a continuum
of eigenvalues corresponding to the continuum of values
that CTE= —CTM can take, with only the eigenvalues
corresponding to CTE =CTM =0 being correct. Since it is
not possible to treat the two constants separately, the first
integral in this case is of very limited value. It can, how-
ever, be used as a check on the validity of results obtained
from purely numerical calculations.

IV. STATIONARY NONLINEAR
TE-TM %AVE REGIONS

medium medium 2

nonlinear linear

E~, a~

z=o

FICs. 2. Schematic of single-interface guiding structure:
e, )e, )0, a, &0.

The first step in the calculation of TE-TM surface or
guided waves is to determine for what range of PTE and

PTM values nonlinear stationary waves actually exist. It
turns out that this can be done without recourse to a full
nonlinear wave calculation. There are obviously no TE-
TM waves at a single interface between a metal and a
nonlinear dielectric since this supports only TM polar-
ized waves. However, a single interface between a non-
linear and linear medium, shown schematically in Fig. 2,
whose dielectric functions are positive, will support both
TE and TM polarizations, and hence can permit non-
linear interaction between the two. The important point
is that guiding takes place due to the nonlinear formation
of a channel of relatively high refractive index in the non-
linear medium. It is then reasonable to assume that the
channel formed by, for example, a nonlinear TE wave
would, if somehow "frozen" into the nonlinear medium,
be able to support a linear TM wave with an eigenvalue
related (via the shape and size of the channel) to the non-
linear eigenvalue of the TE wave. Such a scenario corre-
sponds in practice to a nonlinear TE wave and a zero-
amplitude nonlinear (i.e., effectively linear) TM wave
propagating simultaneously along a single interface. The
TM wave is guided by the channel created by the TE
wave, but the TE wave is unaffected by the TM wave be-
cause of the zero amplitude of the TM field components.
It is therefore possible on the PTE and PrM plane to draw
a locus that represents a pure nonlinear TE wave and a
zero-amplitude TM wave. There is also a second locus
which corresponds to a pure nonlinear TM wave and a

zero-amplitude TE wave. Solutions to Maxwell's equa-
tions should be found within the area between the two
loci and these are the desired stationary TE-TM non-
linear surface and guided waves. Points outside this re-
gion correspond to nonstationary states and these will not
be considered here.

The two loci on the PrE and PrM plane which delineate
the region of stationary nonlinear TE-TM waves can
therefore be found by incorporating an expression for the
nonlinear guiding channel created by one polarization
into the linear dielectric function used to calculate the
linear eigenvalue of the other polarization. For example,
the dielectric tensor for the half space z & 0 used in calcu-
lating the linear eigenvalue of TM waves in a TE-induced
channel has the form

where

e, +a,gE (z) 0

El +~171Ey (z )
(23)

E (z)=
2

~TE, i

Acosh [~rE, (z —zo)]
(24)

CO CX)A=
2c

(25)

tanh(~TE, izo ) (26)

and

2 = 2CO

TE, n 2 (~TE n )
C

(27)

where the subscript n refers to medium n. The corre-
sponding dielectric tensor for a TM-induced channel can-
not be expressed analytically, but, by solving the TM
wave equations, can be generated numerically in the same
form as the tensor (23). The linear eigenvalues for this
modified structure can then be calculated using standard
ordinary differential equation software.

Sample results are presented in Fig. 3, which shows the
region on the PrE-PTM plane in which nonlinear TE-TM
stationary states occurs for a single interface between
N-(p-methoxybenzylidene p-butylaniline) (MBBA) (with a
thermal nonlinearity, y=rl=1) and a linear dielectric
with e=2.5. The two loci converge to a point at
PTE=PTM =ez, below which the nonlinear waves become
oscillatory in the linear dielectric and the power How be-
comes infinite. It is clear that, with the possible excep-
tion of the low-P cutoff point, no stationary TE-TM wave
solutions exist for PTE=PrM. This confirms that in the
stationary TE-TM wave the two polarizations maintain
their separate identities by having different guided wave-
lengths. As could be expected, this type of interaction is
unique to nonlinear waves since it is due purely to the
nonlinear terms in the dielectric function. The inset in
Fig. 3 shows the region around PTE=1.582 on a very
much expanded scale. The upper locus shows the linear
eigenvalues of TM waves in the presence of a nonlinear
TE wave, and the lower locus describes zero-amplitude
TE waves in a structure modified by a nonlinear TM
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wave.
The possibility for the existence of stationary nonlinear

TE-TM waves increases greatly if a thin metal film or
dielectric layer is inserted between the nonlinear medium
and linear dielectric, as shown in Fig. 4. To gain a proper
understanding of the nonlinear interactions that may
occur, the stationary states of pure nonlinear TE and TM
waves in the thin-film structure must be known. These
eigenvalues are discussed in detail in the Appendix.

For the thin-metal-film structure it is clear that in or-
der to get nonlinear TE-TM stationary states the metal-
film thickness must be below the critical value for the ex-
istence of TE plasmons. Figure 5 shows the loci on the
pTE-pTM plane between which there exist stationary TE-
plasmon —pseudoplasmon states, that should be compared
to the stationary TE-TM states at a single interface. In
contrast with the single-interface results, the loci are
finite. Both loci meet the low-pTE cutoff point before
reaching the low f3TM cutoff, imp-lying that for low values
of pTM the guiding channel created by the pseudoplasmon
is not large enough to support a zero-amplitude TE wave.

FICr. 3. The Prs-PrM plane for nonlinear surface guided
waves at a single interface between MBBA liquid crystal with
e, =2.4025, a, =6.379 X 10 ' m V and a linear dielectric
with e, =2. 5 at ~=3.658 X 10" rad s '. The lower curve is the
locus of linear TE eigenvalues in a channel created by a non-
linear self-focused TM wave and the upper curve the locus of
linear TM eigenvalues in a nonlinear TE channel. Stationary in-
teracting TE-TM states exist in the region between the two loci.
The inset shows the region around p&E= 1.582 on a very much
expanded scale.

FIG. 5. The PTE-PTM plane for nonlinear self-focused waves

in a thin-metal-film structure at ~=3.658 X 10" rad s ' with

MBBA as the nonlinear medium, e& = —10 (Al), e3 =2.56, and
l= 1.5 nm. The curve labeled pure TE plasmon is the locus of
TM linear eigenvalues in a nonlinear TE-plasmon channel and
the curve labeled pure pseudoplasmon is the locus of TE linear
eigenvalues in a nonlinear pseudoplasmon channel. The cutofF

point for pure TE plasmons is circled. The dashed line is re-

ferred to in Fig. 8.

Hence the stationary states along the line joining the two
loci at the low-pTE cutoff' will consist of mixed TE-TM
states.

The locus of linear short-range plasmon eigenvalues in
the presence of a nonlinear TE plasmon is shown in Fig.
6. Nonlinear stationary TE-plasmon —short-range-
plasmon states exist in the region to the right of the pure
TE locus. Increases in the value of PTE result in a de-
crease in the TE-TM interaction due to the movement of
the self-focused peak of the TE wave away from the inter-
face: the upper cutoff of the pure TE locus gives the
linear eigenvalue of short-range plasmons in the absence
of the nonlinear TE wave, for which at this point the
self-focused peak has moved an infinite distance from the
metal film. This time there is no locus corresponding to
nonlinear short-range plasmons with zero-amplitude TE
plasmons since the short-range plasmons do not form a

1615

1610 on

medium 1 medium 2 medium 3
1605

nonlinear linear linear
No

81, a1 1600
276 278 280 282 284

P» (1O ')
286 288 290

z=0 z=1

FIG . 4. Schematic of the layered guiding structure. For the
thin-metal-film case e3 & el & 0, e2 & 0 and for the dielectric-layer
case ez & [ e„e3I & 0.

FICx. 6. Locus of linear short-range plasmon eigenvalues in a
nonlinear TE-plasmon channel for the MBBA/Al/linear-
dielectric structure of Fig. 5. The circle marks the pure TE-
plasmon cutofF point and the linear eigenvalue of pure short-
range plasmons.
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FIG. 7. The PTE-PTM plane showing regions of stationary in-
teracting nonlinear guided modes in a dielectric-layer structure.
The nonlinear medium is MBBA, e&=2.5, @3=2.4025, 1=1 pm
with other data as for Fig. 5. P, is the linear eigenvalue of the
TM, mode, P2 is its nonlinear cutoff, and P, is the linear eigen-
value of the TM0 mode. The dashed line in the TE&-TM0
stationary-state region is referred to in Fig. 11.

guiding channel and therefore cannot support zero-
amplitude TE waves.

Figure 7 shows the loci on the 13TE-pTM plane delineat-
ing the regions of stationary TE-TM waves in the dielec-
tric layer structure. For the data used, only the two
lowest-order guided modes exist and this leads to four re-
gions of interaction, namely, TEp-TMp, TEp-TM &, TE&-

TMp, and TE& TM, ~ The loci corresponding to pure TMp
and TEp modes increase without limit, while those corre-
sponding to pure TM, and TE& have a cutoff In princi-
ple, this configuration can support the greatest number of
different regions of nonlinear TE-TM stationary states.
Notice that the locus of linear eigenvalues of TMp modes
in a TE, channel begins and ends with the same value of
PTM. at the lower value of 13TE the TE& mode has zero
amplitude and at the upper value the self-focused peak of
the TE, mode has moved out to infinity. Hence in both
limits there is no nonlinear TE-TM interaction and there-
fore PTM is the same. For interacting TEo-TM, station-
ary waves it is )33TE that has the same value at the two ex-
tremes of the pure TM locus. The TE,-TM, region is
infinitely narrow within the limits of numerical accuracy
and it appears that stationary interacting TE,-TM, states
do not in fact exist in this case.

calculation would in general produce a power-flow sur-
face characterized by the two wave numbers, PTE and
PTM. However, because of the computational size of the
problem a more reasonable approach is to calculate only
selected power-flow curves for sections through the
power-flow surface. The power-dispersion curves and
field profiles for interacting TE-TM waves at a single in-
terface have been reported before and we will concen-
trate on the thin-film case here.

Figure 8 shows a sample power-dispersion curve for in-
teracting TE-plasmon —pseudoplasmon stationary states.
The variation of the PTE and PTM values is shown by the
dashed line of Fig. S. The dispersion curve starts on the
pure TE-plasmon locus and hence initially the power flow
is due entirely to the TE plasmon. As the wave numbers
are increased away from the pure TE-plasmon locus a
contribution from the pseudoplasmon to the total power
flow is introduced. The figure also shows the pure TE-
plasmon and pseudoplasmon power-dispersion curves for
comparison. It should be noted that the stationary TE-
plasmon —pseudoplasmon states can exist for values of
PTE above the pure TE-plasmon cutofF point. Hence in
principle the pseudoplasmon could be used to switch the
TE plasmon between transmitting (stationary) and non-
transmitting (nonstationary) states.

The interaction between TE plasmons and short-range
plasmons is quite different from that described above.
Figure 9 shows the power carried by a short-range
plasmon interacting with a TE plasmon as a function of
13TM for a fixed value of /3TE, and compares it to the power
carried by a pure short-range plasmon in the same guid-
ing structure. Also shown is the power flow carried by a
pure short-range plasmon if the linear part of the non-
linear dielectric function is E] =2.S8 instead of 2.402S. It
is clear that in this case the effect of the nonlinear in-
teraction on the short-range plasmon is a shift in the
effective value of the linear part of the nonlinear dielec-
tric function seen by it. Figure 10 shows the power car-
ried by a TE plasmon interacting with a short-range

PTE (1O )

1600 1605 1610 1615 1620 1625 1630

Pure pseudoplasmon

Ptot

V. FULL NONLINEAR INTERACTING WAVE
CALCULATIONS

I

C)

Pure TE plasmon

PrE

To perform the numerical calculations, a finite-z range
equal to g must be chosen of sufficient length to allow the
field solution components to approximate their asymptot-
ic values very closely. The boundary conditions at
infinity are then applied at g instead. The numerical algo-
nthm consists of a root-finding loop for the TM waves
nested within a root-finding loop for the TE waves. A
pair of values for PTE and 13rM is first chosen from within
the stationary-state regions calculated in Sec. IV. The
program then iterates around the loops, varying the field
amplitudes at the interfaces, until a self-consistent in-
teracting TE-TM eigenvalue solution is found. Such a

PTN

0
1605 1615 1620

I8T~ (10 )

1625 1630

FIG. 8. Power flow of interacting TE-plasmon —pseu-
doplasmon for values of PTE and PrM shown by the dashed line
in Fig. 5. P«„PTE, and PTM refer to the total power flow and
the contributions from the TE plasmon and pseudoplasmon, re-
spectively. Also shown is the power carried by pure TE
plasmons and pseudoplasmons. The circle marks the cutoff
point for TE plasmons; the cutoff for pseudoplasrnons lies off
the scale of the figure.
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FIG. 9. Power flow as a function of pTM for short-range
plasmons in the MBBA/Al/linear-dielectric structure with data
as in Fig. 5. The curve labeled a gives the power flow of short-
range plasmons interacting with TE plasmons at pre=1.601.
The curves labeled b and c give the power flow of pure short-
range plasmons, but for c, e& =2.58 is used instead of el =2.4025.

plasmon as a function of PTM for fixed f3TE. At the low-

f3TM threshold the short-range plasmon has zero ampli-
tude and hence the power carried by the TE wave is that
of a pure TE plasmon. As /3TM is increased and the TM
field amplitudes grow, the TE power increases at first but
then begins to fall off again. This is due to the fact that
as PrM is increased, the short-range-plasmon fields not
only increase in amplitude but also become more local-
ized at the surfaces of the metal film. Hence the effect of
the initial increase of the TM field components on the
nonlinear dielectric function seen by the TE plasmon is
reversed by their confinement as ATM is increased further.

The differences between the effects observed in station-
ary TE-plasmon —pseudoplasmon states and TE-
plasmon —short-range-plasmon states can be accounted
for in terms of the different interaction length scales in-
volved in the two cases. For TE-plasmon —pseudo-
plasmon interaction the fields of the two polarizations ex-
tend to roughly the same distance from the metal film,
whereas for TE-plasmon —short-range-plasmon interac-

0
15730 15735 15740

P,„(1O-'j
15745 15750

FIG. 11. Power flow for interacting TE,-TM0 waves in the
dielectric-layer structure for values of pTE and pTM lying along
the dashed line in Fig. 7. The data are as for Fig. 7. The curves
labeled P„„PTE, and PTM give the total power flow and the
contributions from the TEl and TMO modes, respectively.

3

CU 2
C3

1

tion the TE and TM components extend over length
scales differing by roughly two orders of magnitude.

Figure 11 shows the power flow for interacting TE,-

TMO stationary states for values of PTE and PTM that lie
on the dashed line in Fig. 7. Once again, interacting
states exist for values of PTE well above the normal cutoff
for pure nonlinear TE, waves and hence in principle the
TMo wave could be used for switching the TE& wave
"on" and "off." (Similarly, TED waves could be used to
switch TM, waves. ) The evolution of the TE and TM
field profiles with increasing total power is shown in Fig.
12. Notice that as the self-focused peak of the TE~ wave
moves away from the dielectric layer, it creates a separate
nonlinear guiding channel that causes the peak in the
TM0 field amplitude to split into two separate peaks. At
the same time the TMO components distort the effective
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FIG. 10. Power flow for TE plasmons at pTE = 1.601 interact-
ing with short-range plasmons in the MBBA/Al/linear-
dielectric structure with data as for Fig. 5 ~

FIG. 12. Field profiles for interacting TE,-TMO modes for in-
creasing values of PTE and PTM. P, , P2, and P3 refer to
(pTs = 1.558, pTM = 1.573), ( pTs = 1.562, pTM = 1.574), and
(PTE = 1.570, PTM = 1.575), respectively.
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TABLE I. Analytical results for TM polarized waves in a metal-film structure with one nonlinear
bounding medium.

—oo &z &0
Field solutions
0&z&l

E p Hyp (obtained

numerically)

K2 K Z K Z

E = (be —ae )
ME'P6'2

K Z K Z

Hy =ae +be
COEPE3—K3(z —l )

H =Hie

AHy =0
hE =0

Boundary conditions
At z=0

H,p=a+b
K2

E„p= (b —a)
Cc)6'P62

At z=l
K2l —K2l

ae +be —Hyl
K2 K2l K2 l K3—(be —ae )=—H l
E2 E'3

E p K2[K2E'3tanh( K21 ) +K3E2 ]
+yp p3Ep2E[ 2K3E+ K3 2Et ahn( K I2) ]

index seen by the TE& wave, allowing the amplitude of E
to change sign in the nonlinear medium. It is this com-
pletely new phenomenon of symmetry breaking inside the
nonlinear medium that allows the TE& wave to exist
above its normal cutoff point and the same effect comes
into play with all nonlinear interacting TE-TM stationary
states.

In summary, this paper has described in detail a host of
completely new phenomena that are due to the nonlinear
interaction between TE and TM polarizations. The
effects have no linear analog and have great potential for
use in optical device applications.
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APPENDIX: NONLINEAR EIGENVALUES
OF THIN-FILM STRUCTURES

1. Metal film

The analytical solutions for a metal-film structure with
one nonlinear bounding medium are given in Tables I and
II for TM and TE polarized waves. These mill be used in
the following discussion to obtain several analytical re-
sults.

In general, a thin metal film sandwiched between
semi-infinite linear dielectrics supports two TM eigenval-
ue solutions. For the higher eigenvalue P the amplitude
of the transverse-electric field component E, changes sign
in the film, while for the lower eigenvalue it is the longi-
tudinal field component E„ that changes sign inside the
film. In a symmetric or nearly symmetric structure, the

TABLE II. Analytical results for TE polarized waves in a metal-film structure with one nonlinear

bounding medium.

—(x) &z &0

K', sinh[K, (z —zp ) ]
H, = ——

P3/lpV AiCOSh [K&(z zp ) ]
PCi

QA, cosh [K, (z —zp ) ]

Field solutions
0&z &1

K2 K Z K Z

H = (ae —be )
COPp

K Z K Z

E =ae +be

l &z «x

H =—
X

PC3 —K3(z —l )

Ele
COPp

—«3(z —l )

E =Eyle

AH =0

Boundary conditions
At z=0

K-', sinh(Kizp )
=K2(a —b )

+A i COS11 ( Kizp )

Ki =a+b+AiCOSh( K&zp )

At z ——l

K21
K2( be —ae ) =K,Eyl

2l —«2l
ae '+be ' =Eyl

K2[K2tanh(K2I ) +K3]
tanh(Pc, zp )

=-
K, [K,+K,tanh( K,l ) ]

(T2)
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FIG. 13. The effects of film thickness on the waves supported
MBBA/Al/linear-dielectric structure. The curves la-

beled SRP and LRP are the linear eigenvalues of s
and TE are the loci oflong-range plasmons, respectively, T".8, an, a

ff oints of seudoplasmons and TE plasmons, respec-
-focusind TM is the locus of values of P at which self- ocusingtively, an, & is e

of long-range plasmons and pseudoplasmons sets in. e m-
terial data are as for Fig. 5.

former has a relatively large attenuation coefficient com-
pared to the latter and hence the two eigenmodes are usu-
ally referred to as short- and long-range plasmons, respec-

1 The linear eigenvalues of short- and long-range
plasmons are shown in Fig. 13 as a function of the metal-
film thickness. It can be seen that in theory short-range
plasmons exist or at f 11 film thickness, while long-range
plasmons exist on y a ov

'
t 1 above a critical film thickness. In t e

limit of very large film thicknesses the short- and ong-
range plasmons egene1 d crate into single-interface surface-

lasmon polaritons at the two interfaces.
If one of the bounding media is nonlinear, then non-

r short- and long-range plasmons are obtained. ig-
ure 14 shows power-dispersion curves or n
h t- plasmons at three different film thicknesses

an MBBA/Al/dielectric structure. These have efor an
same characteristic maximum and reversa in p1 in the ower

n olaritons. Asflow as single-interface surface-plasmon po ari
t e mh fil thickness is decreased, the linear eigenvalue in-

es.creases an e maxd th imum in the power flow decreas
However the power-flow curves tend to converge at

FIG. 15. Power-flow curve for nonlinear long-range plasmon
in the MBBA/Al/linear-dielectric structure with an-aluminum-
film thickness o . pm.f 0 3 The inset shows the power flow in the
vicinity of the short-range plas~on linear eigenvalue,
@=1.85495, on a very much expanded scale. The points a-
beled P, -P4 are referred to in Fig. 16.

higher values of p since the fields at the two interfaces
decouple as their confinement increases.

The nonlinear long-range-plasmon power-dispersion
curve for the same structure in the large-film-thickness
limit is s own in ig.h

' F' 15. Its linear eigenvalue is lower
than that of the short-range plasmon and hence as t e

fl
'

ased the norm. alized wave number
passes through the linear short-range-plasmon eigenva-
ue. At this point the power flow becomes in nite as
h in the inset of Fig. 15. The width of this "spike"s ownin ein

in t e power- ispeh -d persion curve decreases with incre g
film thickness until it becomes a 5 function at infinite film
t ic ness.h' k Hence in this limit, the power- ispersion
curve o a non'f nlinear surface-plasmon polanton a e .
MBBA/Al interface is recovered. The reason or e

'k '
the ower-flow curve is a sudden increase, fol-

tudes at the metal/linear-dielectric interface. is is
shown in ig. as aF' . 16 series of field profiles for four va ues
of p close to the linear short-range-plasmon eigenva ue.
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FIG. 14. Power-flow curves for nonlinenlinear short-range
plasmons in the MBBA/Al/linear-dielectric structure. The
curves are labeled with film thickness. Gther data as for Fig.

FIG. 16. Field profiles for nonlinear long-range plasmon in
the MBBA/Al/linear-dielectric structure with aith a film thickness
of 0.3 pm at values of P near the linear short-range plasmon ei-
genvalue. The curves labeled P, —P4 correspond to points j3, —
in the inset of Fig. 15.
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FIG. 17. Evolution of the power flow vs P dispersion curves
for TM waves in the MBBA/Al/linear-dielectric structure as
the aluminum-film thickness is reduced to zero. The curve la-
beled I

&
corresponds to I =0, i.e., a self-focused wave at the sin-

gle interface between MBBA and a linear dielectric with
@=2.56. I„ I3, and l4 correspond to film thicknesses of 10, 20,
and 30 nm, respectively. Other data as for Fig. 5.

Just below the linear eigenvalue, the field profiles have
the type of distribution associated with long-range
plasmons, i.e., the electric field component E changes
sign in the metal film. As f3 is slightly increased, the field
amplitudes at the linear interface blow up and then
change sign, taking on a short-range-plasmon-type distri-
bution. It is interesting that throughout this process the
field amplitudes at the interface between the metal and
nonlinear medium remain unaffected. This then is a very
localized linear effect at the linear surface-plasmon eigen-
value, superposed on the broader features of the non-
linear surface plasmon.

From the above discussion it is clear that in the non-
linear case the labels long- and short-range plasmon are
no longer appropriate since there is a continuous change
in the attenuation coefficient of the wave as the power is
increased. However, it is still useful to retain the labels
with the understanding that they refer to the linear limit
of the nonlinear wave.

An important change to the nonlinear long-range-
plasmon characteristics occurs as the metal-film thick-
ness is decreased. Figure 17 shows power-dispersion
curves for a series of decreasing thicknesses. First an
upper-P cutoff is introduced. Reducing the film thickness
still further below the range of existence of linear long-
range plasmons introduces a new kind of plasmon with a
minimum power threshold, which degenerates into a
single-interface self-focused wave as the film thickness is
reduced to zero.

In terms of the field distributions this behavior can be
explained as follows. For values of P near the long-range
plasmon linear eigenvalue the field profiles have the nor-
mal type of long-range-plasmon distribution. However,
as the wave number 13 is increased, a self-focused peak
forms in the nonlinear medium and moves away from the
interface with the metal film, causing a surge in the
power fiow. This is shown in Fig. 18 as a sequence of
field distributions for increasing values of P. The wave

I

E

Pl 2
C)

0-6 —2 0
z (10 7m)

FIG. 18. Evolution of the field profiles of nonlinear long-
range plasmons in the MBBA/Al/linear-dielectric structure
with a film thickness of 20 nm as P is increased towards its
upper cutoff. The curves correspond to P=1.643, 1.703, 1.763,
1.813, and 1.863.

tanh(lrzl )
=—K362

K2E'3
(Al)

The upper cutoff can be obtained by matching the field
ratio given in Table I [Eq. (Tl)] to that obtained from the
nonlinear TM first integral [Eq. (17)]. Since the cutoff
point corresponds to the self-focused peak of the wave be-
ing an infinite distance from the metal film, the field am-
plitudes at the nonlinear-medium/metal-film interface
must be zero and hence only the lowest-order terms in
Eq. (17) need be retained. Setting E and CrM to zero
then gives

(p2 )~2 p2~2 (A2)

or, substituting for F., in terms of H from Eq. (15c),

—+
Hp COG pE i

(A3)

eventually cuts off when the self-focused peak has moved
out an infinite distance from the metal film.

Decreasing the film thickness still further to values
which no longer support linear long-range plasmons has
no effect on the form of the field profiles other than intro-
ducing a minimum into the field amplitudes at the inter-
faces; this is responsible for the formation of the
minimum power threshold. From this behavior it is clear
that, as the metal-film thickness is decreased, there is a
continuous transition from single-interface nonlinear
long-range plasmons to self-focused TM waves, via non-
linear long-range plasmons with an upper-13 cutoff. Be-
cause of the close similarity of self-focused TM waves in a
metal-film structure to nonlinear long-range plasmons,
the self-focused waves have been named "pseudo-
plasmons. "

Although the power-dispersion curves must be found
numerically, the onset of self-focusing and the cutoff
point for nonlinear long-range plasmons and pseudo-
plasmons can be found analytically. The onset of self-
focusing corresponds to E„=0 at the nonlinear-
medium/metal interface. From Table I this is given by
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FIG. 19. Power flow as a function of P for TE plasmons in

the MBBA/Al/linear-dielectric structure. The curves corre-
spond to aluminum-film thicknesses of 0, 1.0, 1.4, and 1.7 nm,
respectively, with circles showing the cutoff'points. The dashed
line gives the locus of the power flow at cutoff as given by Eq.
(A6j.

where the subscript 0 refers to amplitudes at the
nonlinear-medium/metal-film interface. Equating the
positive root of Eq. (A3) with Eq. (Tl) gives the following
expression for the cutoff:

K2Ep(KtE3 K3e] )
tanh(a2l ) =

K2E')63 K]K3Ep
(A4)

K2(Ki K3)
tanh(lr2l ) =

K2 K)K3
2

(A5)

This is shown in Fig. 13 as a function of film thickness.
The critical film thickness above which TE plasmons do
not exist can be obtained simply by setting K3=0 in Eq.
(A5).

Since the above equation does not contain any nonlinear
parameters, the cutoff is independent of the magnitude
and mechanism of the nonlinearity. This is an interesting
point in view of the fact that at the cutoff point the waves
are very highly nonlinear.

The loci given by Eqs. (Al) and (A4) are shown in Fig.
13 as a function of film thickness. Notice that as the film
thickness is reduced to zero, the cutoff point increases to
infinity and the onset of self-focusing meets the lower-P
threshold for the existence of surface or guided waves.
This is consistent with the properties of a single-interface
self-focused nonlinear TM wave. For large film
thicknesses, both lines converge onto the linear eigenval-
ue of the short-range plasmon.

Interestingly, Eq. (Tl) and the negative root of Eq.
(A3) lead to the linear dispersion relations of long- and
short-range plasmons since these have identical boundary
conditions to those used above for the self-focused waves
at cutoff (i.e. , field amplitudes which are zero at infinity
and tending to zero at the metal-film interfaces).

There is a TE equivalent of the pseudoplasmon which
exists over a limited range of film thicknesses and has
been termed a TE plasmon in the literature. ' In this
case the position of the self-focused peak is given by Eq.
(T2) in Table II. Hence the locus of TE-plasmon cutoff;
obtained by setting zp = —~, is given by

FICx. 20. Power-dispersion curves for nonlinear TM0 and
TM

&
modes in the dielectric-layer structure. The cutoff of the

TM& mode is circled; the TM0 mode has no cutoff; Data as for
Fig. 7.

k

2copp
(A6a)

2kKi dz

2~pp~ — cosh K&z
(A6b)

kK)

coppA
(A6c)

which is independent of the data describing the metal
film and linear dielectric. The locus of the power at
cutoff' given by Eq. (A6) is also shown in Fig. 19.

2. Dielectric layer

We consider the case where the dielectric layer has a
higher dielectric constant than the bounding media, i.e.,
the usual linear guided modes exist. The nonlinear solu-
tions in this case are well known for TE waves; Fig. 20
shows typical power-dispersion curves for TMp and TM,
modes that are basically very similar to the correspond-
ing TE modes. " The TMp mode degenerates into a self-
focused single-interface wave as /3 is increased, but
higher-order modes have a cutoff point as shown in the
figure for the TM, mode. The cutoff point once again
corresponds to the self-focused peak moving an infinite
distance into the nonlinear medium, and can be obtained
analytically in exactly the same way as for pseudo-
plasmons and TE plasmons.

Figure 19 shows several power-dispersion curves for
TE plasmons in very thin metal-film structures of
diff'erent thicknesses. For zero film thickness (the single-
interface case) there is no upper-P cutoff' point. As the
metal-film thickness is increased the power threshold de-
creases and an upper-P cutoff appears. Since at the upper
cutoff point the self-focused peak is at an infinite distance
from the metal film and the field amplitudes in the metal
and linear dielectric are zero, the power at the upper-P
cutoff is carried entirely within the nonlinear medium,
and is given analytically by the integral
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