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An exact solution for the dressing of a bound-state wave function by a plane-wave electromagnet-
ic field is written in terms of the set of bare states. The solution is stated in the radiation gauge as an
infinite series involving powers of the field frequency. The leading term of this series gives a simple
analytical form for a state dressed by the field when the energy of a single field photon is much less
than transition energies in the bound system. The result is closely related to the momentum-
translation approximation (MTA) wave function. The MTA result is thereby shown to follow in a
fixed gauge from an exact solution of the fully interacting Schrodinger equation.

I. INTRODUCTION

The primary aim of this work is to establish a simple
analytical form for the dressing of a bound quantum state
by a low-frequency electromagnetic field. It is hy-
pothesized that the energy of a field photon is very much
less than the energy required to make a transition to any
other state of the system, and so the presumption is im-
plicit that any real transitions which occur require the
presence of some other interaction (the *“‘probe” field) in
addition to the background low-frequency field.

The procedure employed is to express the wave func-
tion of the bound state in the presence of the background
field as a series involving increasing powers of the field
frequency. The general term of this series is found in
closed form, and so it is possible to verify explicitly that
the complete series representation provides an exact solu-
tion of the Schrodinger equation. The work is couched in
the radiation gauge, i.e., in a gauge where the scalar po-
tential of the field is zero. A long-wavelength approxima-
tion is used, with retardation terms neglected. In other
words, it is presumed that the vector potential and the
electric field vector are both functions only of time:
A(?), E(t). For a photon energy sufficiently small as
compared to a transition energy of the system, the lead-
ing term dominates all higher-order terms. The leading
term, which is of very simple analytical form, then serves
as a convenient approximate wave function for the sys-
tem dressed by the background field.

The dressed state so determined is nearly identical to
the momentum-translation approximation (MTA) wave
function previously explored.!™3 The results thereby
clarify some points of contention raised in the past. In
the present work, the MTA wave function arises from an
explicit construction technique unambiguously carried
out in a fixed (radiation) gauge. Furthermore, it is the
leading low-frequency term in a solution shown to be an
exact solution of the Schrodinger equation in the radia-
tion gauge. This answers the objection of Cohen-
Tannoudji et al.,* who noted an analytical similarity to a
gauge transformation, and interpreted the MTA result as
if it were nothing more than a gauge transformation. It
has been emphasized elsewhere”> that the MTA can be
regarded as a unitary transformation within a fixed
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gauge, but it does not correspond to a gauge transforma-
tion. The present results independently confirm that as-
sertion of fixed gauge.

The MTA result is

W(r,t)=explier- A(1)]P(r,1) , (1)

where ® is the bare state, with no field present, and ¥ is
this state dressed by the field represented by the vector
potential A in the radiation gauge. Units with #i=c =1
are used here. However, within the radiation gauge,
there remains gauge freedom to within an additive con-
stant vector. This is impermissible within the present ap-
proach, and so A must be constrained by an auxiliary
condition which may be expressed as

|E(t)| = 0| A(2)] (2a)
or as
(A())=0, (2b)

where o is the angular frequency of the background field,
and where the angular brackets in Eq. (2b) are meant to
imply a time average over a period of the wave.
Equivalently, the dressed state may be written expressly
in terms of the electric field vector with shifted phase as

Y(r,t)=exp |ier- O(r,1) . (3)

E(t+7/2w)
1)

The MTA wave function in the form of Eq. (1) looks ex-
actly like a wave function gauge transformed from the ra-
diation gauge to the position gauge [also called the r
gauge or the electric field (EF) gauge], and this has
caused confusion as noted above. Other authors>® inter-
pret the ¥ of Eq. (1) as a noninteracting wave function in
the radiation gauge. The present work shows that this is
an impermissible point of view. Because of this interpre-
tational difficulty in the past, special pains are taken to
identify the dressed state W unequivocally as a dressed
state in the radiation gauge.

The formulation of the exact solution of the
Schrodinger equation is motivated in Sec. II by examin-
ing the first-order time-dependent perturbation theory ex-
pression of the bound-state wave function in a plane-wave

2449 ©1989 The American Physical Society



2450

field. An energy factor which occurs is rearranged alge-
braically into a constant term of order unity and an addi-
tional term which is small when the ratio of the field pho-
ton energy to the energy difference between bound states
is small. This process is extended in Sec. III to the case
of second-order time-dependent perturbation theory. In
this instance, it is necessary to algebraically combine the
outcome of second-order —e A-p/m terms with
e2A4%/2m terms from a first-order perturbation. It is
again found possible to express the resulting energy fac-
tor in a form with a leading constant term of order unity,
followed by a single energy-denominator term propor-
tional to w, and a quadratic energy-denominator term
proportional to w® At this point, the expression for the
general term is apparent. This is written in Sec. IV, and
it is shown by direct substitution that the infinite series is
an exact solution of the Schrodinger equation in the radi-
ation gauge. The leading term of this series is the
dressed-state approximation. The nature of this term,
and the limitations upon its use, are examined in Sec. V.
It is shown there that this very simple expression for a
dressed state contains a full set of energy sidebands to the
bare state, and a dressing of the bare state with a set of
field-induced angular momentum states.

II. REARRANGEMENT OF FIRST-ORDER
PERTURBATION THEORY

A. Preliminaries

The total Hamiltonian for the bound system is written
as

H=H,+H'+V', @

where H|, is the unperturbed Hamiltonian, including the
binding potential V,

H,=p?/2m +V , (5

H' is the potential due to the plane-wave dressing field, as
expressed in a gauge where the scalar potential is zero, so
that

H'=—eA-p/m+e*d?/2m , (6)

and V" is the potential of the “probe” field, that is, some
additional interaction which can supply enough energy to
cause a real transition from the initial state. It is
presumed that the dressing field is of such low frequency
that it cannot of itself cause transitions with any
significant probability. The vector potential is taken to
be of the form

A=ae ', 7

The so-called rotating-wave form of Eq. (7) is employed
because the resulting analytical simplicity then makes
possible the detailed construction of the low-frequency
series, with all the physical insight gained thereby. When
the nature of the low-frequency series associated with Eq.
(7) has been established, a full dressed-state theory with
both exp(—iwt) and exp(+iwt) parts can be obtained
from known series solutions expressed in connection with
earlier MTA work.
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B. First-order wave function

In principle, there is no need to use perturbation
theory in order to present the exact solution of the
Schrodinger equation to be given below. It could simply
be stated and its validity as a solution verified directly.
Nevertheless, some reference to time-dependent perturba-
tion theory is very useful to motivate and to understand
the nature of the solution to be presented.

Let @ be the wave function of the bound state in the
presence of the noninteracting Hamiltonian H, and let ¥
be the wave function in the presence of the electromag-
netic dressing field as well. That is, W satisfies the
Schrodinger equation

d,Y=[(1/2m)(—id—e A+ V]¥ . 8)

Within time-dependent perturbation theory, the first-
order solution for W as a perturbation of a particular
state @ is

V=0y—i T @, [ dt(®,,H VD), )

where H'V is the first-order part of Eq. (6), i.e.,
HV=—c¢A-p/m , (10)

and where the ®, are a complete set of unperturbed
states. In other words, the ®, satisfy Eq. (8) when A is
set to zero. The standard commutator replacement

p/m=—i[r,H,] (11)

will be used for the momentum operator in Eq. (10), so
Egs. (9)—(11) yield

V=0 + 3 D, (P,,ie Ard,)

X(E,—Ey)/(E,—Ey—o) , (12)

where E, and E, are the energies of the unperturbed &,
and P, states.
The final energy factor in Eq. (12) can be subjected to
the decomposition
E,—E
0 2 (13)
E,—Ey—o E,—Ey—ow
The basic hypothesis is now stated that the energy o of a
single photon of the dressing field is very much less than
the energy difference between any pair of levels

0w<<E,—E,. (14)

This means that the first term in Eq. (13) dominates the
second term in magnitude. It is thus appropriate to effect
the separation represented in Eq. (13) in Eq. (12) as well.
When this is done, that part of the summation over the
index n which contains the first term of Eq. (13) can be
performed exactly, and Eq. (12) becomes

YV=(14+ie A-r)d,

+ 30, (P,,ie Ardyw/(E,—Ej—o) . (15)
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C. A condition on the vector potential

An important remark about gauges can be made here.
It has been stated that the radiation gauge is to be em-
ployed. This is a special case of the Lorentz gauge
(3" 4, =0, in relativistic notation with =0, 1,2,3), with
the scalar potential 4°=0. This means that V-A=0.
The question is now posed: How much gauge freedom
remains after one specifies the radiation gauge? Consider
a gauge transformation A*— 4'*= 4A*+T*. The radia-
tion gauge conditions require T°=0 and V-I'=0. Retar-
dation terms have been neglected in the original gauge, so
that VX A=0. This means, of course, that there is no
magnetic field, and this must still be true in the new
gauge, so that VXI'=0. By a basic theorem of vector
analysis, V-I'=0 and VXT =0 mean that I is indepen-
dent of r. The electric field is found from
E=—0, A=—0, A’, so that I" must be independent of ¢.
That is, I'" can only be a vector constant in space and
time. In principle, then, A as stated in Eq. (7) could be
supplemented by an additive constant vector. However,
the results obtained in Egs. (12)—(15) depend upon A be-
ing free of any such additive constant vector. It is thus
necessary to constrain A by a supplementary condition,
which can be stated in any of several ways. One is to re-
quire that the magnitude of the electric field is the prod-
uct of the field frequency and the magnitude of the vector
potential, or

9, Al=w| Al . (16)

An equivalent way is to specify that the time average of
the vector potential over a period of the wave should van-
ish.

III. REARRANGEMENT OF SECOND-ORDER
PERTURBATION THEORY

Second-order time-dependent perturbation theory
presents some new and instructive features not present in
the first-order case. It is thus worthwhile to carry
through the second-order case despite a considerable in-
crease in complexity.

The extension of Eq. (9) to second order is given by

VP =0g—i 3@, [ dt (@, H®,)
n 0
+H=*3y e, [ d(e,HV,)
n m ®

t
X [ dty(®,,H' V),

(17)

where H' contains both terms of the interaction Hamil-
tonian, as in Eq. (6), and H''" is just the first-order term,
as in Eq. (10). An important feature of the evaluation of
Eq. (17) is that the e?42/2m term leads to matrix ele-
ments of exactly the same form as those arising from
—e A-p/m if the relationship

A?2=—i[ AT, A-p] (18)

is used, together with Eq. (11). Specifically, one obtains
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(D,,(e242/2m)Dy)=1 T (D, AP, )

X (®,,,ADPNE,—E,,)
+13(@,,AD,,)

X(®,,, APNE,—E,,),
(19)
where the notation
A =ie Ar (20)

has been introduced. The end result for the explicitly
second-order terms in Eq. (17) is

v —yV=3 3 o (0,,AP, (D, , AD)E , 21
h m

where & is an energy-dependent factor given by

N E, —E, 41 E, —E

’E,~Ey—20 ‘E,—E;—20
(En _Em )(Em _EO)

+ .
(E,—Eo—20)E,,—Eq—o) 22)

n

g:

Equation (22) can be decomposed into fractions with
numerators given by increasing powers of o to yield

w + Cl)z
E,—Ey,—0 (E,—Ey—20)E,—E;—ow)

(23)

=1+

Again some sums over intermediate states can be per-
formed, and the end result for Eq. (17), with Egs. (21) and
(23) incorporated, is

V2 =(14+A+A%/2)D,

(0]
+(1+94)§q>"(d>n,a4¢0) I -
+ S D, (D, AD, NP, ,ADy)

w2

E,—Ey—20NE,—Ey—o)

X ( (24)
The first term in Eq. (24) is independent of frequency, the
single-sum term has a factor of w, and the double-sum
term has a factor of w?. This is the desired form.

IV. EXACT SOLUTION OF THE SCHRODINGER
EQUATION

Equation (24) suggests a complete solution to the
Schrodinger equation, useful in the low-frequency case.
This is a series solution, and it will be convenient to write
it in a form in which the leading term is separate from
the others from the outset. With

Vo= lim W5, : (25)

N-—

then Eq. (24) suggests the result
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N . N N—k .
VM= 3 (A/jNP+ 3 | S (A
j=0 k=1 |j=0
X 2.”2(bm1‘)4m1m2”

ml mk

with A given by Eq. (20), and the new terminology intro-
duced that

Ay =0, AP,), 0,,=E,—E,. (27)

The demonstration that Egs. (25) and (26) constitute an
exact solution of the Schrodinger equation given in Eq.
(8) is tedious, and is relegated to the Appendix. There it
is shown that Eq. (26) solves the Schrodinger equation to
within terms of order (wA)Y*!. Thus the limit N —
gives an exact solution.

The construction of Egs. (25) and (26) was motivated
by perturbation theory, but since the new solution is an
exact solution of the equation of motion, it has an identi-
ty entirely independent of the perturbation series. It
must be stressed that the vector potential A in the quan-
tity A is the radiation gauge vector potential which fully
defines the field. Equations (25) and (26) constitute an ex-
act solution of the radiation gauge Schrodinger equation
given in Eq. (8).

V. DRESSED-STATE APPROXIMATION

A. The leading term

The ratio of the magnitude of each term in Eq. (26) as
compared to its predecessor behaves approximately as

R =|wA|/|AE]|, (28)

where the energy difference AE is w,,,— ko for some pair
of indices m, k. Implicit in each of these energy factors is
a contribution from the finite lifetimes of the quantum
states involved. That is, a level width contribution iT" /2
must also appear in each energy factor, as was recognized
long ago by Weisskopf and Wigner. It has been hy-
pothesized that |w,,ol >>®. No matter how large the en-
ergy difference w,,, as compared to w, eventually the in-
dex k will grow so large that w,,q~k ® becomes possible.
This is where the level width iT" /2 plays its role. Even if
there should be some index k for which w,,(~kw, never-
theless |i"/2|50. Furthermore, if k is large enough at
such an occurrence, there will be many factors in Eq. (26)
of order ®/|w,,,] combined with the factor of order
®/|iT/2]. Thus, even if it should be true that
w>>|iT /2|, the product of all k factors w/|AE| can still
be very small without imposing unphysically strong limi-
tations on . It will be hypothesized here that » is small
enough to satisfy this constraint, and so the condition
o << |AE| will be understood to guarantee the smallness
of high-order terms in Eq. (26) even in the presence of an
eventual near resonance for large k. Under these cir-
cumstances, the inequality expressed in Eq. (28) justifies
the neglect of all terms in the sum over k in Eq. (26) as
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wk

AL, , (26)
@ 0= k@) (@ g~ @)
R
compared to the leading term.
The dressed-state approximation is thus
N .
Wo(r,t)~ A}im > (A/jNPy(r,1) , (29)

which is precisely the same as Eq. (1). As indicated in
Eq. (16) or Egs. (2a) or (2b), there is an implied condition
on the vector potential in Eq. (1) or (29), and so a more
suitable way to write the dressed state expression is the
field-dependent form given in Eq. (3). The limitation ex-
pressed in Eq. (28) can be restated as

el Alagw/|AE| <<1 , (30)

where a is the Bohr radius for atomic systems, or, more
generally, any characteristic radius of the bound system.

It is well known®>*7-® that the MTA gives very poor re-
sults when applied uncritically to a problem such as mul-
tiphoton ionization of atoms. That is because the condi-
tions discussed here are violated in such a case. There is
no probe field to contribute most of the energy, which
must all come from the electromagnetic field. The dense
level structure of an atom then guarantees that some of
the denominators in Eq. (26) will be small for modest
values of the index k, invalidating the conditions stated
above for applicability of the dressed-state approxima-
tion.

B. Validity of the dressed-state approximation

Because Eq. (3) is so close to the MTA expressed in Eq.
(1), and because the MTA has been misconstrued*> in the
past, the nature of the approximation made here will be
examined in more detail.

As noted above, the solution to the Schrodinger equa-
tion expressed in Egs. (25) and (26) is an exact solution in
radiation gauge. Certainly no change of gauge is incurred
in examining the relative magnitudes of the terms in Eq.
(26), and so the end result for the dressed-state approxi-
mation in Eq. (29) is an approximate solution to the
Schrodinger equation in radiation gauge. As remarked
earlier, the limitation inherent in the low-frequency con-
dition as stated in Eq. (14) is that real transitions cannot
occur in a physical system unless a probe field is also
present to contribute the major portion of the transition
energy, and that intermediate near resonances cannot
occur except at very high order.

To assess the accuracy of the dressed-state solution, it
can be substituted into the original Schrodinger equation
stated in Eq. (8). Equations (25) and (26) satisfy this
equation exactly, whereas the substitution of Eq. (1)
leaves a residual term
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(i3, —[(1/2m)(—id—e AP+ V]| W'D =¢E-r¥'D .
(31)

The notation WP’ has now been introduced for the
dressed-state approximation. It is seen from Eq. (31) that
a field-dependent term is left over when ¥'?’ is employed
in place of ¥, and so the accuracy of the approximation
may be judged by comparing the magnitude of this resid-
ual term with the magnitude of the leading field-
dependent term in the original equation of motion. In
terms of matrix elements, this comparison involves the
ratio

__{eEr)| _ wl{eAr)| _ o «
(e A-p/m)| |(e A-[r,Hy])| |AE|

1,

(32)

where Eqgs. (2a), (11), and (14) have been used. It cannot
be stressed too strongly that the residual term eE-r is in
the radiation gauge, where, for low frequency, its magni-
tude will be much less than that of the
—e A-p/m +e?A4%/2m term. This is quite distinct from
the situation which arises when a gauge transformation is
effected, in which case the —e A-p/2m +e?4?%/2m term
in the radiation gauge is equivalent to —eE-r in the r
gauge. This point was discussed in the original MTA pa-
pers, 2 and has been emphasized anew by Friar and Fal-
lieros.® The conclusion is that the dressed state approxi-
mation improves in accuracy as the photon energy of the
field declines with respect to level spacing.

C. Physical implications of the dressed-state approximation

To examine the physical implications of the dressed-
state approximation, it is convenient to use the form of
Eq. (1) for ¥'? with the vector potential given by the real
part of Eq. (7). This gives immediately
VP =¢or) 3 i"J,(ear)exp[—i(Ey—no)t], (33)

n=-—ow
where the terminology
D(r,t)=¢y(r)exp(iEyt) (34)

has been used for the field-free stationary state from
which W{?’ is evolved. Clearly, Eq. (33) exhibits the
dressed state as a superposition of sideband states with
energies E,—nw, with the relative amplitude of each
sideband state given by the Bessel function of order n and
argument ea-r. As has been already remarked, real tran-
sitions from the dressed state require the presence of a
probe field, and transitions induced by the probe field can
be regarded as starting from one of the energy sidebands.

Equation (33) is familiar in that it has the general char-
acter of a Floquet state. It is quite explicit, however, in
specifying the form of each of the sideband v, states
which are normally indefinite in the Floquet formalism.
The presence of the field-dependent Bessel functions in
Eq. (33) also introduces a resemblance to a bound-state
version of a Kroll-Watson scattering state.’

An alternative representation to Eq. (33) is
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VP'=dy(r,1) T i'(21 +1)j,(ear cos(wt))P,(cosh) ,
=0

o0

(35)

where 6 is the angle between A and r in spherical polar
coordinates based on A as the polar direction. This par-
tial wave expansion of W\ shows the role of the field in
splitting the no-field state ¥, into angular momentum
substates. These substates occur with amplitudes depen-
dent upon the amplitude of A in the argument of the
spherical Bessel functions j;.

The field-induced energy and angular momentum sub-
states of W'?) make particularly puzzling the interpreta-
tion of WP as a noninteracting state by Schlicher et al.’
As Friar and Fallieros® have pointed out, the interpreta-
tion of Schlicher et al. has the character of an oxymoron.

D. Relationship with the MTA

The dressed-state wave function developed here is very
closely related to the MTA wave function, but it never-
theless is somewhat different. One important difference is
that the new result is subject to restrictions on the vector
potential defining it [see Egs. (2a) and (2b)] which are of
such a nature that it is really directly determined by the
electric field and not just by the potential. The original
derivation! of the MTA did not place this restriction on
the vector potential. The unitary transformation tech-
nique employed in Ref. 1 would account as well for the
additive constant vector that is allowable in radiation
gauge, as discussed in Sec. IIC. Another difference is
that the MTA is not limited to the absorption-only vector
potential of Eq. (7).

Other differences in the present work as compared to
earlier MTA results stem from the method of derivation.
The present result arose from separating terms involving
the photon energy from other, larger, energy terms, as
shown in Egs. (13) and (23). The unitary transformation
leading to the MTA had a different immediate motiva-
tion, although the notion of low frequency was present
there as well. The two approaches are easily seen to be
equivalent, but the philosophy differs. Several papers dis-
cussing the MTA have shown! 231911 series expansions
of which the MTA is the leading term. These expansions
are equivalent. Only the points of view and the specific
techniques differ.

An important outcome of the new method of deriva-
tion is that it shows the dressed-state result as an approx-
imation to an explicitly specified exact solution. This has
the immediate consequence that correction terms are
available. It also makes very clear the status of the
dressed state as a fixed gauge approximation. Further-
more, the nature of the approximation becomes very ex-
plicit, since the neglected terms are in evidence.

The gauge situation is now clear. It is worth remark-
ing on the gauge invariance demonstration of Friar and
Fallieros.> They obtain the MTA within the context of a
manifestly gauge-independent formalism. What this
means is that, within any gauge, that part of the elec-
tromagnetic field represented by the vector potential A
has its effects on the physical system represented by the
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MTA. If a scalar potential exists as well, that portion of  lead to
the field which it represents remains part of H,. The . .
MTA itself is gauge invariant. B A=wA ,
io,»,=E,®, , (A1)

0, Ay = — (@, — A

APPENDIX

mn *

It is to be shown here that the Nth-order wave function
in Eq. (26) satisfies the Schrodinger equation of Eq. (8) to When i9, is applied to Eq. (26), quantities arising from
within terms of order (e 4)” *!. First the action of i3, on  the first and third elements of Eq. (A1) are found to ex-
Eq. (26) will be found. Toward this end, Egs. (7) and (27) actly cancel each other, leaving

|

k
Jq N N — k‘)q ')qnlnz...‘)anow
i3, WY = T |E Do+ E, ® . (A2)
g ! oo kgl j=0 ]' % 2 ! nl mnIO_kw)”'(wnkO_w)
To explore spatial derivatives, Eq. (A1) has to be supplemented with
—iVA=eA . (A3)
The action of the operator (—iV—e A) on ¥V is then
N e N
(—iV—e AWM= s [ A ]cpo s A ivay)
; ! : ]
<o J! ! =0 J!
k
N N—k Wikt j A s AL, oo
+ 2 2 e A Z ' .)4 ]E 2 112 g
k=1j=0 J! (@, 0~ ko) (0, o~ )
+ s s (—ive, Ano” (A4)
21 120 Jj! n21 nz,:’ PV (@, g=ko) (0, g—@)
Those sums over the index j in Eq. (A4) which contain two terms apiece reduce immediately, since
jollf Al ANk
A — = |=—eA—— . AS
€ 2 I ¢V =k (A3)

The consequence is that the first and third terms in Eq. (A4) are of order (e 4)Y ™!, and so they can be neglected. A
second application of the (—iV —e A) operator to the remaining terms in Eq. (A4) then gives

i1 j N4
(—iV—e AY¥V=¢A. 2 L—i (—iVoy+ 3 i(—iv2¢o
j! =o J!
k
N N—k | ; gj—1 won, A, @
JjA . 12 K
+eA- - e =iV, )
kgl jgo J! "ls-:’ nz ny (wnlo—kw)...(wnko_w)
+3's S SH—ivie, ] Ay A (A6)
—i .
k=1j=0 n n " (Cl)nlo_k(z))"'((l)nko_ﬂ))
With the help of Eq. (A5), one obtains
iv— 2 N j w2
(—iV—e A) AT i (—iV) +V |,
2m =0 jt 2m
k
NONZK LAY (—iV)? Jq"x"z'”'ﬂ"kow
+ - s —+V|® . (A7)
1?;:1 j§0 J! nzl % 2m . (@, g~ ko) (0, o~ )
Since, for any n, ® satisfies the field-free Schrodinger equation
[(—iV)?/2m +V]®,=E,®, , (A8)

then the right-hand sides of Eqgs. (A2) and (A7) are equal, and so W'V satisfies Eq. (8) to order (e 4)", quod erat demon-
strandum.
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