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X-ray absorption by atoms under intense laser fields
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The x-ray-absorption cross section in atoms both without and under intense laser fields is recalcu-
lated on the basis of gauge-invariance requirements in the first-order Born approximation. Better
approximations of the intense-field-assisted x-ray-absorption cross section are also proposed.

I. INTRODUCTION

The x-ray absorption in atoms in the presence of an in-
tense laser field has been considered by several authors. '
In most of these papers perturbation calculus in the radi-
ation gauge was used and generally not correctly applied.
Because of this the traditional, first-order Born approxi-
mation without a laser frequently used by textbooks '

also fails. The incorrect use of the perturbation calculus
led to incorrect formulas for the S-matrix element, the
transition probability per unit time, and the cross section.
Therefore one of our aims is to rediscuss the process
without this problem and in a gauge-invariant manner.

It is a well-known fact that measurable physical quan-
tities, such as the transition probability per unit time and
the corresponding cross section, cannot depend on the
choice of the gauge of electromagnetic potentials. The
problem is discussed in recent articles ' from the point of
view of the perturbation calculus of matter-field interac-
tions in atomic physics and quantum optics. We use the
terminology and the results of Refs. 5 and 6 throughout;
furthermore, we restrict ourselves to the dipole approxi-
mation.

In order to make the problem and the situation clear
first we summarize the steps of the traditional calculus of
x-ray absorption in the first-order Born approximation
without the presence of the laser field (Sec. II). Then we
repeat this train of thought bearing in mind the require-
ment of gauge invariance. We will see that the gauge-
invariant, first-order Born approximation calculus of the
x-ray-absorption cross section leads to different formulas
from the ones commonly used. ' The differences are dis-
cussed briefiy (Sec. III). As a next step, the laser-assisted
x-ray absorption is reconsidered also in the first-order
Born approximation and taking into account gauge in-
variance. The results are brieAy compared to that of
Refs. 1 and 2 (Sec. IV). Finally, better approximations
are proposed, which take into account the coexistence of
the Coulomb and the laser field during the x-ray absorp-
tion (Secs. V and VI).

II. TRADITIONAL TREATMENT
OF X-RAY ABSORPTION WITHOUT A LASER FIELD

IN THE FIRST-ORDER BORN APPROXIMATION

First we repeat the usual treatment of the problem of
x-ray absorption in atoms without the presence of the in-

tense radiation field and in the first-order Born approxi-
mation. We consider here one-electron processes only,
and we restrict ourselves to hydrogenlike systems.

The initial state has the form

(la)

with

u, (r) =(~a )
' exp( r/a), — (lb)

where r and E& = —Z e /2ao are the position vector and
the binding energy of the electron, respectively, and
a =ao/Z with ao being the Bohr radius and Z the nu-
clear charge of the atom. We restrict our discussion to
the case of the hydrogenlike 1s state.

The final state is a free plane wave

itI = exp[i lfi(p. r Et)], — (2)

A„(t)= A o cos(co„t), A o= A, oe, , (4)

where e is the unit vector parallel to the direction of po-
larization. We are now in the radiation gauge.

Substituting Eqs. (1)—(4) into the usual expression of
the S-matrix element

SI, = —i /A f dt f d r&IH'p, ,

one can obtain after integration by parts

S&; =(ed„o/mc )ip. (e„/fi ) U;(p)tt

X5(p'/2m Eb —it'tco ), —

where the definition of the momentum-space wave func-
tion

U, (p)= f exp( —ip r/A')u, (r)d r

and the part of A (t) describing absorption, i.e.,

where p and E are the momentum and energy of the
outcoming electron, respectively.

The perturbation causing transition between these
states is

H'= —(e/mc) A„(t).p .

Here p= —ifiv is the momentum operator and A„(t) is
the vector potential describing the x-ray radiation of a
state of linear polarization and of frequency co„,
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3„&exp( —i co„t ) /2, Sf;= — exp' E —Eb t A —U, Pt dt.a
(16)

were used. Substituting the momentum-space wave func-
tion of the hydrogenic 1s state

1/223 3/2
U;(p)=

[1+(pa/iri) ]
(8)

into Eq. (6), multiplying the result by the usual phase-
space factor d p/(2iriit) and the initial-state density,
which is 2 in our case on the K shell, dividing it by the in-
cident fiux of x-ray photons I /irico (where I„=cE,O/8'
is the incident x-ray intensity with E 0, the amplitude of
the electric field strength, =(c /co )A„o), and carrying
out integrations, we obtain the total x-ray-absorption
cross section of the K shell

(p(t)) ir ep E(t)
(v +1) A'

(17)

with v =a~P(t)~/fi. Substituting this expression into Eq.
(16) and using the eA /c ((p approximation we obtain

ir 2a epE 0(e e )
S 5((E Ei, )/—iri —co„) .

i[1+(pa/fi) ] fi
(18)

The momentum-space wave function of the 1s state of a
hydrogenlike system is given by Eq. (8) and so the time
derivative of U&oo(P(t) ) can be written as

8ir2 e (ap/A)
3mcco [I+(ap/iii) ]

(9)

where ap/R=[( riico—~Eb~)/~Eb~]' . In the fico„&) ~Eb~

limit Eq. (9) has the asymptotic form '

The corresponding total cross section is

8ir 2 (Pa/A') e co„a m

[I+(pa/iii) ] iri c

which has the asymptotic form

(19)

o =2 ~ (8ir/3)roa Z (mc /fico, )
~ (10) o =2 (8ir/3)r Z a (mc /fico ) (20)

where ro=e /mc is the classical electron radius and a is
the fine-structure constant.

III. GAUGE-INVARIANT CROSS SECTION

Now we repeat the above calculation fulfilling the re-
quirement of gauge invariance. As we know from Refs. 5
and 6 we have to use the noninteracting bound-state wave
function for the initial state and —er.E instead of Eq. (3)
for the perturbation operator in the S matrix in the radia-
tion gauge. Thus

I/J;
=eier A!ficu (r)e

—iF I /A

and

in the fico ))~Ez ~
limit. If we compare Eqs. (10) and (20)

we can see that the only difference between the tradition-
ally used and the gauge-invariant total cross sections is a
factor of 4 in the high-energy limit, but in this limit the
x-ray photon energy dependence of the cross section is
the same in both cases. Usually the x-ray photon energy
dependence of the cross section calculated in the first-
order Born approximation is compared to the photon en-
ergy dependence of the measured cross sections, but be-
cause of the approximate character of a calculation of
this type the magnitude of the cross section and therefore
the presence or absence of the factor 4 was not essen-
tial. ' That formula, which also gives the photoabsorp-
tion cross section near the absorption edge and is re-
ferred to most frequently, ' was computed correctly and
in the xE gauge.

H'(r, t)= —er.E(t) . (12)

Sf, = —i /A f dt f d ref[ —er.E(t))g;, (13)

where tt, is given by Eq. (11) and ff is a plane wave [Eq.
(2)]. Using the definition of the momentum-space wave
function U, (P(t)) given by Eq. (7) but with

P(t)=p —e A(t)/c (14)

and the relation determining the electric field vector E(t),

(15)

one can obtain

The state given by (11) has a gauge-independent energy
eigenvalue Eb of the energy operator. ' The function
u, (r) is an eigenfunction of the unperturbed Hamiltonian
Ho=p /2m+ V(r), which is not a physical quantity. '

The final state remains the same as given by Eq. (2).
Thus the correct S-matrix element of x-ray absorption

in the radiation gauge and in the first-order Born approx-
imation reads

IV. LASER-ASSISTED
X-RAY-ABSORPTION CROSS SECTION

IN THE FIRST-ORDER BORN APPROXIMATION

The authors in Ref. 2 compute the S-matrix element,
which governs the laser-assisted x-ray photoeffect, in the
radiation gauge but they substitute for the initial elec-
tronic state the ground-state wave function Eqs. (la) and
(lb) of the unperturbed Hamiltonian Ho=p /2m + V(r)
instead of the noninteracting bound-state wave function,
which has the form given by Eq. (11) in the laser field,
where now A(t) is the vector potential, which describes
the intense radiation (laser) field and the x-ray radiation
together.

The use of the interaction Hamiltonian H' of the form
given by Eq. (3) (which was used in Ref. 2) as perturba-
tion operator in S-matrix calculus is also mistaken. It
can be shown that the operator H'(r, t) given by Eq.
(12) plays the role of perturbation in both (radiation and
electric field) gauges and it has to be used in S-matrix ele-
ment calculations. Thus the correct S-matrix element of
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laser-assisted x-ray absorption in the radiation gauge is of
the form of Eq. (13) with P; given by Eq. (11) and Pf a
Volkov-type solution,

gf = exp i/A p. r — [p —e A(t')/c) /2m dt'

(21)

multiphoton ionization without x-ray absorption, but
they make a very small contribution to the transition
probability in the case of a strongly bound, inner-shell
electron.

We suppose that the laser radiation and the x-ray field
are described by linearly polarized classical beams which
have states of polarization e3 and e, respectively. Thus

where
AL(t) = ALQ coscot ALOe3 coscot (23)

A(t)= AL(t)+ A„(t), (22)
and A (t) is given by Eq. (4). In this case the final state
(21) has the form

and At (t) and A (t) are the vector potentials of laser
and x-ray radiation, respectively. So we can recognize
that the factor exp[ier A(t)/Ac ] is also missing from the
expression of Sf, of Ref. 2. It can easily be shown that
Eq. (13) fulfills the gauge-invariance requirement. It is
worth mentioning that Eq. (13) contains terms which give

gf = exp[i(r p
—Et)/fi]f„„(p, t),

with

E =p /2m + e ( At „+A„o ) /4mc

and

(24)

(25)

since ti ep singletf OI exp ALp +A pmc CO CO~

e A&0 sin(2cot) e A o sin(2' t)
8mc ~ 8mc ~

e ALOA o sin(co —co)t sin(ca +co)t
+

2mc CO CO CO + CO

(26)

The index "pol" indicates that the function f „depends
on the state of polarization of the applied radiation fields.
Substituting this final state into Eq. (13) and using the
definition Eq. (7) of the momentum-space wave function
with Eqs. (11), (14), (15), (22), and (16) one obtains

Sf,' = —f exp[i(E Eb)t/fi]f —*„(p,t)

X —U, (P(t))dt .
a
0t

(27)

Here the upper index (1) refers to the first-order Born ap-
proximation. The time derivative of the momentum-
space wave function of the 1s state of a hydrogenlike sys-
tem in the ed /c &(p approximation is

a
at 100U =tr" 2'a' fi e(p.E—e A E/c)

examination of the order of magnitude shows that if
Ace„) 1 keV then in the case of laser intensities available
nowadays those terms in f,&

and E [Eqs. (25) and (26)]
which contain 2 0 can be neglected; furthermore, only
the terms p E, —e At .E /c remain in Eq. (28). Here

E =E pe since t,
which describes the electric field originating from the x-

ray radiation and we use

EL:ELpe3 singlet

for the electric field generated by the intense laser. Using
the Jacobi-Anger formulas, the definition of the general-
ized Bessel functions JM(b, d) (Ref. 9) in f,&, and the

X [1+(pa /A')'] (28) —exp( is) t)l—2i

Now we select the terms from Eqs. (27) and (28) which
correspond to laser-assisted x-ray absorption. A detailed

part of si (con„t) we obtain for the S-matrix element of
laser-assisted x-ray absorption

S(1)=

(29)

epE 0 eELp
JM(b, d) e e 6(b, /fi Mto) —e3.e [o[h—/fi (M —1)to]+5[6/fi —(M+1)co]I—

i[1 +(p af/i) ] A'
M —„2p~

and for the diff'erential transition probability per unit time,

dE d cosO

2a e Eomp 2 2
e LO

7 7 2 2 3 eE
I(e~.e ) JM(b, d) (e~ e3)(e .e3—)

[1+(pa/fi) ] fi 2p~

X [JM(b, d)JM, (b, d)+ JM(b, d)JM+, (b, d)] I

X 5(A —WM~) . (30)
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Here b, =P+ ~Eb ~

f—ico„, ez is the unit vector parallel to p, m is the rest mass of the electron, e .e3 cosO~,

e Elo2 2

b=
8m' A

(31)

and the term proportional to (eELo/2pco) was neglected.
The differential cross section can be obtained from Eq. (30) by dividing it by the x-ray photon fiux cE o/(8vrRco„) and

supposing states of parallel polarization for the laser and the x-ray fields,

82 (1)

dE d cos0

8m.2 (ap/iil) e co a m ~ eELo
Y (e e3) JM(b, d) — e .e3

[1+(pa/A'} ] fi c M= „2p~
X [JM(b, d)JM i(b, d)+ JM(b, d)JM+, (b, d)]I

X 5(h Mfico)—, (32)

which leads to Eq. (19) in the laser-free case.
Our gauge-independent result is obviously different

from that of Ref. 2. Moreover, in the case of moderately
high laser intensities ( b )) 1 and

~

d
~

&& 1, i.e., with
fico=1. l8 eV this is true if IL &10' W/cm ) the term
proportional to (eELo/2p co ) can be neglected and
J~(b, d)=JM(b} holds. Thus Eq. (32) becomes much
simpler in this case. Our calculation is valid if
fico„))~Et, ~

because the first-order Born approximation
can be used under this condition.

The results of the other articles dealing with laser-
assisted x-ray absorption' are more or less in error, as
they had been computed before the gauge problem was
clarified ' and thus they contain problems similar to the
ones discussed at the beginning of this section.

V. THE S-MATRIX ELEMENT
OF LASER-ASSISTED X-RAY ABSORPTION

IN THE SECOND-ORDER BORN APPROXIMATION

Now we treat the problem in second order. We use the
results of Reiss where the S-matrix formalism with two
potentials was worked out. In our case the applied two
potentials are the radiation (laser plus x-ray) field and the
Coulomb potential of the nucleus. In the preceding sec-
tions we considered first-order processes in the radiation
field and the effect of the Coulomb potential on the
outcoming electron was totally neglected. Now the
scattering of the electrons, which are described by
Volkov-type states, on the Coulomb potential will be tak-
en into account. The corresponding S-matrix element

S&;'=(i/A') fQI(R, tz)V(R)6(tz t, )f—d k itjk(R, tz)g„'(r, t, )[—er.E(t, )]i', (r, t, )d R d r dtidt, , (33)

where V(R) is the Coulomb potential felt by the electron, R and r are the electron coordinates, t, and ti the two time
variables, 6(tz t, ) is the 6—(or step) function, and gk(R, t~) and gk(r, t, ) are solutions of the Volkovian type given by
Eq. (21) with A'k standing for the momentum of the electron in the intermediate state with k the wave-number vector in
this state. Introducing the Fourier transform V(q) of the Coulomb potential,

V(q) = f V(R) exp( —iq R)d 3R, (34)

with the definition

q =p/iri —k

(p is the momentum of the electron in the final state), and using the equality

f Pk(r, t&)[ —er E(t, )]P;(r, t& )d r=(A/i)f*, i(k, t, )e " ' ' c}/Bt& U (K(t& )),

(35)

(36)

K=k —e A(t, )/iilc in the momentum-space wave function [Eq. (7)] and the Jacobi-Anger formulas in f „,the second-
order S-matrix element can be written as

SI;'=i/fi f dt's f dt's f d k V(q) J~(z)J (bi„d )6(t —t, )e ~ " 'd/dt, U, (K(t, ))
N, M= —oo

Xe i[(P —F. . )/A —Mco)t
l (37)

where J~(z) and JM(bk, d ) denote ordinary and generalized Bessel functions with arguments

z =(e At. o q/mcco), bk ='(eELok cosg„/mco ), cosgi, =e„e, , (38)

ek is the unit vector parallel to k, E&=p /2m, E, =Eb, EI, =h k /2m, and Ek =Ek+e A~o/4mc . The time deriva-
tive of the initial-state, momentum-space wave function can be obtained from Eq. (28) using A'K instead of P in it. With
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the same approximations used in connection with Eq. (28),

1/2p4 7/2

U, (K(t, ))=
3

k.e e
iri[1+(ka) ]'

—i cu t
I

eEgO i(co —cu )I I
—i (co+ cg )I

Ie .e(e " '+e " ')
L x (39)

Substituting Eq. (39) into (37), supposing the adiabatic switching on and off for the x-ray, using the equality
V(q) =4vrZ e /q, and carrying out time integrations, we obtain

S[2j=~~/227a»~Ze 3Ea e

d k 1
Qo

xf, g J~(z)JM(b„,d) k e„5(aif zM)[ —ir5(a~'i„M) —t'P/aipM]
[I+(ka) ]

eELo
eL .e„[5(aif +M )[ 'ir5—(co&,M )

—iP /coi„M ]
2%co

+5(~fjtvM )[—ir5(a~k;M ) iP /—aikjM]], (40)

with

cof,~+M '=(Ef E, +E)!—fi (N+M+s—)ai —ai„,

CPM
' '=(Eg E; )Ifi —(M+—s)co —a~„,

(41a)

(41b)

c=2A'co~d~, and q =(p +k —2p k) '. Here P denotes
principal value and s =0, +1,—1 correspond to upper in-
dices 0, +, —,respectively.

Now we show how one can obtain an approximate
form of Eq. (40). In the case of moderately high laser in-

tensities (for the conditions see the end of Sec. IV) the
generalized Bessel function becomes equal to the ordinary
one, JM(b&, d)=J~(b&), and the product of the two
Bessel functions in Eq. (40) can be written approximately
using the expression'

1/Jf Uf(p) exp[i(p. r —Et ) Ifi]f „(p,t ) (44)

with

Uf(p) = exp(harv/2)I (1+iv)

well with experiments. Moreover, recently, a general
method for the analytical evaluation of integrals occur-
ring in bound-free transitions has been published, ' which
can also be used in laser-assisted x-ray transition calcula-
tions.

In view of the above facts the only modification that
we have to make in the S-matrix element calculation as
compared with Sec. IV is to use the above-mentioned ap-
proximate final state"' of the form

Jx(z)JM(b„)
X F( i v, 1, —i (pr +—p. r ) Iiri ) (45)

=( —1) Jv+M(z+b„)5 N (N+M)—
z+b~

(42)

From Eqs. (31), (35), and (38), the z =b —b&, and from
the argument of the Dirac 5 in (42), the relation

M
cosOA, =

M+X (p /haik ) cos8
P (43)

follows. Thus the integration in Eq. (40) over cos8k can
be carried out.

d W/dIldE= g (d W/dQdE)t
L = —oo

d o. /dQ dE = g (d o IdQ dE)t
L = —oo

(46)

where

in the S-matrix element, if we want to give another ap-
proximation for the laser-assisted x-ray absorption. Here
v=(pa/A) ', I (x) and F(a, b, c) denote the I and the
hypergeometric functions, respectively. Thus the doubly
diA'erential transition rate and cross section can be writ-
ten

VI. THE S-MATRIX ELEMENT
OF LASER-ASSISTED X-RAY ABSORPTION

IN ANOTHER APPROXIMATION

I a TL ~ 5(Ef E, Lfi~ hen )— — —
(d W/dQdE)t =

4ir amc [1—exp( —27rv)]

The problem of finding approximate wave functions,
which account for the infiuences of both (laser and
Coulomb) fields on the final electron state, can be partial-
ly solved. " These solutions are used in recent multipho-
ton ionization calculations' giving results agreeing fairly

(d o IdAdE)t =2(hn„/l„)(d W/dQdE)t

with

(47)

(48)
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T, = f dye(q)B(p/A, Ezo sing),

B(p/A', ELo)=a f u;(r)e3 rF[iv, l, i(pr+p r)/A'] exp[ i(—p/A+eELoe3sintp/fi) r]d r,
(49)

(50)

and

ft (y) = expi(Ltp bco—stp+d sin2q&) .

Integral (50) can be evaluated analytically by the aid of
Eq. (6.9) of Ref. 13 and the expression (49) has to be in-

tegrated numerically.

VII. CONCLUSIONS

In this paper we briefly summarized the gauge-
invariant method of computation of laser-free and laser-
assisted x-ray-absorption cross sections and gave two
different methods for obtaining an approximation one or-
der higher than the traditionally used and incorrectly de-
rived first-order Born expressions.

Our results can be used also near the absorption edge,
which makes it possible to investigate theoretically a very
exciting, combined process where the presence of the
laser is essential. If the energy of the x-ray photon is less
than the ionization potential on a given shell, but this en-
ergy defect is small compared to the energy of the laser
photon, then the absorption can occur with the help of
the laser radiation. '

If we assume that our formulas account well for these
phenomena, a two-beam (laser plus x-ray) experiment can
provide information on the amount of shielding of the
laser radiation (near the nucleus) by the outer electrons. '
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