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Practical criterion for the determination of translation factors.
IV. Simplified norm method
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Closing the series on the use of the norm method as a practical criterion to determine translation
factors, we report a considerable simplification of the computational effort involved in our method.
We study the speed of convergence of the sum-over-states expression giving the norms, and the pos-
sible use as criteria of rough approximations obtained by truncating this sum to a few states. Our
main conclusion is that the rough-approximation method would yield the same translation factors
as the exact one, while involving a minimal additional programming effort to that of the evaluation
of molecular energies and couplings, and being applicable to semianalytical as well as variational
wave functions, state-dependent as well as common translation factors, and package as well as
ad hoc molecular programs.

I. INTRODUCTION

It is by now well established that generalization of the
molecular expansion method, with the introduction of
translation factors' to correct for the so-called
momentum-transfer problem, permits us to treat success-
fully charge-exchange processes in ion-atom collisions, at
least up to the energy region where their cross section is
maximal. On the other hand, it is also known that the
translation-factor solution of the momentum-transfer
problem is only of formal value ' unless it is supported
by a guiding criterion as to the appropriate form of the
factors.

In recent articles " we proposed, and used, such a
criterion to gauge the quality of a translation factor. For
this, we introduced norms that measure the couplings be-
tween the (usually small number of) states included in a
molecular expansion and the infinite set of those that are
left out. It was shown in Ref. 9 how those norms could
be calculated analytically for wave functions that are
written in terms of Gaussian-type orbitals (GTO's). The
sum of the squares of all discarded couplings, yielding the
Euclidean norm, gauges the overall quality of the trial
space, while a weighted norm is more useful when optim-
izing translation factors for particular collisional process-
es.

In Refs. 10 and 11 the norm criterion was employed to
optimize the form of a common translation factor' '
(CTF), within a given trial space, and to compare
different analytical forms; in particular, in Ref. 11 atten-
tion was devoted to CTF optimization in the important
region of intermediate and large internuclear distances R.
The ensuing translation factors were successfully em-
ployed in a large number of cross-section calcula-
tions. '

A practical limitation of our approach to determine
translation factors, however, is that a separate (and in-
volved) program needs to be written for each specific
analytical trial form of these factors. We suspect that

this feature has understandably deterred other workers
from using our optimization method directly.

Furthermore, our optimization studies have perforce
been restricted to the kind of basis sets (GTO's) and
translation factors (CTF's) that are currently employed in
our collisional calculations. We think it would be useful
for workers who may choose to use, e.g. , one-electron di-
atomic molecule (OEDM) orbitals instead of GTO's,
plane-wave-type translation factors instead of CTF's, or
other approximations to correct for the momentum-
transfer problem, to be able to apply the norm criterion
to establish comparisons, without a considerable pro-
gramming effort.

With this aim in mind, we have studied ways of simpli-
fying that effort so that it would involve the same kind of
integrals as are required in the collisional calculation.
For our numerical tests, we chose as a benchmark the
often-used HeH + quasimolecule, the common transla-
tion factor of Errea et al. ,

' and a basis [tt„) consisting
of the 1so., 2so. , 2po, 3do. , and 3d~ molecular orbitals.

The purpose of the present paper, which closes the
series on the use of the norm method as a practical cri-
terion for the determination of translation factors, is to
expose the conclusions of our study. In particular, we
shall address the following two questions that directly
bear on simplifying the norm method.

(l) How fast does the sum over infinite states involved
in the norm converge? Can one approximate this norm
to a good precision with a finite number of terms, and if
so, with which ones?

(2) How reliable is an optimization criterion based on a
roughly approximated norm calculated by substituting
the analytical evaluation by a direct truncated summa-
tion over couplings, so that only a 50% accuracy (or even
worse) is reached'?

In the following paragraph we shall state the main
definitions that are required for our paper to be self-
contained. In Secs. III and IV we shall present our re-
sults that permit us to answer (quite optimistically) both
questions. Atomic units are used throughout.
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II. DEFINITIONS

with $1, and EI, the HeH + molecular wave functions and
energies for fixed nuclear positions, r the electron posi-
tion vector, and exp(iU) the CTF. As in previous
work, ' '" we choose k =1so., 2so. , 2po, 3do. , and 2p
(hence E =5). It is immaterial for the present purpose
which form is chosen for the CTF; in fact, it could just as
well be replaced by a noncommon translation factor. For
the sake of computational simplicity, we have taken it to
be that introduced by Errea et al. ' This has the advan-
tages of having been thoroughly analyzed in our previous
studies' for a wide range of internuclear distances, and
containing parameters to be optimized, which will help
us to answer question (2) of the Introduction:

U=f(r, R)v. r ,'f (r, R—)U —t, (2)

We first define the Euclidean and weighted norms, for
a molecular approach modified with a CTF, and in an
impact-parameter formalism. In this approach, the elec-
tronic wave function representing the colliding system is
approximated by the ansatz

K
ak (t)Pk (r, t)exp i U i f—Ek dt '

k=1 0

where

Rf= (r R+(p —po)I —(p —po)
R +P (3)

. a
i——H 4=0.

Bt

Following Ref. 5, we call P the projection operator
onto the manifold spanned by the E molecular wave
functions P& included in the expansion (1), and Q = 1 P. —
One can then define the Euclidean norm of discarded
couplings:

is a so-called switching factor' ' ' modulating the elec-
tronic velocity as the electron passes from being attached
to the helium nucleus, (p =0), to belonging to the proton
(p =1). Transition probabilities are easily shown' to be
independent of the position of this origin (the value of p).
The common translation factor (2),(3) contains two ad-
justable parameters to be optiinized: p, which defines the
extent of the cutoff in the switching factor, and po, which
defines the so-called' privileged origin of electronic coor-
dinates (the origin for which f~0 when R ~0).

As the internuclear distance R tends to infinity each
term of expansion (1) fulfills the impact-parameter equa-
tion:

NE= Q i HPPkex—p iU i f Ek—dt'a
2 1/2

K
P.exp iU i f E d—t'.

k=1 0

2 1/2

i Hdtexp iU —i f Ex—dt )'a
(5)

where the sum plus integral over j refers to the (infinite) set of states left out in expansion (1).
The norm N always vanishes for R ~ ca, and also vanishes for a whole trajectory when (and only when) the wave

function (1) is the exact solution of Eq. (4). This was the basis for proposing the minimization of N as a means of deter-
mining a CTF that optimizes the ansatz (1), in the sense that it minimizes the couplings between the molecular wave
functions included in the expansion, and those spanning the complementary space that are orthogonal to these.

Minimization of the Euclidean norm (5) provides an overall optimization of the P subspace. An alternative,
collision-specific approach is provided by minimization of the weighted norm:

K aN = g wk(t) Q i HP—PI, exp iU i f—Ekd—t'
k=1 Bt o

(6)

of similar properties to Nz. '' The choice iok = ~ak j weights each P Qcoupling accor-ding to the population of the cor-
responding P state. It can be shown that N provides an upper bound and an oscillation-averaged form of the deviation

vector ' between the exact and approximate solutions of Eq. (4).
In earlier work' we optimized both X&, and N for He ++H collisions. For the sake of generality, it is more con-

venient here to consider approximations useful for any collisional process involving the 1so., 2scr, 2po. , 3do. , and 2pm
orbitals of the HeH quasimolecule. For this purpose, we introduce the partial norms

N(k)= Q i HPPkexp iU —i f Ekdt-'. a
at k

. 0
L x

so that one has

(tt, exp iU —i 1 Etdt'
1/2

i H ttxexp iU —i I tixdt )— '. a

l
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K

NF = g N(k)
k=1

1/2

and

K
N„= g w&N(k)

k=1

1/2

(9)

Furthermore, we define

r

N(k, J)= g P,'exp iU —i J E'dt'
j=1

. a 2 I /2

i —HP—&exp iU —i J E„dt' (10)

as J~ ~.
The partial norms (10) yield the following approximate

Euclidean and weighted norms:
1/2K

NF(J)= g N(k, J) (12)
k=1

K
N (J)= g wi, N(k, J)

k=1

1/2

(13)

We now consider questions (1) and (2) in the Introduc-
tion.

which is the approximation to the partial norm N(k)
reached by truncating the infinite sum plus integral of Eq.
(7) to J terms, and employing either the exact eigenfunc-
tions P, of the electronic Hamiltonian or approximate
wave functions P' resulting from a variational calculation
for this Hamiltonian. Below the ionization threshold,
these latter functions P' provide representations for (a
finite number of) the HeH + bound electronic states—
yielding good approximations for the lowest-lying ones,
and increasingly inaccurate ones for the higher Rydberg
terms. Above the ionization threshold, they yield an
L -integrable discretization of the continuum orbitals.
We emphasize that, unlike the case of the exact norm (7),
the evaluation of N(k; J) in (10) is a trivial step that can
be implemented in any standard calculation of molecular
energies and couplings.

From completeness of the basis set used in the varia-
tional calculation, it follows that

N(k, J)~N(k)

translation factors in the molecular formalism.
In our molecular calculations, the wave functions Pi,

were expanded in a two-center basis set of 49 GTO's,
given in Table I. Since in the variational determination
of those wave functions one obtains 49 eigenvalues and
eigenvectors, convergence will be studied with J running
from 1 to 49 —K =44. As mentioned in the previous sec-
tion, the wave functions P,' thus obtained only provide
good representations to the exact HeH + stationary
states for the lowest eigenvalues; also, they only yield a
finite number of approximate Rydberg state wave func-
tions for energies less than the ionization threshold
(j 24 in our calculations), and they provide a discretiza-
tion of the continuous orbitals for higher energies
(j )24).

We present in Fig. 1 the values of N(k; J)/N(k),
k =1so., 2so. , 2po. , 3do. , and 2pn. , as functions of J, for
an internuclear distance R =3 a.u. , and in Fig. 2 the cor-
responding ratio for the Euclidean norm Nz(J)/NF. The
dependence of the accuracy reached upon the internu-
clear separation is exemplified in Fig. 3, where we plot
NF(J =43)/Nz as a function of R. Calculations have
been performed with the CTF of Eqs. (2) and (3), with
@=4.0 and the privileged origin on the center of nuclear
charge (po =0.333). For completeness, we indicate by an
arrow in Fig. 1 the position of the ionization threshold.

The main conclusion to be drawn from Fig. 1 is that
convergence is very good, reaching 98% of the value of N
for J =44, even when, as mentioned above, the wave
functions P' of the highest excited states are very poor
approximations to the exact ones P . This fast conver-

III. CONVERGENCE OF THE NORM EXPANSION

Using the CTF of Eqs. (2) and (3), and a basis set P„
(k = iso, 2so, 2po. , 3do, 2pm), we calculated the partial
norms N(k; J) as functions of J, for several nuclear tra-
jectories and impact energies. As an illustration, we
present, in this work, results obtained for a nuclear tra-
jectory with impact parameter 1.0 a.u. , and impact ener-
gy of 25 kev amu '. We have checked that these con-
clusions obtained for this particular case also hold for
other nuclear trajectories.

Incidentally, we notice that the corresponding relative
nuclear velocity, v =1 a.u. , is suf5ciently large that terms
in v, etc. , play an important part in the optimization of

0.015
0.030
0.065
0.140
0.450
1.800

10.000
75.000

Clyde z, x

0.0150
0.0375
0.1050
0.3150
1.0000
3.4000

z2, x 2, xz

0.0235
0.5280
0.1298
0.4083

0.0075
0.0225
0.0730
0.2560
0.9600
3.8400

16.5000

CX Pp z, x

0.010
0.025
0.075
0.250
1.000

TABLE I. Exponents of the Gaussian basis set used in the
present calculation.

He
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FIG. 1. Values of the ratio N(k, J)/N(k) [Eqs. (7) and (10)]
for k = 1so., 2pa. , 2so, 3do. , and 2pn. as functions of the number
of terms J included in the complementary space, for an internu-
clear distance R =3.0 a.u. , an impact parameter b =1.0., a nu-

clear velocity U =1.0 a.u. , and the common translation factor of
Eqs. (2) and (3) with P=4.0 and po=0. 333. The arrow indicates
the position of the ionization threshold.

gence is partly due to the well-known over-completeness
(basis-set superposition ) of a two-center expansion
(Table I). On the other hand, when R increases, the
GTO's centered on one atom become unable to span the
atomic orbitals centered on the other, and as a result con-
vergence is less good, as shown in Fig. 3. It is then for-
tunate that convergence is best for the region of inter-
mediate distances where the form of the translation fac-
tor is totally unknown and where optimization is most
critical.

A further significant result is that only about 50% ac-
curacy in the norms is reached when the discretized con-
tinuum is ignored in the approximation N(k; J) (i.e., for
J (24). Figure 1 shows that a large part of the norm
comes, not only from the states lying next in energy, but
also from those lying deep in the ionization continuum.
This poses a problem when exact eigenfunctions of a
one-electron Hamiltonian (such as OEDM's) are chosen
as basis functions, since evaluation of nonadiabatic cou-

0.80

z 0.60

0.40

0.20

0 5

FIG. 2. Ratio Ns(J)/NE for the Euclidean norm [Eqs. (5)
and (12)] as a function of the number of terms J included in the
complementary space. The values for R, b, v, and the transla-
tion factor parameters are the same as in Fig. 1.

FIG. 3. Values of the ratio N&(J =43)/N~ as a function of
the internuclear distance R. The values for b, U, P, and po are
the same as in Fig. 1.

plings with the corresponding continuum wave function
is nontrivial.

To sum up, from Fig. 1 we conclude that a variational
procedure can provide norms that are as exact as desired;
for this, however, one should not neglect high-lying states
that are obtained in the calculation.

IV. USE OF INACCURATE NORMS

We are here interested in ascertaining how an optimi-
zation procedure fares when it is carried out with a poor
approximation to the norm [J small in Eqs. (10), (12), and
(13)]—furthermore, with an approximation that is not
even uniform with respect to R (as may be gleaned from
Fig. 3). In order that our conclusions be valid for any
weighted norm, we shall perform the comparison for
some partial norms [Eq. (10)] as well as for the Euclidean
one [Eq. (12)].

We display in Figs. 4(a) and 4(b) the values of the exact
N(iso ), calculated analytically as in Ref. 10, for the
same energy and nuclear trajectory as in Figs. 1 —3, for
two choices of privileged origin: (a) po=0. 333 and (b)

po = 1.0 and for several values of the cutoff' parameter P.
The corresponding quantities for the 2po. state are given
in Figs. 5(a) and 5(b). We do not show the norms corre-
sponding to the other P states, to avoid presenting too
many figures that obey the same patterns and lead to the
same conclusions; for completeness, we also present in
Figs. 6(a) and 6(b) the values for the Euclidean norm Nz.
A CTF optimization procedure would then involve com-
bining the partial norms to yield either N [Eq. (9)) or NE
[Eq. (8)], and choosing the values of po and P that yield
the smallest norms.

To facilitate comparison, we present the corresponding
approximate norms in Figs. 4(c) and 4(d) [N( iso",J =8],
Figs. 5(c) and 5(d) [N(2po", J=8], and Figs. 6(c) and 6(d)
[Nz(J =8)]. These quantities have been calculated in a
straightforward way, by summing over the squares of the
couplings that result in the variational treatment for the
molecular wave functions. In this calculation the states
involved in Eq. (10) are j =3so., 3po, 4do, 4fo, 3dvr,
3pn, 4f rr, and 3d5; hence, no discretized continuum or-
bitals are involved in our approximate sum, and this
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FIG. 4. Comparison of the exact N(k = lscr) [(a), (b)] and approximate X(k = lstr, j=8) [(c), (d)] partial norms as functions of
the internuclear distance R, for two choices of the parameter po. p0=0. 333 L(a), ( ),', po=(c)g' 1.0 ~(b) (d)~ and for several values of the
cutoff parameter I3: ~9=P: P=0.5 ( ); P=2.0 ( .)' P=4.0 ( ———). For comparison purposes the norm values without transla-
tion factors ( ———) are also included. The impact energy and nuclear trajectory are the same as in Figs. 1 —3.
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FIG. 5. Same as Fig. 4 for k =2po. .
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FIG. 6. Comparison of the exact NF [Eq. (5)] and approximate NF(J =8) [Eq. (12)) as functions of the internuclear distance R.
Same symbols as in Fig. 4 are used.

sirnplified procedure can be easily implemented when
OEDM, or numerically evaluated, orbitals are employed.

We further notice that, according to Fig. 1, the choice
J=8 in the approximate norms [Eq. (10)] only yields a
30% accuracy for N(lso", J) and a 50% accuracy for
N(2pcr; J), at a distance R =3 a.u. , the approximation
becomes worse for larger R. As a consequence, the num-
bers involved in the exact (Figs. 4(a), 4(b), 5(a), 5(b), 6(a),
and 6(b)] and rough [Figs. 4(c), 4(d), 5(c), 5(d), 6(c), and
6(d)] calculations are quite different. However, in an op-
timization procedure what is important is not these abso-
lute numbers but their relative variation when the param-
eters are changed. For this purpose, we have rescaled the
figures that correspond to the rough norms.

Comparison between Figs. 4(a), 4(b), 5(a), 5(b) and 4(c),
4(d), 5(c), 5(d), as well as between Figs. 6(a), 6(b) and 6(c),
6(d), respectively, provides a striking proof that, to op-
timize translation factors, roughly approximated norms
will perfectly do, whether one uses the Euclidean or any
weighed norm as a criterion. Small differences between
exact and approximate norms are smaller than significant
variations with respect to the CTF parameters, or be-
tween different forms of the CTF, and are immaterial in
the optimization procedure.

V. CONCLUSIONS

In the present work we report a considerable
simplification of the computational effort involved in us-
ing the Euclidean and weighted norms as criteria to
determine translation factors.

Taking as benchmark the common translation factor of
Errea et aI. ' and a basis of HeH + five molecular orbit-

als, we have investigated the speed of convergence of the
sum over states involved in the norm expression, by corn-
paring the exact value for this expression with the ap-
proxirnations reached by truncating it.

The main conclusion from those studies is that conver-
gence is fast (reaching 98% accuracy in our calculations)
for the most critical region of small to intermediate inter-
nuclear distances, provided that the molecular states with
energies lying in the ionization continuum are included in
the sum. This conclusion is very encouraging in view of
the considerable programming effort involved in the ex-
act evaluation of the norms, and especially in view of ap-
plying the method to more sophisticated translation fac-
tors, and to the many electron case. On the other hand,
it poses a problem when semianalytical or numerical
wave functions are employed, as in the OEDM approach.

Next, and foremost, we have tested the usefulness, as
criteria, of patently inaccurate norms, such as obtained
by truncating to a few terms their sum-over-states expres-
sion. Our main result is that, at least for the benchmark
case analyzed here, although the accuracy reached in the
truncation may be as poor as 30—50%%uo, the translation
factors obtained by minimizing the inaccurate norms
would be practically indistinguishable from those ob-
tained from minimizing the exact norms. In this respect,
it should be borne in mind that the purpose of evaluating
%E or N is not to provide accurate values for these
quantities, but to supply a quantitative criterion to deter-
mine translation factors.

The simplified finite sum-over-states criterion requires
a minimal amount of computational effort. Moreover,
since it does not involve continuum states, it may be ap-
plied to any kind of molecular wave function (and also to
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atomic wave functions), and to any kind of translation
factor, whether common or state dependent.

Because of the previous characteristics, we hope that
the present work will stimulate the checking, whenever
necessary, of the procedures employed to cope with the
momentum-transfer problem. As explicitly proved by
Errea et al. , to eliminate the known drawbacks of the
perturbed stationary states approach, it is not sufficient to
introduce translation factors (or reaction coordinates) in

the collisional calculation, since dependence on thy func-
tional form of the factors can be larger than the origin
dependence of the results obtained without them.
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