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Improved calculation of total cross section for pair production by relativistic heavy ions
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A calculation of the total cross section for direct electron-positron pair production by heavy ions
is described. It combines the use of the Weizsacker-Williams method for low-energy transfers and
existing calculations for high-energy transfers. Higher-order corrections to the total cross section
are calculated based on the Weizsacker-Williams method and existing results for pair production by
photons.

I. INTRODUCTION

Calculation of direct pair production by charged parti-
cles was done in the 1930's by Bhabha, ' Racah, and Lan-
dau and Lifshitz, and more recently by Murota, Ueda,
and Tanaka (MUT), Ternovskii, Kelner, and Kelner
and Kotov (KK). Kokoulin and Petrukhin have given
an approximate formula based on Refs. 4—6 and Wright
has given a critical review of existing calculations. The
Bhabha calculation applied second-order perturbation
theory to the Dirac equation with the Coulomb field of
the incident particle considered as the perturbation. This
calculation is accurate in principle but the results are
difficult to evaluate without making approximations. The
other calculations are based on the standard lowest-order
QED calculation. The MUT calculation separates the
contributions from transverse, longitudinal, and scalar
photons from the beginning, while the KK calculation
uses the usual summing procedure to include all the pos-
sible polarizations of the particles involved. The MUT
procedure also uses a different coordinate system from
the KK calculation to do the integrations and the KK
procedure has a more sophisticated treatment of screen-
ing. However, both calculations start from the same ma-
trix element and should give equivalent results.

Refs. 1, 4, and 7 show that the approximation known
as the Weizsacker-Williams (WW) method' ' is a good
one in these calculations and that the results of the calcu-
lations agree with what is expected from the WW
method. This method is based on a Fourier decomposi-
tion of the Coulomb field of the incident particle followed
by an integration over impact parameters (see Jackson' ).
The results are accurate in this case provided the incident
particle Lorentz factor y satisfies the condition y »1
and the energy transfer e (units of electron rest-mass en-
ergy will be used throughout) is such that e «y. The
WW method has an undetermined parameter which cor-
responds to the minimum impact parameter assumed,
however, and this makes it difficult to get specific results
from the calculations. The MUT calculation also has an
undetermined parameter in the final result as does the
Bhabha result. However, the KK calculation has no such
undetermined parameter, although it is only good when
all the particles involved are relativistic. We therefore
adopt the procedure here of comparing the KK and WW

results in a range of energy transfer where they both
should be valid, i.e., e »1 and e ((y, and thereby deter-
mine the appropriate value of the undetermined parame-
ter in the WW equivalent photon spectrum.

Use of the WW method allows us to improve existing
calculations in two ways. First, we can use known results
for the cross section for pair production by photons to
more accurately include the contribution from the low-
energy transfer region e =2. In particular, we can use the
Racah formula for the total cross section for pair produc-
tion by low-energy photons (see Motz, Olsen, and Koch'
for a review of formulas for pair production by photons).
This Racah formula is the Bethe-Heitler cross section in-
tegrated over all angles and possible energies of the pro-
duced electron and positron. It is not possible to express
it in closed form but we will use a numerical approxima-
tion due to Maximon which is listed in the Appendix.
Secondly, we can include higher-order corrections to
photon pair production calculated by Qverbr(, Mork, and
01sen' and Davies, Bethe, and Maximon. ' These re-
sults are available as tabulated results for low-energy
transfer and as approximate formulas for higher energy
as listed in the Appendix. These calculations include
higher-order terms in absorber atomic number Z2.

So the plan of the calculation is to use the tabulated re-
sults of KK for high-energy transfer, since these are the
most accurate results available in this region and also
have the best treatment of screening, and to join these to
the WW results for low-energy transfer. We will com-
pare the results in the region where both calculations are
valid. Higher-order corrections from Refs. 16 and 17 and
the results of KK will be interpolated and integrated nu-
merically to obtain the total cross section. An indepen-
dent calculation using the WW approximation will also
be described which terminates the integration at e =y.
This turns out to give good agreement with the more ac-
curate calculation.

Higher-order terms in projectile atomic number Z,
will not be calculated here but we believe they are small
for the following reasons. Reasoning in analogy to the
case of energy loss of heavy ions, there are higher-order
corrections in Z& from two sources. Low-energy correc-
tions arise from the dipole approximation (see Ahlen' for
a review) but any similar effects should be small for the
higher energies considered here because of the validity of
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II. THEORY

We first describe the WW theory as given in Ref. 10.
For an incident ion with y »1 the number of virtual
quanta per unit energy interval N(e) is given by (Ref. 10,
Eq. 15.59)

N(e) = 2Z )Q
[ln(1. 123yA!eb;„)——,

' ],
where b;„ is the minimum impact parameter and Q is
the fine-structure constant. We will write this as

the WW approximation for low-energy transfer. Also,
there are higher-order terms for the energy loss calcula-
tion for high-energy transfers due to the distortion of the
electron wave function by the incident ion (see Eby and
Morgan' and Eby and Sung ). It is possible that an
analogous effect exists in this case but it should make lit-
tle difference to the total cross section since the high-
energy transfers contribute little to the total cross sec-
tion. At any rate, experiments should be able to resolve
this issue.

The motivation for this calculation is the recently sug-
gested possibility of measuring energies of very-high-
energy heavy cosmic rays by counting the pairs produced
in emulsions. The feasibility of doing this is being studied
at the present time.

computed using the formula in the Appendix. Compar-
ison of this with Eq. (2) allows us to determine e as we
will show. We can then use the combination of the WW
result for low-energy transfer with the KK result and ob-
tain the total cross section by numerical integration. The
corrections to the Born approximation are then comput-
ed using the gverbe( et al. results to include higher-order
corrections to the photon pair production cross section
with the same type of numerical integration performed.

According to MUT screening is important if

2e+ e
« Qzp /M

y daNs(e+ e —)+ f N(e)de 2 f de+
e + de+

where e and e+ are the electron and positron energies
and M =1+e+e /y . Neglecting the second term in
M we see that the dividing line between the regions of
screening and nonscreening is given by

e, + = (e /2)(1++1 —e, /e ),
where e, =2/(aZz~ ). No roots exist for e (e, so we can
write an expression for the total cross section based only
on the WW method as

e
O. T= N e o.z e de

X(e)= 2Z]Q
[ln(y/e )+e], dos(e+, e )f+ de+

S de+
(3)

where

e= ln( l. 123K,/b;„) —
—,
'

and A, is the Compton wavelength of the electron. This
distribution is valid for e «y and the more accurate ex-
pression involving Bessel functions goes rapidly to zero
for e )y. Equation (1) should be a good approximation
for e «y but as already mentioned the parameter e is
not determined a priori. So we compare the WW method
with that due to KK. This is a treatment based on the
lowest-order Feynman diagrams listed in Ref. 7. The re-
sult is expressed as

dcrKKlde =(16/n)[(Z&Zzaro) '][F(E,v )/e], (2)

where E is the incident particle energy, v =e/E, and ro is
the classical electron radius. This calculation was done
for muons but should be valid for any heavy particle.
The results for F(E,v) are tabulated in KK for Zz= 11
and 82. They are assumed to scale as Z, . These results
have no undetermined parameter and include screening
in a more sophisticated way than the other available cal-
culations.

The WW result for the cross section do.~~/de for pair
production is then given by

do'ww/de =N(e)o z(e ),
where os(e) is the Racah expression for the total cross
section for pair production by photons, valid for any elec-
tron and positron energy and neglecting screening. It is

The expressions for daNs/de+ and dos/de+ are the
high-energy Born approximation formulas given in the
Appendix (where the subscripts NS and S refer to non-
screened and screened, respectively). We will see that
this formula gives close agreement with the one based on
a combination of the WW and KK results as described
above, even though the integration is terminated at e =y.

The corresponding result from MUT is

28 2
aMUT (Z, Zzaro ) ln(e, /2 )

277T

X [31n(aMUTy)ln(2y/e, )+ln(e, /2) ],
where QMUT is the undetermined parameter in the calcu-
lation. Bhabha [Ref. 1, Eq. (47)] gives essentially the
same formula except there are additional arbitrary con-
stants in the terms containing e, . Ternovskii also gives
the same formula except e, is replaced by (190/Zz~ ).

III. RESULTS FOR 200 GeV/NUCLEON

We first describe results for an incident particle energy
of 200 GeV/nucleon since beams are now available from
the Centre Europeen de Recherches Nucleaires (CERN)
heavy-ion accelerator at this energy for Z& =8 and 16.
Figure 1 shows a comparison of the tabulated results of
KK for y =200 and Zz = 11 as compared to the W W
method for various values of the undetermined parameter
e occurring in X(e). We see that the value of e that best
matches the KK calculation for intermediate energies
where both calculations should be accurate is t =0. The
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FIG. 1. Differential cross section per unit energy transfer e
normalized as shown for the KK tabulated data for Z2=11
compared to the WW calculation for various values of e and

y =200.

oz(e) used in the WW calculation was the complete Ra-
cah formula with no screening using the reduced formula
due to Maximon as listed in the Appendix. This formula
is accurate to one part in 10 . Neglect of screening is val-
id for the low-energy transfers where this formula is used.
If we join the WW calculation to the KK calculation at
e=20 where they agree then the combined curve will
give the best estimate of the correct cross section. The
KK curve is the interpolated values using cubic spline in-
terpolation. The combined curve has been integrated nu-
merically and the results are given in Table I. We see
that the use of the KK+WW (e=O) curves increases the
KK result for the total cross section by 3.5%%uo for Zz = 11
and 6% for Zz =82. (These Zz values are the only ones
that were tabulated in KK.) The curve for e= —,

' gives a
value for the total which is about 7% higher than the
a =0 curve for Zz = 11 where the curves have been joined

Energy Tr ~~er (me~ units)

FIG. 2. Differential cross section per unit energy transfer e
normalized as shown for y=200. The MUT calculation for
various values of aMUT is compared to the tabulated values of
KK with Z2 = 11 indicated by + and the approximate formula
due to Kelner [Eq. (Al) of the Appendix] given by the solid line.

as shown in the figure. For e= —
—,
' the WW curve does

not cross the KK curve and we see that the total cross
section is about half the @=0 case if we integrate out toe,„=120 where the curve goes to zero. In the other
cases the upper limit of integration was taken to be
e „=1000—1500 and the results were found to be in-
sensitive to this choice since the KK curve goes quickly
to zero for e) 200. Because the e8'ective Zz for emul-
sions is =40 the correct results for emulsion should be
intermediate between the Z2 =11 and 82 so we believe
the best estimate for the total cross section normalized as
shown is

cJ /[(2/~ )(aZ, Z2 ro ) ]=30,
with an accuracy of about 10%.

TABLE I. Total cross sections calculated from the theoretical formulas based on KK, WW, and
gverbg et al.

Theoretical formula

Total cross section for y=200 and e,„=1500
Kelner(Z, = 11)
Kelner(Z& =82)
Kelner(Z& = 11)+WW(&= 4)
Kelner(Zz = 11)+WW(&=0)
Kelner(Zz =82)+WW(e=O)
Kelner(Z2 =82)+WW(@=0)+gverb5(Z& =44)
Kelner(Z2 =82)+WW( a =0)+0verbd(Z2 = 82)
ww(~= —-')

2

cr/[(2/n. )(a Z, Z2ro )]

30.0
28.4
33.2
31.1
30.0
29.4
27.7
15.8

Total cross section for y=2X10' and e,„=10
Kelner(Z2 = 11)+WW(e=O)
With Qverbd(Z2 =44)
With gverbd(Z2 =82)

499.0
486.0
464.0

Total cross section for y=10 and e,„=10'
Kelner(Z2 = 11)+WW( e=0)
With gverbgf(Z2 =44)
With gverb~(Z2 =82)

216.0
210.0
199.0
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Figure 2 shows the results of a numerical integration of
the doubly differential cross sections over the energy dis-
tribution of one member of the pair. The cross sections
used were the unscreened MUT expression [Ref. 4, Eq.
(23)] for aMUT=2 and —,'and we see that these give
reasonable agreement with the KK results for Z2 = 11 as
indicated by +. Also, an approximate formula from
Kelner [Ref. 6, Eq. (28) listed in the Appendix] was inter-
grated numerically for the unscreened case and we see
that this gives good agreement with the results of KK.
This further indicates that screening is not very impor-
tant at this energy and this is illustrated in Fig. 3 where
the KK curves for Z2=11 and 82 are compared. The
MUT results are dependent on an undetermined parame-
ter aMUT which is seen to limit the usefulness of this cal-
culation for obtaining precise predictions.

Figures 4 and 5 show the results of 0verb6 et al. ,
'

which we have used to calculate higher-order corrections
to the previously described calculations. Figure 4 gives
the values taken directly from the tabulated results of
Ref. 16. o.z is the Racah formula calculated as described
above. + and X represent the actual data used and the
lines the interpolated values used in the calculation. For
energy transfers above e =10 we used the approximate
formula given in Ref. 16 [Eq. (A2) of the Appendix] up to
the point where it crossed the Davies-Bethe-Maximon ap-
proximate formula [Eq. (A3) of the Appendix] valid for
large e. Above this point the latter formula was used as
indicated in Fig. 5 by the solid lines. We see that the
corrections can be quite large for low-energy transfer but
become small for the important energies in the present
calculation. For Z2 =44, for example, the exact curve is
about 5% lower than the Born approximation curve for
large energy transfer. In Fig. 6 the cross sections are
shown when these corrections are applied. There is very
little change in the Zz=44 curve and a slightly larger

change for Z2=82. The value of the total cross section
calculated using these corrections is decreased by about
2% for Z2=44 and 7.5% for Zz=82 as indicated in

Table I. This calculation neglects screening in including
the correction but this should not affect the result at this

3.0

2.0—

I

1.0 /

I.

0.0'
2 10

energy. Also, the exact pair production cross section has
not been computed above e = 10 so we have used the ap-
proximate formula of Ref. 16 [Eq. (A2) of the Appendix]
from e = 10 to where it joins the Davies-Bethe-Maximon
formula and this is probably a good approximation al-
though there are no data in this region to verify this. So
for emulsions the higher-order corrections to the Born
approximation should be no more than a few percent at
this energy.

Figure 7 gives the average angular distribution of one
of the members of the pair with respect to the primary.
It was calculated using the Sauter-Gluckstern-Hull for-
mula for d 0. /de+de+ integrated over de+ and over the
WW virtual photon spectrum with @=0 This formula is
displayed in Ref. 15, Formula 3D-2000, and is valid for a
point nucleus with no screening. This integration was
terminated at e =100 and increasing this upper limit
raises the angular distribution only for angles less than a
few degrees. We see that there are a few large angle pairs
but the bulk of them are less than 10. This distribution
is of interest in experimental methods of counting pairs in
emulsions.

Energy Tr ~~er (mo units)

F!G.4. Ratio of the total cross section for pair production
by photons calculated by @verb@ et al. to the Born approxima-
tion value for Z2=44 and 82. + and X are the data points
used and the curve gives the interpolated values used.
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FIG. 3. Comparison of the tabulated data of KK for the
differential cross section per unit energy interval e normalized
as shown for Z2 =11 and 82. y =200 and + shows the tabulat-
ed data points for Z~ =11.

Energy Tr ~~er (mei units)

FIG. 5. Ratio of the gverbgf et al. approximate calculation
of the total cross section for pair production by photons to the
Born approximation value for Z& =44 and 82. The solid curves
are the approximate Davies-Bethe-Maximon formula.
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FIG. 6. Diff'erential cross section per unit energy interval e

normalized as shown for y =200. The solid line is the KK cal-
culation with Z2=11 joined to the WW curve for @=0 as in

Fig. 1. The other two curves show the solid line with the
gverbgf et a1. corrections shown in Figs. 4 and 5 applied for

Z2 =44 and 8.
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FIG. 7. Angular distribution for either member of the pair vs

angle 0 with respect to the primary. @=200 for this curve and
the upper limit on the energy transfer was e =100.

FIG. 9. Same as Fig. 8.

IV. RESULTS FOR LARGE y
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Figures 8 and 9 show a comparison of the results of the
%'W calculation with the approximate formula do. z/de
due to Kelner and the tabulated results of KK for
Zz =11. For the two values of y chosen we see that the
results of all three calculations agree well throughout the
entire range of energy transfers although the tabulated
values in KK do not cover the lower values of e for
y =2X10 . This indicates that the %'%' approximation
improves in accuracy as y increases as expected.

Figure 10 shows the total cross section calculated from
the curves in Figs. 8 and 9 as the points designated by X.
To obtain these values, we used the WW calculation for
e &250 and the tabulated values of KK with Z2 =11 in-

terpolated as before for e & 250. This was done because
the KK calculation is the most accurate for e-y and
thus handles the high-energy transfers more accurately.
The previous y=200 result is also included. Table I
shows the corresponding calculation using the gverbgi
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FIG. 8. Differential cross section per unit energy interval e

normalized as shown. The solid curves are the WW calculation
and the dots and dashes are the approximate Kelner formula
do.K/de listed in the Appendix for the indicated energies. +
and X indicate the tabulated data from KK for Z2 = 11.

FICx. 10. Total cross section for pair production normalized
as shown as a function of incident ion Lorentz factor y. Solid
curve is calculation based on Eq. (3) and dashed line is the ap-
proximate formula due to MUT [Eq. (4)]. X indicates the re-
sults of the numerical calculation based on the combination of
the WW and KK results as described in the text. Z, was taken
to be 47 for the solid and dashed curves and aMUT=1 was as-
sumed for the dashed curve.
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et al. corrections shown in Figs. 4 and 5. The correc-
tions are about the same as for y =200. For Z2 =44 the
results are lowered about 2.5% and for Z2 =82 they are
lowered 7 —8%. This is about half the value of the
corrections shown in Fig. 5 over the range of important
energy transfers. Thus the large corrections for low-
energy transfer (of opposite sign) do not have much effect
on the total cross section at the higher energies con-
sidered here. The solid curve is the result of the WW cal-
culation [Eq. (3) with e=0] described previously which
includes both the screened and nonscreened region and
terminates the intergration at e =y. Z2 was taken as 47
for this curve. We see that this curve is in remarkably
good agreement with the calculation indicated by X,
considering it was a completely independent calculation.
The dashed curve is the formula due to MUT [Eq. (4),
Zz =47, aMUT= 1] which is often quoted in the literature.
This curve is considerably higher than the other two
curves, primarily because the approximations made in
the formula which is integrated are not accurate.
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APPENDIX

For completeness, we list the formulas we have used in
the calculation described in the text.

The Racah formula was calculated using the expres-
sions due to Maximon

22& e 2
o ~(e) =aZ~ro

3

higher-order corrections to the total cross section reduce
it by only a few precent for intermediate absorber Z2 and
by as much as 7—8 go for Z2=80 over a large range of
energies.

V. CONCLUSIONS

We have shown that the total cross section for pair
production by heavy ions as calculated here is consider-
ably smaller than existing calculations due to our im-
proved treatment of low-energy transfers and a more ac-
curate integration of the diff'erential cross section. The

where

2e —4
2+ e +2(2e) '

This was used for e & 3.8. For e ) 3.8 we used

2 2

o.z(e)=aZzro —", ln2e ——",,'+ — 61n2e ——,'+ —', ln 2e —ln 2e — ln2e+ +2g(3)

4

( —' ln2e +—')—2
16 8

6
29 77

9X256 27X512

with g(3) =1.202. Sverbe( et al. ' state that these formulas are accurate to 1 part in 10 in the regions indicated.
The approximate formula due to Kelner [Ref. 6, Eq. (28)] is

d o g 2Z Zzcz ro 7T
2(e+ +e + —', e+e ) [ln(2e+e /e) —

—,'][in(y /e+e )
—]-

de+de ne4 + ' + + 12

—
—,'(e+ —e ) [ln(2e+e /e) —1]

where e =e++e . This is valid for e «y and e+ &)1, e »1 and neglects screening. For reference, we define

dog e —1 d o~2

de+
de &

+ de+de
(A 1)

We have calculated this integral numerically for the examples given in the text. The approximate formula due to
gverb5 et al. for corrections to the Born approximation is

o /o~ = 1+a +b/(e —2),
where

(A2)

a = —0.488(aZ~ ) —0.07(aZ~ )

b =5.06(aZ~ ) —2. 1(aZ~ )

is formula is not derived rigorously but reasons are given in the paper to expect the formula is valid up to e =20.
The Davies-Bethe-Maximon formula is given by
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trDBM(e) tzZzro[ 9 ln(2e) —,"f—(Z2)
——",,' ]

The values for f(Zz ) used here are f(44) =0. 13 and f(82)=0.33 as given in Ref. 15.
For the calculation based on the WW method we used

(A3)

der Ns(e+, e )

Ge+

e+ +e +—'e+ e
=4 Z2 2

2 0 3e
[ln(2e+ e !e)

—
—,
' ],

dtTs(e+, e ) e +e +—e+e
=4aZ2r o

2 2

ck+ e
[ln(183Z2 ' )]+—,'(e+e /e )

These are approximate forms of the Bethe-Heitler cross section valid for e+ )) 1 and e )) 1 as given in Ref. 15 for the
nonscreened and screened cases.
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