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Gravity as a zero-point-fluctuation force

H. E. Puthoff
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Sakharov has proposed a suggestive model in which gravity is not a separately existing fundamen-
tal force, but rather an induced effect associated with zero-point fluctuations (ZPF's) of the vacuum,
in much the same manner as the van der Waals and Casimir forces. In the spirit of this proposal we

develop a point-particle —ZPF interaction model that accords with and fulfills this hypothesis. In
the model gravitational mass and its associated gravitational effects are shown to derive in a fully
self-consistent way from electromagnetic-ZPF-induced particle motion (ZitterbeiLIegung). Because
of its electromagnetic-ZPF underpinning, gravitational theory in this form constitutes an "already
unified" theory.

I. INTRODUCTION

5

CO
CO

fl f todco
0

' 1/2
c
AG

where co, corresponds to an effective Planck cutoff' fre-
quency of the vacuum zero-point-fluctuation (ZPF) spec-

gravitational theory, whether in its scalar Newtonian
form or its tensor general-relativistic form, is recognized
to be essentially phenomenological in nature. As such, it
invites attempts at derivation from a more fundamental
set of underlying assumptions, and six such attempts are
outlined in the standard reference book Gravitation, by
Misner, Thorne, and Wheeler (MTW). '

Of the six approaches presented in MTW, perhaps the
most far-reaching in its implications for an underlying
model is one due to Sakharov; namely, that gravitation is
not a fundamental interaction at all, but rather an in-
duced effect brought about by changes in the quantum-
fluctuation energy of the vacuum when matter is
present. ' In this view the attractive gravitational force
is more akin to the induced van der Waals and Casimir
forces, than to the fundamental Coulomb force. Al-
though speculative when first introduced by Sakharov in
1967, this hypothesis has led to a rich and ongoing litera-
ture on quantum-fluctuation-induced gravity that contin-
ues to be of interest. In this approach the presence of
matter in the vacuum is taken to constitute a kind of set
of boundaries as in a generalized Casimir effect, and the
question of how quantum fluctuations of the vacuum un-
der these circumstances can lead to an action and metric
that reproduce Einstein gravity has been addressed from
several viewpoints. These are treated in some detail in a
comprehensive review by Adler on gravity as a
symmetry-breaking effect in quantum field theory.

On the basis of heuristic and dimensional arguments
along general relativistic lines, Sakharov argues that in a
vacuum-fluctuation model for gravity the Newtonian
gravitational constant G should be determined by an ex-
pression of the form

trum. In this approach, the small (but finite) value of the
gravitational constant is an inverse reflection of the high
(but not infinite) value of the high-frequency cutoff'of the
ZPF.

In this paper we explore the Sakharov viewpoint on the
basis of a conceptually simple, classical model (but in-
cluding ZPF) in which matter, in the form of charged
point particles (partons), interacts with the ZPF of the
vacuum electromagnetic field. As part of this develop-
ment the model predicts (I) to be precisely of the form
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In order to constitute a self-consistent, viable basis for
gravitation, however, a first-order ZPF model for gravity
must provide not only a basis for calculation of the gravi-
tational constant G (shown to reflect the ZPF cutoff), but
must also account for the genesis of the gravitational
mass, and the attractive inverse-square-law force. In the
particular version of the Sakharov hypothesis pursued
here, the mass is shown to correspond to the kinetic ener-
gy of ZPF-induced internal particle (parton) motion (ZPF
"jitter, " or Zitterbetoegung), while the force is found to
be of a long-range retarded van der Waals type, associat-
ed with the broad-spectrum ZPF radiation fields generat-
ed by that same Zitterbewegung motion.

To arrive at the above results, basically we simply as-
semble together in a straightforward fashion previously
published results regarding ZPF models of van der Waals
and related effects in flat space-time. When this is done,
one finds the leading term in the interaction potential,
previously unexamined, to be Newton's law with no free
parameters to be fixed. In such a fashion the
identification of this term as gravitational emerges natu-
rally from the concatenation of the previously published
results. Yet further evidence for the correctness of this
interpretation is provided in Sec. VI, where details of the
pattern that emerges are presented in the context of a
self-consistent coherent picture of the underlying dynam-
ics of the gravitational force that conforms to the facts as
we know them.
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II. VACUUM ZPF ELECTROMAGNETIC FIELDS (REF. 8)

In the classical approach used here, point-
particle —ZPF interactions are treated on the basis that
charged point-mass particles interact with a background
of random classical electromagnetic zero-point radiation
with energy spectrum (as in the quantum-mechanical
case)
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As we shall see in the following sections, this assumption
is supported by the line of development presented here.

As a first step toward developing the hypothesized un-
derlying ZPF basis of the gravitational interaction, we
compare the forms of the spectral distribution of the ZPF
of the electromagnetic fields as seen from unaccelerated
and accelerated frames of reference.

Of particular significance with regard to the spectral
distribution in an unaccelerated frame, given by (3), is the
fact of its Lorentz invariance, which derives specifically
from the spectrum's cubic dependence on frequency. The
cubic spectrum is unique in its property that delicate can-
cellations of Doppler shifts with velocity boosts leaves
the spectrum Lorentz invariant. '

In an accelerated frame, on the other hand, the de-
tailed balance of Doppler-shift cancellations is negated,
with the result that the spectral distribution takes the
form"
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where a is the proper acceleration relative to a Lorentz
frame. This expression was originally derived by Boyer'
on the basis of the random classical ZPF background as-
sumed here. The purpose was to derive a result, first ob-
tained by Davies' and Unruh' within the context of

where the first factor in parentheses corresponds to the
density of normal modes, the second to an average energy
—,'A~ per mode. This treatment of quantum field-particle
interactions on the basis of a classical ZPF constitutes an
analysis technique known in the literature as stochastic
electrodynamics (SED). SED is a well-defined frame-
work that has a long history of success in yielding precise
quantitative agreement with full QED treatments of such
topics as Casimir' ' and van der Waals forces, ' topics
directly related to the one pursued here. In this approach
A appears in the above expression simply in the role of
scale factor, without need of quantum interpretation, and
all other appearances of A in the development can be
traced back to its appearance in this expression.

The spectral energy density represented by (3) formally
diverges as co . It is generally assumed, however, that the
spectrum is efIectively cut ofT'at a frequency roughly cor-
responding to the Planck frequency,

co = ( c /vari G )
' i

quantum field theory, which showed that, apart from an
additional density-of-states factor [ I +(a /roc) ], the spec-
tral distribution seen by an accelerating observer assumes
a thermal (Planck) form if one makes the identification
T =gaia /2nck (k is Boltzmann's constant; T, absolute
temperature). In commenting on the additional density-
of-states factor, Boyer points out that the additional con-
tribution beyond the thermal (Planck) form is related to
the space-time properties of an accelerating reference
frame. This gives us a clue that, via the equivalence prin-
ciple, this additional term can be related to the gravita-
tional interaction. '

Of special interest here, therefore, is not the thermal
term of interest in the original treatment, but rather the
leading terms

p'(co) =po(ai)+ bp'(co) = +Ace Acoa
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These indicate that an accelerated observer would see the
background ZPF spectrum augmented by a term propor-
tional to the square of the acceleration. Application of
the principle of equivalence then indicates that the addi-
tional spectral contribution seen in a frame with accelera-
tion a should also be seen in a nonaccelerated frame with
local gravitational field g produced by a gravitational
mass m . Setting g = —a= —1,Gm /r, we obtain

2
Gm

2

Thus the principle of equivalence predicts an addition-
al contribution to ZPF energy by gravitational mass, a re-
quirement that must be met in any ZPF-based theory of
gravitation. Since this additional contribution of energy
is electromagnetic in nature, we must ascribe to mass an
appropriate electromagnetic-field-generating function, a
point to which we return in Sec. IV.

III. ZITTERBE8'EGUNG MODEL

As our basic point-particle —ZPF interaction model, we
represent matter as a collection of charged point-mass
particles (partons), in accordance with standard theory.
In the development that follows it is not necessary to in-
voke the details of particular parton representations (e.g. ,
families of fractionally charged quarks) beyond certain
general concepts, such as the "asymptotic freedom" of
partons to respond to the high-frequency components of
the ZPF spectrum as essentially free particles. It is
necessary to focus to the charged-parton level, however,
in order to represent properly the essentially equal mag-
nitudes of proton and neutron contributions to gravita-
tional mass. This accounts for the fact that charged and
neutral matter participate equally in the gravitational in-
teraction, based on underlying charged-parton interac-
tions.

We begin our discussion of particle-field interactions
by examining the properties of a simple charged harmon-
ic oscillator of natural frequency coo (corresponding to a
binding force that is linear in displacement from equilib-
rium), located at the origin and immersed in zero-point
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radiation. The (nonrelativistic) equation of motion for a
particle of mass m0 and charge q, including radiation
damping, is given by
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If we introduce the dipole moment, p =qr, and the damp-
ing constant,

I =q /6me0m0c

we can write (7) in a form convenient for later discussion,

p+coop=l p+6neoc I Ezp (8)

We will also be particularly interested in the kinetic ener-

gy, 8= —,(mor, which becomes
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Once written in this form, the oscillator equation of
motion (8) and energy equation (9) refer only to the global
properties of the oscillator (dipole moment p, natural fre-
quency coo, and damping constant I ), and do not involve
individual mechanical properties of the oscillator such as
charge or mass.

With regard to the ZPF fields, the vacuum is assumed
to be filled with a random classical zero-point elec-
tromagnetic radiation whose Fourier composition under-
lies the spectrum given in (3). Written as a sum over
plane waves, the random radiation, which is homogene-
ous, isotropic, and Lorentz invariant, can be expressed as

ik-r —inst+i 0(k, o )Xe

where o. =1,2 denote orthogonal polarizations, c, and k
are orthogonal unit vectors in the direction of the electric
field polarization and wave propagation vectors, respec-
tively, 8(k, o ) are random phases distributed uniformly
on the interval 0 to 2' ( independently distributed for
each k, cr ), and co =kc.

It is at this point that we need to consider the
correspondence between the above equations and the
parton-ZPF interaction of interest. First, we treat the
parton as a two-dimensional (rather than three-
dimensional) oscillator, drawing on previous studies that
model spin as the "internal" angular momentum associat-
ed with two-dimensional Zitterbeuegung motion. '

Second, because we are interested primarily in the
particle's high-frequency Zitterbemegung response to the
ZPF, whose spectral density increases as co, we may to
first order neglect the binding-force term involving co0

(asymptotic freedom as it relates to the ZPF). Finally, we
also neglect the radiation-damping force in comparison
to the inertial force and ZPF driving terms. (Alternative-
ly, the restoring-force and radiation-damping terms can
be carried through in the derivations that follow, and ap-
propriate approximations introduced at the end, without
change of result. )

To obtain the expectation value of kinetic energy
of the Zitterbetcegung motion given by (9), ( ( )
=(p )/12meoc I, we follow a procedure due to Rue-
da. Under the asymptotically-free-particle assumptions
stated in the paragraph above, the x component of (8)
takes the form (with x a unit vector in the x direction)
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Integrating once with respect to time, we obtain
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The expectation value (p„) then follows from
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where use of the complex conjugates and the notation —, Re stems from the use of exponential notation. Equation (14)
can, however, be simplified to

2
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where averaging over random phases involves the use of

( exp[i(k —k') r.+i&(k, o ) i—8(k', o')]) =5 5 (k —k') .

With f d k ~ f d 0& f dk k, and the angular integration in k taking the form
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we can rewrite (15) (with a change of variables to co =kc) as
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For the two-dimensional Zi tterbewegung motion as-
sumed,

(p') =2(p„') =12m,iric'r'co2,

which, when substituted into (9), yields

(20)

where cu, is the assumed cutoff frequency, to be deter-
mined later. '

For ~, r ))1, (p, ) reaches the value

originating in parton-motion response to the electromag-
netic zero-point fluctuations of the vacuum. It is there-
fore simply a special case of the general proposition that
the internal kinetic energy of a system contributes to the
effective mass of that system. This derivation of mass
as an internal kinetic energy of motion is thus the first re-
sult derived from the Zitterbemegung model. As will be
shown in later sections, it is this mass that is involved in
the gravitational interaction.

IV. ZITTERBES'EGUNG FIELDS

(21)

It is thus seen that the expectation value of the kinetic
energy of parton Zitterbeuegung motion reaches a finite
magnitude, limited by the finite value of the (as yet un-
determined) ZPF cutoff frequency. The energy calculated
in this way is in the nature of the so-called "transverse
self-energy" (in QED) of a particle in response to the elec-
tromagnetic zero-point Auctuations of the vacuum.
Since the energy associated with this Zitterbeuregung
motion is an internal particle energy, that is, not directly
observable, we identify this energy as that corresponding
to the rest-mass energy of the particle, rn,

We turn our attention now to the fields generated by
the ZPF-induced Zitterbemegung motion. Considering,
say, the x component of motion, we find that an assumed
e ' ' time dependence substituted into (8) yields for the
magnitude of any particular frequency component

6~@pc I
P„(co)= — (e x)Ezp(co),

CO

(24)

where the overtilde designates the magnitude of a fre-
quency component, and once again we have neglected the
binding and radiation-damping forces. This expression
can then be combined with the ZPF-field expressions (10)
and (11),and the standard oscillating dipole formulas
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In this view the particle mass m is of dynamical origin,
I

&s will be shown in Sec IV, co, =(m.c /fiG)', in which
case (22) reduces to

Hz(co) = Re Pe '"'F
4m
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to yield expressions for the dipole fields generated by the
Zitterbemegung motion, viz. ,
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where, with r a unit vector in the direction joining the dipole to the field evaluation point,
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The energy density in the dipole-field distribution can be calculated from (27) and (28) as
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This reduces to
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Since in the final analysis we are interested in the net
contribution of a large collection of randomly oriented
individual particle motions, we average over the solid an-
gle to obtain

where we have made use of (17), and have averaged over
random phases by the use of 1, 2 . AcIbpd(cd)= z hpd2mr singdP=
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Since according to (22) there is a relationship between I
and the particle mass m for ZPF-driven Zitterbewegung
motion, (37) can also be written

The part of the integrand in parentheses in (32) can be
evaluated by means of (29) and (30), and yields
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This expression, obtained on the basis of considering a
single (x) component of motion, must be doubled to take
into account the contributions of the two (independent)
degrees of freedom in the model. This leads then to an
overall spectral density

3ficl icos g&pd(~) =
2m2r4

(36)

where g is the angle measured from the dipole-motion
unit vector I to the evaluation-point unit vector r. The
first term proportional to 1/r constitutes the radiation
field associated with the ZPF-driven dipole. As shown
previously by Boyer, this radiation just replaces that be-
ing absorbed from the background, on a detailed-balance
basis with regard to both frequency and angular distribu-
tion, and therefore does not result in an incremental
change to the background. Of the two remaining (induc-
tion) field terms, the I /r term predominates at large dis-
tances, and is therefore the one of interest here. Desig-
nating the term of interest by a prime, we have

Zitterbewegung motion therefore leads to the generation
of an electromagnetic field distribution in proximity to
the mass that is proportional to frequency times mass
squared, divided by r, and upon detailed examination is
found to be half electric, half magnetic. According to (6),
moreover, a field of just this form is required by the prin-
ciple of equivalence. Under the assumption that the
gravitational and rest masses are identical (mg =m), (6)
and (38) can be equated to obtain the cutoff frequency

' 1/2
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We see therefore that the principle of equivalence re-
quires a certain modification of the ZPF background by
gravitational mass, and that the Zitterbewegung model of
mass implies a similar modification. Furthermore, the
compatibility of the two conditions on a precise quantita-
tive basis requires only the equivalence of gravitational

which satisfies the Sakharov condition (1). In terms of
the cutoff' frequency cd„(39) can be inverted to yield the
gravitational constant G in the form of the second (nonin-
dependent) Sakharov condition, namely,
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and rest masses, and a limiting cutoff frequency for the
ZPF background on the order of the Planck frequency.
This specification of the cutoff frequency co„and its rela-
tionship to the gravitational constant G, is thus the
second result derived from the Zitterbemegung model.
Thus we have a derivation that yields the relationships
postulated to exist in dynamical scale-invariance-
breaking models of gravity as a symmetry-breaking
effect. D rad ~2 (48)

we neglect the binding and radiation-damping terms
[terms in coo and I in (45)]. Furthermore, on the scale of
interest in gravitation (distances large compared with the
wavelengths of the predominant Zitterbemegung frequen-
cies), in calculating the force we retain only the radiation
field term ~ 1/kR. With these assumptions, (45) —(47) be-
come

V. GRAVITATIONAL FORCE
ikR

rad rad 3 p 3 rad p
kR ' (49)

The derivations in Secs. III and IV dealt essentially
with the characteristics of single masses. In this section
we investigate the interaction between two such masses.

The starting point is equations of the form (8), written
for two masses, but modified to take into account the fact
that each mass experiences not only the background ZPF
field, but also the ZPF-driven dipole field of the other
mass. The procedure followed here is precisely that
developed by Boyer for the derivation of the retarded van
der Waals forces at all distances between a pair of polar-
izable particles. Therefore we need only outline the
procedure as it applies to our case.

Two masses A and 8 (taken here to be equal for ease of
discussion) are assumed to be located at positions r„and
r~, respectively, with 8 located a distance R from A,
along the positive z axis of a coordinate system centered
at A. The equations of motion, generalized from (8), take
the form.

F=(p.V)E+ XB .dp
dt

(50)

Following Boyer, we note that the time-averaged
force can be transformed as

(F&=((p.V&E&+ XB)
dp
dt

=((p.V)E)+ (pX(V&&E) ),
where the transformation of the second term

(51)

Solutions for p„(co) and pa„(co) are obtained straight-
forwardly from (43) and (44), subject to the conditions
(48) and (49). It is then necessary to construct from these
solutions the appropriate (van der Waals) forces between
the pair of particles A and 8. From classical theory the
force on a dipole is given by

pe+coop„= I p"„+6neoc PE.zp(r~, t)
XB =— XBdt (52)

+6rreoc I Eqa(r„, t),
pa+coopa =I p +6vre c I Ezp(ra, t)

+6m.eoc I Ez„(ra, t),

(41)

(42)

follows from an integration by parts and substitution
from Maxwell's equations, noting that the end-point
terms do not contribute to the time average. Manipula-
tion of the vector operators in (51) then leads to the rela-
tively compact form

Dp& (~)+iI pa„(co) =6meoc I Ez. p (cu, r„),
Dpa (co)+iI„p& (co) =6vreoc I Ezp (co, ra )

(43)

(44)

and similar equations for the y and z components, where

D = ~ + (45)

3e' 1 1

(kR) (kR)'
(46)

(kR )

where Eza(r„, t) is the dipole electric field at the position
of particle A, due to the motion of particle B, and so
forth.

As in the derivations of previous sections, an assumed
e '"' time dependence yields (for the magnitude of any
particular frequency component) equations of the form

(F)= (p VE, +p VE~+p, VE, ) . (53)

BE BE BE,F(&(F, &(p.
*

+p, ' +F, (54)

In determining the average force on, say, dipole B, we
must keep in mind that the electric field at B consists of
both the background ZPF field and the dipole field due to
particle A, so that, for example, the first term in (54) be-
comes

B Bpa„E (ra, t) = pa Ezp (ra t)

One further reduction is possible. The symmetry of
the geometry dictates that the average force on a dipole is
along the z axis joining the two particles. Therefore the
expression for the average force finally simplifies to

l 1

(kR) (kR)
(47) B+ Sa. E~~ rat

Bz
(55)

The latter expressions for g, etc. , are derived for the
geometry under consideration from the dipole expres-
sions (25) and (29).

Consistent with the assumptions of previous sections,

and so forth.
The mathematics of carrying out the averaging then

proceeds term by term as in Ref. (27), using (as in previ-
ous sections) the —,

' Re and complex-conjugate notation,
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including averaging over random phases. The result for
the special case of interest here (radiation field only, bind-
ing and radiation-damping forces neglected) is, in terms
of the potential U,

9 Qc I "c e
—2uR

U = —— Re du
4 0

u—
R

(56)
c

~ 1 —cos(2% ) y sin%
2 J 7 J (57)

where

AI co, co R
(58)

With the potential thus defined, the force is obtained
from

aU
BR

(59)

We see therefore that the potential has the desired 1/R
dependence required for gravity, modulated by a fine-
structure overlay of the form [(sinR)/%] which has a
spatial periodicity characteristic of the cutoff (Planck)
frequency ( —10 cm). If we extract the leading (nonos-
cillatory) term, we find for the potential and force

c + ~ ~ ~

m.R

cI 2cu2

+ ~ ~ ~

~R

(60)

(61)

A careful examination of the details of averaging over
the rapid spatial variation (see Appendix B) indicates that
the particle experiences an average force (F) given by
the leading term in (61). With I given by (23) and co, by
(39), (F ) can then be written in Newton's law form (with
no adjustable parameters required),

6 2(F)=-G, . (62)

The only difference here as compared to the derivation in
Ref. 27 (aside from the specialization to the radiation
field term) is the use of a finite cutoff frequency.

This result is derived here and in Ref. 27 on the basis
of point particles interacting with a classical zero-point
field. For those who might be more familiar with stan-
dard quantum calculations, this result has also been ob-
tained by Renne from quantum-electrodynamic calcula-
tions using a nonrelativistic-quantum-oscillator model,
and by Casimir and Polder ' using fourth-order perturba-
tion theory in quantum electrodynamics.

Equation (56) was derived for the case in which three
degrees of freedom for particle motion are assumed. For
the two-dimensional Zitterbemegung motion assumed in
our case (N =2), geometrical considerations require that
U be reduced by a factor (N/3) = —,'(see Appendix A).
With this taken into account the solution to (56) becomes

'2

This derivation of Newtons's law, which expresses gravi-
ty as a van der Waals force, is thus the third and final re-
sult derived from the Zitterbemegung model.

VI. DISCUSSION

We begin our discussion by reiterating the logic flow of
the approach pursued here. The basic thesis is the Sak-
harov proposal that gravity is not a separately existing
fundamental force, but rather a residuum force derived
from zero-point fluctuations of other fields in the manner
of the Casimir and van der Waals forces. Particularizing
this hypothesis to the ZPF of the vacuum electromagnet-
ic field, we identify the gravitational force as the van der
Waals force associated with the long-range radiation
fields (as opposed to the usual shorter-range induction
fields) generated by the Zitterbewegung particle (parton)
motion response to the ZPF of the electromagnetic field.
The steps in this identification are three.

First, particle mass is defined as the "internal" (that is,
unobserved) kinetic energy of Zitterbewegung motion. Its
value is set by a radiation damping constant I intrinsic to
the particle, in conjunction with the value of the univer-
sal cutoff frequency co, . Second, the value of the cutoff
frequency cu, is determined by the equivalence principle.
This principle sets a requirement that an expected addi-
tional contribution to the free-space Lorentz-frame ZPF
spectrum, viewed from an accelerated frame, is to be
equated to a similar contribution expected in an unac-
celerated frame, but in a gravitational field (that is, near a
particle performing Zitterbewegung motion, and thereby
generating a mass term). Third, a straightforward calcu-
lation of the long-range van der Waals force associated
with the radiation-field-correlated motions of such parti-
cles, whose parameters are determined by the above two
steps, leads to Newton's law with no free parameters to
be fixed.

With a detailed theory in hand, certain attributes of
the gravitational interaction become explicable in funda-
mental terms. As mentioned earlier, the relative weak-
ness of the gravitational force is due to the fact that the
coupling constant determined by (40), G = trc /fico„
reflects as the inverse square the high value of the ZPF
cutoff frequency. With regard to the attractive nature of
the force, this is simply a reflection of a property typical
of van der Waals forces in general. The fact that gravita-
tional interaction is characterized by a unipolar (single-
valued) "charge" (mass) can be traced to a (positive only)
kinetic energy basis for the mass parameter.

The lack of shielding effects in gravity can also be
comprehended on a rational basis. As understood here,
this is a consequence of the fact that ZPF "noise" (quan-
tum noise) in general cannot be shielded, a factor which
in other contexts sets a lower limit on the detectability of
electromagnetic signals. Specifically, in the case of ordi-
nary electromagnetic shielding, macroscopic materials
constitute dense boundaries that substantially alter field
distributions, with shielding one consequence. In the
gravitational case as modeled here, however, matter con-
stitutes a dilute particle gas in an essentially high-
frequency Hohlraum. As a result, particle-ZPF interac-
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tions have negligible effect on the overall field distribu-
tion (hence a lack of shielding), while nonetheless permit-
ting particle-particle interactions that lead to an attrac-
tive potential.

In addition, implicit in the development pursued here
are issues that extend beyond the gravitational interac-
tion, such as mass renormalization and possible ZPF-
induced contributions to the binding forces within the nu-
cleus. ' However, of the many inferences that can be
drawn from this study, the most important is simply the
fact that it is possible to carry through the basic Sak-
harov program, namely, to uncover a basis for gravity in
the ZPF of other (nongravitational) fields. In particular,
we have been able to explicate a first-order model based
on the ZPF of the vacuum electromagnetic field alone,
once we take into account its effects on particle motion.
The model thus details an electromagnetic basis for gravi-
ty. Assuming the model is a proper representation of the
gravitational interaction, the "already unified" aspect of
the model would seem to mitigate against canonical at-
tempts at unification of gravity as a separate force, or
quantization of gravity as a separate field, in favor of a
viewpoint more aligned with that presented here.

It is therefore seen that a well-defined, precise quantita-
tive argument can be made that gravity is a form of
long-range van der Waals force associated with particle
Zitterbemegung response to the zero-point fluctuations of
the electromagnetic field. As such, the gravitational in-
teraction takes its place alongside the short-range van der
Waals forces and the Casimir force as related phenomena
which emerge from the underlying dynamics of the in-
teraction of particles with the zero-point Auctuations of
the vacuum electromagnetic field.
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APPENDIX A: DIMENSIONAL REDUCTION FACTOR
FOR COUPLING CONSTANT

APPENDIX B: AVERAGE FORCE

In the Zitterbemegung model of gravity, the two-
particle interaction potential based on the radiation field
van der Waals effect is given by (57), repeated here,

2
S1IL'8

Jq
U=—~ 1 —cos(2%)

2 W3

As seen, this expression can be factored into two parts,
one with a slow spatial variation, I/%, and one with a
rapid spatial variation (on the order of the Planck wave-
length), [(sinR)/A] . Of interest in the gravitational in-
teraction is not the rapidly varying component, but rath-
er an average value, averaged over a distance large com-
pared to the Planck wavelength. With the potential
given by (Bl), the (normalized) force is given by

aU ~a
a~ 2 a~

1 —cos(2% )

%3 (B2)

As particle separation changes by an amount ~, the
corresponding change in potential is given by

J7, +~
b, U= —f Vd%

pzy, and p~, to p~, .
For the two-dimensional Zitterbemegung motions po-

sited here, however, we may for convenience analyze the
couplings on the basis of assuming a random distribution
of one-third each of x-oriented dipoles (y-z motion), y-
oriented dipoles (x-z motion), and z-oriented dipoles (x-y
motion). For two x-oriented dipoles, both y and z
motions couple, yielding a contribution proportional to
g +g, . For an x-oriented dipole (y-z motion) coupling
to a y-oriented dipole (x-z motion), only the z components
couple, leading to a contribution proportional to g, ; and
so forth. For the nine possible dipole-pair combinations,
straightforward enumeration of the possibilities leads to
an average coupling factor proportional to

(47t +4g +4g, )/9= —4(g„+g +g, ) .

As a result, for the two-dimensional motions of interest
here, a reduction factor of —', is to be applied to the value
of the coupling constant obtained for the general three-
dimensional case without constraints.

As discussed in Sec. V, the attractive force between
particles derives from coupling between ZPF-induced di-
pole motions of the particles involved. The nature of the
coupling is simplified somewhat in that the coupling
takes place only between corresponding components of
the motions of the two particles; that is, between p~„and
pz~, p ~y and pgy 7 and p ~, and p~, . This can be seen in
the form taken by (43) and (44).

In the derivation which leads to expression (56) for the
interaction potential U, reference to the original deriva-
tion in Ref. 27 shows that the potential is proportional to
the quantity (g +g +g, ), where rI„, etc. , are as given
here in (46) and (47). That derivation assumes full three-
dimensional motion, with p~ coupling to pz„, pQy to

1 —cos(2% )

%3
d

1 —cos[2(%, +~)]
(A;+hA)

1 —cos(2%, )

-8,'

1 —cos(2%, )AU=
2 W4

'
(B3)

Assuming integration over a full cycle of the Planck vari-
ation so that cos[2(JP;+~]= cos(2%, ), and recogniz-
ing that A% (&%, so that (%;+~) =%, +3%~6', we
find that (B3) simplifies to
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The change in potential, integrated over a cycle, is seen
from (B4) to be sensitive to where in the cycle, 8, =2%;,
the integration was begun. The auerage change in poten-
tial is therefore determined by averaging over the range

I

of possible initial starting points within the cycle, namely,
urn ~%; ~ n(n + 1), where n is an integer n ))1.

By reference to standard tables of integrals we find,
using (B4),

Qn+1)
2g Lk/x1

%3
7f.n

&aU) =—f SUd~,
77 77'n

2 cos(2%; ) sin(2%; ) cos(2%; )+ +
(2%; ) (2%; )

(2%, ) (2%; )+ 2g + ~ ~ ~
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- - ~(n+&i

77n

Substitution of the limits of integration, with the recognition that n )&1 implies that (n +1)t'=n~+pn~ ', then leads
to

y ~ 2y ~ 2
(2trn ) (2nn)

(pm ) 1Tn 3! 5!

But the term in large parentheses is recognized to be sin(2n. n) =0, so that & b, U ) becomes

&aU)= y

(B6)

(B7)

from which the average force can be calculated as

&p) &bU) y
2 (B8)

The actual (unnormalized) force, F = —t) UIBR, is recovered from the above with the aid of (58), yielding

&F)= '&V)=— c P~co2

vrR
(B9)
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