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In this paper we present a realization of the concept, first put forth by V. Efimov [ Few Body Dy-
namics, edited by A. N. Mitra et al. (North-Holland, Amsterdam, 1976)], of enhancing the Efimov
effect by placing the three particles in a medium whose parameters vary. We do this in the context
of equilibrium statistical mechanics by incorporating three-body potentials and subsequently writ-
ing their contribution to the cluster series in terms of effective, density-dependent, two-body poten-
tials. We then perform approximate partial summations of the cluster series expressing the sums in
terms of cluster coefficients involving the effective potentials. From the high-temperature expansion
of the corresponding equation of state for a model system, we find that, at the Efimov point, behav-
ior resembling that of a first-order phase transition appears.

I. INTRODUCTION

When it was first discovered, the Efimov effect caused
considerable surprise. It was quite unexpected that, un-
der any circumstances, one could have a system in which
an infinite number of bound states was generated through
short-range forces (results on the number of two-body
bound states can be found in Ref. 1). Efimov,> however,
showed that in the case of three identical spinless parti-
cles interacting pairwise through short-range forces,
there exists a family of approximately
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bound states, where r is the range and a is the scattering
length of the pair potential. (This result has been subse-
quently confirmed by a number of authors.’) If |a | is
infinite or, equivalently, if the pair potential has a zero-
energy two-body bound state, then this family contains
an infinite number of three-body bound states.

Evidence of these levels in nature has, however, been
somewhat elusive. Clearly, Efimov’s family appears only
if |a | /ro>e™ This condition is satisfied by relatively
few systems: a particles,* spin-polarized 3H atoms,’ “He
atoms,’ and a few others.” In fact, in these systems the
condition is only just satisfied, indicating that there is at
most one Efimov level. Numerical integration of
Faddeev’s equations [recall that Eq. (1) is only approxi-
mate] has uncovered the presence of one (or possibly two)
Efimov levels only in the case of the *He trimer.® Thus,
even though the laws of quantum mechanics permit the
generation of an infinite number of three-body bound
states through short-range forces, it appears that nature
has chosen not to endow any real system with this prop-
erty.

Efimov,” however, has conceived of a situation where
the full extent of his mechanism may be realized. He sug-
gests that the three particles should be placed in some
sort of “medium.” The medium has properties (e.g., den-
sity) which vary. Because the medium modifies the pair

39

interaction there exists the possibility of tuning the medi-
um parameters so that the effective two-body interaction
will have |a | = . If the “bare” scattering length is al-
ready large, then perhaps even small-medium effects may
be sufficient. In this paper we attempt to demonstrate
that Efimov’s program is realizable. We believe that no
such demonstration has been attempted. (The papers of
Ghassib® and Cornelius and Glockle® also indicate this.)

The first question we must address is the constitution
of our medium. What we would like is something static
and inert which only changes the pair interaction and
does not interfere with the dynamics of the three parti-
cles. This way the problem is simply a three-body prob-
lem with an adjustable potential. In reality any medium
cannot satisfy these conditions as it must consist of other
particles. As such, from the beginning, we must consider
a many-particle system. We now have the problem of
considering how to relate the properties of many-particle
systems to those of its three-particle subsystems. Such
relations appear in the form of cluster expansions for the
properties of many-particle systems.

In Sec. IT we present the starting point of our calcula-
tion, the cluster expansion for the logarithm of the grand
partition function. The nth coefficient in this expansion
depends on the trace of the n-particle Hamiltonian. In
particular, Efimov’s family of bound states will give con-
tributions to the third coefficient. In this formulation we
represent the n-body potential energy as a pairwise sum
over two-body potentials plus a triplet sum over three-
body potentials. Not only does this provide a more real-
istic representation of the n-body potential® but it also
provides us with a means to realize Efimov’s program.
We do this in Sec. III where we express some of the con-
tributions to the cluster series which involve the three-
body interaction in terms of an effective, density-
dependent, two-body interaction. Using this we find that
we can then approximately sum a certain class of dia-
grams to infinite order, expressing the result in terms of a
second-cluster coefficient where the original two-body in-
teraction is supplemented by a density-dependent two-
body interaction.
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In Sec. IV we consider an analogous construction
where the summation is expressed approximately by a
third-cluster coefficient with the same density-dependent
effective potential. It is in this result that Efimov’s pro-
gram is realized. In the evaluation of this effective third-
cluster coefficient we require the solution of the three-
body problem, where the potential energy is a pairwise
sum of a two-body interaction which varies with changes
in density. We can thus tune the potential to yield an
infinite number of three-body bound states. We refer to
the density at which this occurs as the “Efimov point,”
p.- We can thus conceive of obtaining a many-body sys-
tem at some temperature and varying the density through
the Efimov point. We then address the question as to
how the bulk properties of the system reflect the unusual
three-body behavior at p, by obtaining the equation of
state for our partially summed cluster series. This is done
in Sec. V. In Sec. VI we obtain the high-temperature ex-
pansion of this equation of state. The expression ob-
tained is valid only for bounded, short-range, two-body
interactions. In Sec. VII we consider the high-
temperature thermodynamic behavior at p, implied by
this equation of state. Finally, in Sec. VIII we conclude
with a discussion of the limitations of our construction
and discuss avenues where further investigation may be
undertaken.

II. FEW-BODY DYNAMICS IN A MANY-PARTICLE
SYSTEM

There are a number of intuitive ways in which one may
account for contributions of the three-body force in terms
of an effective two-body force. One may, for instance, use
mean-field arguments. Alternatively, one may follow the
procedures used in the classical statistical mechanics of
liquids such as those of Sinanoglu'® [whose techniques
have been applied by Blaisten-Barojas et al. to *“He (Ref.
11)]. Such techniques, although they provide some in-
sight into how to handle our problem, cannot include the
bound-state effects which we wish to study. On the other
hand, these classical techniques could motivate a phe-
nomenological approach. This, however, requires some
support and some guidance from experimental data.
Since we do not have these data we prefer to approach
the problem on a microscopic, quantum-mechanical basis
using a formulation of the many-body problem where the
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influence of three-body dynamics can be viewed directly.
With this in mind the most simple and most obvious way
to tackle the many-body problem is through the virial ex-
pansion in quantum statistical mechanics.

The virial expansion of the equation of state is given
parametrically in terms of the Mayer equations'?
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The notation for the thermodynamic variables is that of
Huang.'? Equation (2a) is referred to as the cluster ex-
pansion, where b, is the nth cluster coefficient which is
defined as

—BH
b, =Tr,(e "), (3)
where
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and V}; is referred to as the bare two-body interaction.
H, is simply the n-particle Hamiltonian. Our representa-
tion of the potential neglects four- and higher-body
forces, but the formalism to be developed can be easily
extended to include these if need be. The subscript ¢
denotes that only the connected parts of the Boltzmann
operator are to be included when taking the n-particle
trace. The notion of a connected contribution derives, of
course, from the diagrammatic representation of the
operator. Since we will be using diagrammatic methods
extensively, we briefly illustrate these. Further details
may be found in the original paper of Lee and Yang'® and
other more recent contributions.'* !>

As an illustration of the diagrammatic representation
we consider the three-body Boltzmann operator. It is
well known that one can write the following perturbation
expansion for this:
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This can be expressed diagrammatically as
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where each component in the diagram represents a certain operator in the above expansion, in the usual manner. The

connected part of the Boltzmann operator is thus

3
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In this paper we shall supplement this notation with a
few more definitions. We shall refer to single diagrams or
sums of diagrams as “‘primitive.”” When we express con-
tributions of three-body interactions by effective two-
body interactions primitive diagrams with three-body in-
teractions will be replaced by diagrams containing
effective two-body interactions and fewer particle lines.
The diagrams so derived will be referred to as “‘effective”
diagrams to distinguish them from the primitive ones.
Also we represent ladder sums by a box. For example,

ﬁ_\ . (7b)
This notation may, in future use, imply the inclusion of
disconnected diagrams. We shall, of course, regard it as
implicit that these are excluded.

This formulation of the many-body problem provides a
microscopic basis for our calculation. The only approxi-
mation made is in neglecting four- and higher-body
forces in our representation of the n-body potential. We
also, of course, assume conditions of thermodynamic
equilibrium.

H.4 . H_‘ + ﬁ_‘ . H_l P (7a) It is clear that three-body dynamics has a direct input
into the many-body problem, when it is formulated this
way. The simplest place to see this is the third-cluster
is represented by the more succinct notation, coefficient. This can be written as follows:'* !¢
J
~BH L s « dE
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is the trace of the connected resolvent difference, N, is
the number of three-body bound states, and —X(Z, is the
two-body threshold. In obtaining this expression the usu-
al contour has been deformed so that the bound-state
contributions (and thus the potential Efimov bound-state
contributions) are explicitly shown. The three-body dy-
namics given in R.(E) must also, in some way, reflect
Efimov’s mechanism.

In Eq. (8) the input from the three-body problem is
made explicit. However, one also notes a possible prob-
lem. From Eq. (8) one can see that when Efimov’s mech-
anism generates an infinite number of bound states, then
the bound-state sum diverges. This is because the bound
states accumulate at zero energy. This may call into
question the validity of the virial expansion in the pres-
ence of the Efimov Effect. Bollé,!® however, has shown
that as one approaches the Efimov point from either side,
the third-cluster coefficient remains finite. This is the re-
sult of a cancellation of the divergence in the bound-state

sum by a divergence in the continuum integration. (This
result was shown earlier in a simplified model by
Hoogeveen and Tjon.!”) We thus have reason to believe
that the cluster expansion may be used even when the po-
tential strength is at the Efimov point. Having estab-
lished our formalism, and having noted how this formal-
ism reflects the contribution of the Efimov effect in a
many-particle system, we now proceed to describe our
program.

III. CONSTRUCTION OF AN EFFECTIVE SECOND-
CLUSTER COEFFICIENT

Our aim is to express the contributions of the three-
body interactions in the Mayer equations in terms of
effective two-body interactions. That is, we aim to trans-
form the Mayer equations (2a), and (2b) into the form

ﬂz § Z_”beff
kT n! "

n=1

> (9a)
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where b<T is a cluster coefficient as before except that the
potential in the n-body Hamiltonian here consists of a
pairwise sum of density-dependent two-body forces. Al-
though the enhancement of the Efimov contribution with
varying density is contained in bST, we shall first illustrate
our procedure in the construction of 65"

Consider the following contribution to the cluster ex-
pansion:

J
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by permutation symmetry. (The subtraction here is necessary because this diagram has been triple counted. We shall

ignore this term for the present, including it again later.)
This diagram represents the following expression:

3
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2! 0
where
, —(B—1K,, .| 1K
V?‘;f(rl,rz;z;[3,7)=zfd3r3d3r3(r3\e TV sy, r)lrsle ) (13)

We have trivially rearranged the integral so that one of
the integrations in the original trace is now in the
definition of the effective potential, leaving the resulting
expression as a two-particle trace instead of the original
three-particle trace. We have thus expressed our original
contribution in terms of an effective fugacity- and
temperature-dependent two-body interaction. The net re-
sult is stated diagrammatically as follows:

f

is the diagrammatic representation of the effective poten-
tial V7. The diagram on the right-hand side is an exam-
ple of an effective diagram. Here we have an illustration
of how we transform a primitive diagram into an effective
one.

The summations which we eventually want to perform
are difficult with this effective potential. This arises from
its temperature dependence (we shall elaborate on this
point later). We avoid these difficulties by performing a
high-temperature expansion of the effective potential, i.e.,
given

23 22
5 - 7T , (14) (r;—r3)?
( -7K3 y— —7 ‘13 3
;e |r3) = S72€XP | T - , (15)
RN r
B
where ) ) .
where A°=[(27#°/m)B] is the thermal wavelength, we
I~ can write
|
off .. - 3. 430 1 1 1 —7 _(r—ry)’
Vlz(rl,l‘zyZ,ﬁ,T)—Zfd ryd 1'3? 372 372 €Xp 32 Vi2(ry,1p,13) . (16)
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Using Laplace’s method to evaluate the r; integration in the limit A— 0, we obtain the high-temperature series
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In performing this high-temperature expansion, we are essentially treating the third particle in Egs. (10) and (11) semi-
classically, while treating the other two particles fully quantum mechanically.
Let us denote the series representation, Eq. (17), diagrammatically in the following manner:

4 = [l»-<|<o)+ ) + - 4 Al + ] . (19)

Substituting this into Eq. (14) we obtain

3 2
T =5 gm %m---« %ﬂ)* : (20

Let us group the first term in the expansion with the second-cluster coefficient. This is natural not only because our
effective diagram is a two-particle trace, but also because it has the same prefactor as the second-cluster coefficient.
[This latter fact is a consequence of two elements in our construction. First, the placement of a factor of z in the
definition of the effective potential and, second, our use of permutation symmetry to get the factor of 3 in Eq. (10).] Let
us also consider the low-density, high-temperature limit where z /A3—p, the number density. Doing this we obtain

L1, [:___‘j[] . [%].) _ . 21)

This is the diagrammatic representation of

“BK 4V _BK —(B=NK 4V —HK 4+ V)
2' T B(Kyp+ 12)_e B '2+fﬁd're (B=7)Kp+Vy ( PV120) trel) 22)
0

[

The operator in the brackets is the first two terms in the sion of Eq. (23). By considering the form of the perturba-
expansion of tion expansion of Eq. (23) we are led to consider the fol-
lowing sum of primitive diagrams:

L(B,p)—e —BKy, —e —BK+Vy, +PV?§;0)_e —BK, ) 23)
where pV?‘;;O is taken as the perturbation. This result fol- %
lows since (i) U,(0,p)=1 for all p, and (ii) the first term in k42 .
the expansion of the effective potential is independent of Z ! ez z 25)
temperature. If we had retained any temperature depen- R 2 %’: ’
dence we would not have been able to make this
identification. This is the difficulty inherent in the tem- a2, 3,2, a.,
perature dependence of the effective potential to which
we alluded previously. where the starred sum is a restricted one over different re-
The definition of the effective second-cluster coefficient labelings of the particle lines. The best way to describe
given at the beginﬂiﬂg of this section is the restrictions is to show how to construct relabelings
o CBK VeVt K, vyhich are _incl_uded. [All such relabeli.ngs represent dis-
bs —?T T,(e P—e ). (24) tinct contributions from the cluster series. Furthermore,

there is no multiple counting of any diagram, so that the
Thus we can fulfill our aim only if we can find primitive situation in Eq. (10) is exceptional.] First we choose two
diagrams which yield the effective diagrams correspond- numbers (a,a,) from (1,2,...,k +2). Hold these con-
ing to the higher-order terms in the perturbation expan- stant. Let a3, ...,a;  , be a permutation of the remain-
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ing integers. Sum over all such permutations. Do this
for all choices of (a;,a,). The first step corresponds to
choosing which two particles contain the bare two-body
interactions. The second step corresponds to the

different temperature orderings of the three-body interac-
tions. We now replace the three-body interactions by
effective two-body interactions in much the same way as
we did in Egs. (10)-(14). Equation (25) becomes

= k+2 +2
2 o ()6 (26)
k=2
- Z 22_!1.'2 ! (27)
L
N E(O) S g(l)
— 2 1 22 T
- z T | T 2 IR | T (28)
k= (0 k=2 (o)

where we have used permutation symmetry in the first step, the definition of the effective potential in the second step
and the high-temperature expansion of the effective potential in the third step. Here all terms except the first involve
temperature-dependent parts of the effective potential. We now group the first sum in Eq. (28) with the second-cluster
coefficient and the first term in Eq. (20). The result is

e )
2., o s
' # %0)+ % l i 7 2' T (

where again we have taken the low-density high-temperature limit so that z/A*=p. This contribution can be evaluated
by calculating the density-dependent eigenvalues and eigenfunctions of K, + V|, +p Vﬁg;o in the usual way.
We can express our net result by the following equation:

22 _ zk+2 E E E
2 T2 + o2yt Thie2
k=1 1 [
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Il 22 33 2‘
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2tV teVize - '2) 4+ “other terms . (30)
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These other terms consist of diagrams each containing at ing three-body forces expressing the result in terms of an

least one of the temperature-dependent components of
the effective potential. Also here are terms which were
ignored in approximating z/A* by p. We have thus ap-
proximately summed a certain class of diagrams involv-

effective second-cluster coefficient.

Note that because these other terms involve
temperature-dependent components of the effective po-
tential, these will not sum to give Boltzmann factors. We
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thus content ourselves, for the time being, with keeping
track of these terms individually. Note also that since
the “other terms” contain components of the effective po-
tential which are of a higher order in 8 than Velfzr;o we ex-
pect that as the temperature increases the sum above is
better and better approximated by the effective cluster
coefficient.

IV. CONSTRUCTION OF THE THIRD-CLUSTER
COEFFICIENT

We now proceed to generalize the construction of Sec.
ITI. Our aim, of course, is to approximately sum some
other class of diagrams, expressing the answer as an
effective third-cluster coefficient. The means by which we
may most readily do this is by considering the following
procedure.

Consider the expansion of the effective third-cluster
coefficient, where the density-dependent corrections to
the two-body potentials are taken as perturbations. This
series is represented as a sum of effective diagrams.
Given the experience of Sec. III, each effective diagram
should equal, in some approximation, a sum of primitive
diagrams. We then select a particular effective diagram
from this series. The form of this effective diagram
should fairly readily suggest the sum of primitive dia-
grams from which it is derived. We then take this sum of
primitive diagrams and express them in terms of effective
diagrams, much as was done in Egs. (25)-(28). The first
term in the expansion of the effective diagram so obtained
should, of course, be the particular effective diagram we
initially selected from the effective third-cluster
coefficient. We carry out this for all effective diagrams in
the effective third-cluster coefficient.

We consider a general term from the effective third-
cluster coefficient containing k effective interactions.
Since there are many such terms we sum over all possible
ones (we represent this by a dashed sum in all that fol-
lows). The experiences of Sec. III lead us to believe that
this sum of effective diagrams derives from the following
sum of primitive diagrams:

r
2k+3 ' * : N
k+3)! Tk Z Z '
k=1 A Bke3
R
rar

The starred sum is as before except that we initially
choose three integers from (1,2,...,k +3), and we as-
sign them to the variables a,,a,,a; so that a, <a, <aj;.
The reason we need this condition is best illustrated by
example. Let us consider the following effective diagram:

H

1 23

If we did not have this condition we would end up con-
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sidering the following primitive diagrams, among others,

B L :

1 23 45 312 45

this second diagram equals

HH

1 2 345
However, the effective diagram

F

1 2 3

also derives from this. However, this is an effective dia-
gram distinct from the original one and already con-
tained in the dashed sum. The condition a; <a, <a;
thus allows us to avoid multiple counting.

We construct the inside of the dotted box by inserting
into it the original effective diagram. For each effective
interaction here we insert a three-body interaction, where
the third leg leads to one of the ay,...,a; ,; particle
lines (which one depends on where in the temperature or-
der the original effective interaction lies.)

We now perform steps analogous to Egs. (25)—(28) in
Sec. III. By permutation symmetry Eq. (31) becomes

L]

[

1

I [

| . (32)
]

Lr1"H"

Using the definition of the effective potential this be-
comes

2k+3 +3 '
ko3 (“3 )“‘ T3 z,
k=1

oL

|
]
1

23 !
Z 3T Z

k=1 ’ (33)

rF=====

-

where the remaining two legs of the three-body interac-
tion in the box are replaced by effective two-body interac-
tions. If we then substitute the series (19) into Eq. (33),
the first term yields our original sum of effective dia-
grams.

We provide a simple example of this construction. Let
us consider the following contribution to b5

3 (00 TLH(o)
o, | (34)
: 0) =(0)

[ 1]

(The three terms here represent some of the terms in the
dashed sum. There are six others which also have two
effective interactions. Also the box notation is a simple
generalization of the two-body case.)

We are led to believe that these effective diagrams
derive from the following sum of primitive diagrams:
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o, z%ﬂ
3 3y 33 33 %4 3 a8 33,
11 1
L, . (37
A W e i (38)
' (o)
[ ]

The first three contributions are, as we expect, the original effective diagrams selected.

Our net result is thus

3
Tr3 *3‘K123+V12+V23+V31)_e“BKm__
3'

zk+3 E '
+ (k+3)!

The specification, other terms, is as in Eq. (30). Clearly
we can similarly extend this procedure to express other
approximate summations in terms of higher effective
cluster coefficients b,f’f, n> 3. Carrying this out for all n
would not exhaust all possible primitive diagrams. In
fact, there would be many left over. For instance,

(40)

would not be included in any of the classes which we sum
over. Furthermore, in approximating our sums by
effective cluster coefficients we are neglecting many other
terms. In inverting the cluster series to find the equation
of state we need to take these neglected terms into ac-
count so that no significant terms are neglected in the re-
sulting virial series. We do this in the evaluation of the
equation of state which is presented in Sec. V.

Before we do this we present a simple model calcula-

—B(K 53+ V)
e 123 gl

r
1
' | Tr3
k=1 ’ ..., ‘k+3: T‘ 3'
L.
r1-r

K
eB 123)

rr f f
B(Klzs+V12+PV?2;0+V23+PV§3;0+V31+PV§1;0’__ —BK 53

—BK p3+ VY +pVET ) ~B"
123 ij;0 123) | +other terms .

3
- 3 (e
i<j=1

tion to show how the number of Efimov states in our
effective three-body problem changes with density. The
effective third-cluster coefficient in Eq. (39) will contain

aeff( )

N=-l—ln 41)
T

To

Efimov states, where a°f is the scattering length of the
two-body potential V', +p V?'ZT;O and is, of course, density
dependent (we assume the range of the effective potential
is similar to that of the bare potential). Since the “He gas
is the system which will most readily show this enhance-
ment of the Efimov effect, we consider potential param-
eters appropriate to “He.

The effective two-body force is defined to be

)= [d’r; Vips(ry,1513)

Let us assume that ¥, and V,; take the forms shown in

V?g;o(rl’IZ (42)
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Fig. 1. Here V,=C¢/RS% U3=Cy/R?, C4 and C, being
the coefficients in the definition of the Van der Waals tail
for these forces. Thus these latter expressions estimate,
in order of magnitude, the scale of the true pair and
three-body potentials. Note that we assume the three-
body force to be predominantly repulsive, i.e., we assume
it is dominated by the Axilrod-Teller tail. (For more de-
tails on the *He three-body force, see Refs. 9, 18, and 19).

At this stage we should also note that the true three-
body force contains a hard core. In assuming that the
three-body force can be taken as a perturbation, we have
tacitly assumed that there is no hard core (as otherwise
the effective potential is undefined; this dictates the use of
the “‘square-wall” three-body potential in Fig. 1). This is
a limitation inherent in our construction. However, it is
not a serious one. There are two ways of seeing this.
First, the presence of a hard core in the two-body force in
our model means that the particles will never enter the
region of configuration space where any particle is within
b of another. As a result they never ‘“feel” the short-
range three-body force, and so we do no harm in ignoring
the hard core in the true three-body force. Secondly, the
model is realistic, provided there is some hard-core ex-
clusion. Whether this is in the two-body force, the
three-body force, or both does not qualitatively matter.
In principle one could consider a Brueckner-type con-
struction to moderate the hard-core problem. For our
purposes we ignore this inessential complication.

Calculating the effective two-body force using Eq. (42)
and the given form for the three-body interaction does
not yield a square well. However, for simplicity, we ap-
proximate it as such. Using the fact that for helium
Ce¢=1.5¢%’aj and Cy=1.5¢%a$ (Ref. 20), we readily find
that the effective potential has the form of a square well,
where the depth of the well is

1——21pa3

Veﬂ' = Vb 3

(43)

and the range is R.

We wish to calculate the effective, density-dependent
scattering length for this potential. Following Flugge’s
treatment?! one can express Vg, b, and R in terms of the
effective scattering length and the effective, effective
range r.;. In the case a4 /R >>1, which holds for *He,
we obtain

\42(r) (a) f(r) (b)
U
bR
r R r
_Vb

FIG. 1. Forms of potential for model calculation. (a) Bare
pair potential. (b) Function used to construct bare three-body
potential, where V53 =f (r,)f(ry3)f(r3).
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R=reﬁ~_b,
2 2
yo__® |G |||z __1
T mpead | R 2 | (1—b/R)?
2
T sl IR C V1
t 1=b/Raq/R 44
where #2/my a3 =43K.
From Eq. (43) we have
1 Veﬁ'
= ]——— 45
P 2 3 ‘ Vb ( )
“Lal

3

which with Eq. (44) allows us to consider p as a function
of a.4. Then defining

pe= lm p,
aeﬂ'_’ <)
we see that
24 1 b R
=55 'R ’
2 ap Qpare
which gives
a
aeﬁ: bare (46)
1—L£
Pe

Note that only lowest order terms in R /a,,,. have been
retained.

Thus for our simple-model system the number of
Efimov levels in the effective third-virial coefficient is

aare
Nl | Gl 1 . (47)

o ro 1__&
Pe

(Note, p is an average density and thus density fluctua-
tions prevent us from getting more than eight Efimov lev-
els on average. This is a result of logarithmic dependence
of N.)

We show in Table I the value of p, for various helium
potentials. The potential parameters are taken from
Huber’s paper.® Note that the Efimov densities are quite
high (for comparison, the density of liquid helium is
35000 mol/m?). Such densities still correspond to an im-
perfect gas, provided the temperature is high enough.

TABLE I. Potential parameters for various *‘He potentials to-
gether with the corresponding Efimov densities (Ref. 23).

Potential ro (A) Qpare (A) p. (mol/m?)
Smith-Thakkar 6.81 50.5 247 000
MDD2 7.40 160 78 100
Beck 7.54 1080 11 600
Aziz 7.40 125 100 000
Lennard-Jones 8.0 —176
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Note also that we only get enhancement if a.,.>0.
These points are elaborated on in subsequent discussion.

V. OBTAINING THE EQUATION OF STATE

Having approximately summed the cluster series, we
now obtain the corresponding equation of state, so that

] 2D+
(n+i)!

f(z) =

- r N
n 2n n+1

For i=0 the operator in the trace is, by definition, the
connected part of the n-particle Boltzmann operator with
only bare pair interactions. The notation for the sums
and for “filling the dotted box” is the obvious generaliza-
tion of the rules given in Sec. IV.

We manipulate Eq. (48) in a manner similar to that in
Secs. III and IV, replacing the three-body forces by
effective two-body forces. We do not yet expand the
effective potential. The result is that

l,.l__L"'..":l,'
DRIV ) YR E

where the rules for filling the box are again simple gen-
eralizations of the rules in the preceding sections. Note,
we differ here from preceding sections in the definition of
the effective potential. Here

0
)= c,a® Vi, (r,1,) .
n=0

Vﬁg(rl,rz;z;ﬁ,r (50)

We have simply taken the factor of z /A out of Eq. (17).
This factor thus appears explicitly in Eq. (49). This
redefinition is somewhat more convenient in what fol-
lows. As we will be using the definition (49) frequently,
we shall define the following abbreviated notation:

i

Tr, (ieff) , (51)

_ 1 <
_Vn![go

where the rules for the construction of the operator in the
trace are implicit. We only denote the fact that each

operator has i effective two-body interactions. The
Mayer equations thus assume the form

P _ § + . (DD, (52a)
kT - ;3 V !

n

CARMELO PISANI AND BRUCE H. J. McKELLAR

39

we can observe how the enhancement of the Efimov effect
in bST is reflected in the thermodynamic properties of our
many-body system.

The effective nth-cluster coefficients originate from
various types of diagrams. Let us denote these by f,(z)
where

(48)
a .
|
5] P z
—_ = = —+—
oz | kT x HE_‘. nz'gn A
o z
+ "lz=—g, | =
n§22 Zazgn }"3
+ 3 "2 T, (DI) . (52b)
n=3 Nn:

Tr, (DI) denotes the trace over all n-particle diagrams
which have not been included in any of the classes over
which we have summed. DI denotes diagrams ignored.
[We include here also the term we previously ignored in
Eq. (10)]. Note that g,(z/A*)=b;=1/A% The third
term in (52b) results from the fact that the effective clus-
ter coefficients, g,(z/ A3), are now a function of z.

We now must eliminate z between (52a) and (52b) in or-
der to obtain the equation of state. The standard way of
doing this'? consists of writing p as a power series in z
and inverting this to get z as a power series in p. This re-
quires a series expansion in z for g,(z/A*). This is given
in the definition, Eq. (51). The resulting series for z in p
would be substituted into the cluster series to obtain the
equation of state. This method is inappropriate in our
situation because our key result, the observation of an
enhancement of the Efimov effect relies on the fact that in
the low-density, high-temperature limit g;(z/A%)—g;(p)
and that

g3(p)=b5"(p)+other terms . (53)

Expanding g,(z/A*) in powers of z/A* results in b5 (p)
being expanded in powers of p. Since this would obscure
our main result we must develop a way to obtain the
equation of state while keeping these important summa-
tions intact. Rather than expand g,(z/A%) as a power
series in z, we instead replace it by

g.(p)t —&.(p)

Z
)\3
We expect the latter term to vanish in the low-density
high-temperature limit faster than the former. We in-

corporate this in (52a) and (52b). Rearranging (52b) to a
more convenient form, we obtain
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z gy | o 1 z < 1 d < 1 nz"
—<=pil— —nz"g,(p)— —nz" — | —8g.(p) | — —z" ——Tr (DI) | .
A3 p[ ,22 p e P ,Zz P2l S P I ,Z'z p” T x3 2 n! l
(54)
Using the definition of g,(z /A%), Eq. (51) in the third and forth terms on the right-hand side of (54), we obtain
z 1 - 1 - 1 z [ i - 1 nz"
—=p 1= —nz"g, (p)— —z" — — | —p'\n+i|{—= | {Tr, (ieff)— ——T . (DI) | .
A3 ,,Z"z p &P ,Ez p ,Z‘l Vn! A} ' )3 23
(55)
It is easy to see from this expression that Z 5 1—2X%g, ()
(z/A})—p=0(p?). Thus to first order in p, z/A =p. A3 p&2ip
Note also that Eq. (55 also gives (z/A%)—
=2z2g2(p)+ - To lowest order in inverse tempera- p 2 ,p'Trz(,eﬂ‘)+o( e?)
ture g,(p) behaves as (BV)%, where a is some number i=1
and ¥V, is the energy scale of the two-body potential. 3
[For bounded sh.ort-range potentials a=1; see Sec. XI. =p 1—27\.6pg2(p)—7\.6pp5‘"g2(p)+0(62) (58)
For the more singular Lennard-Jones potential, =1+ P

(Ref. 22)]. Thus the right-hand side is small for low den-
sity or high temperature. This is important for our later
considerations. To denote both of these limits we write

%:p[l‘{-O(f)], (56)

where € is a small parameter which may be either po? (o
is a characteristic length of the potential) or (V)% Our
series is effectively a double series in these two parame-
ters.

In order to obtain z /A’ as a function of pand Btoa
higher order in € we iterate Eq. (55). That is, we write

Eq. (55) as
z z
P
and calculate
z z
sz P’f p’ﬁ

For example, from Eq. (55) we have

2
VA 2 z
F:p 1—;—A° — | &200)
6| 2 1 & 1. I : 3
_ F ;,21—2-1;1 13— Tr, (ieff)+0(z°)

(57)

in order to get z/A3 to second order we need to know
z /A to first order on the right-hand side. This has al-
ready been obtained in Eq. (56). Substituting (56) into the
right-hand side of Eq. (57), i.e., iterating once, we get

We now have z/A® to €2 This allows us, on the next
iteration, to calculate z /A3 to order €. We may continue
this to any order we wish. The iteration is straightfor-

ward but tedious. We present the answer to order €*

F—p[l+x2+x3+x4+0 ], (59)
where x, can be read from Eq. (58), and x; and x, are
given in the Appendix.

In Eq. (58) we could expand g,(p) in p and B. This ex-
pansion would, of, course, contain terms of order €?
which could be grouped with the terms neglected. If we
were to do this, however, we would be neglecting the
physics we are aiming to investigate [particularly if we
were to subsequently expand out g;(p)]. Furthermore,
there is no numerical inconsistency in not expanding
8,(p), for the aim of any approximation is to control the
size of the term neglected. What Eq. (58) says is

2 14 21%g,(p) + ASpp—— Qo (p)|<0(e).
Ap ap

Similarly for Eq. (5§9). Our procedure thus corresponds
to a particular partial summation of the € series.

Having obtained z /A as a function of p, to any order
we wish, we can subsequently find the equation of state
by substituting this expression into the cluster series.
Substituting Eq. (59) into the following form for the clus-
ter series,

i

_.pi

o ©

+ n
2z 2', an

Tr, (ieff)

Zz
}\3

n=2
+ 3 Sy To @D, (60)
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we find, by more straightforward but tedious algebra that
%:p[1+az+a3+a4+0(64)] , (61)
where a,,a;,a,, are now effective virial coefficients.
From the derivation it is apparent that each a, is a par-
tial summation of the € series whose leading term is €” ~!.
The expressions for these are somewhat complicated and
are given in the Appendix.

We now have an expression for the low-density and/or
high-temperature properties of a Boltzmann gas, ob-
tained by partial summation of the cluster series. The
contributions of the effective three-body problem are
given in terms involving g; in a3 and ay,.

In order to evaluate this whole expression we need to
solve the two-body, three-body, and four-body problem
for the potential ¥y, +pVsh.; as well as evaluating the
contributions of the other components of the effective po-
tential (i.e., the so-called other terms). This is a daunting
task. Here we satisfy ourselves with calculating a high-
temperature series.

VI. THE HIGH-TEMPERATURE EXPANSION OF THE
EQUATION OF STATE

In order to make use of our equation of state we need
to consider a situation where the parameter € is small

—b o« . n
2= T %2 DB 4,0,

1 =

4b3  2by = n—1 \
=—2_ 01 i i — P,_
S B ED T N P i =

= o
—13 1 X—fdpP(

n=3

where —X? is the two-body threshold and P, and P} are
polynomials in the potential and its derivatives. p as an
integration variable denotes use of Jacobi coordinates. In
a, (and thus in b,) it seems likely that the series can be
partially summed to give one which is defined for hard-
core potentials. For example, the first term in P,(x) is
the potential raised to the nth power, i.e., P, (x)=V"(x)

+Q,(x), where Q,(x) represents the remaining terms.
Thus
azz—%fd3x(e*/”/—1)

—1 i B"fd xQ,(x (64)

One expects to be able to do other partial summations so
that the whole series is defined for hard-core potentials.
However, for a; (and thus b;) there are terms involving
—X2 which are associated only with PS. In order to
define an expression for a; which is valid for hard-core
potentials this term will have to be grouped with other
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enough so that the contributions of the terms neglected in
Eq. (61) are negligible. Thus we need to consider low
density and/or high temperature. We choose to consider
the case of high temperature. That is, we allow the situa-
tion where po? can be of order 1. The reason for this is
clear from our calculation in Sec. IV for the case of “He.
Here it was shown, for a simplified model, that to reach
the Efimov point, one requires a density p, ~10° mol/m?>.
This corresponds to p,o°=0(1). Thus in applying our
results to “He at the Efimov point we must use the virial
expansion not as a low-density expansion but as a high-
temperature one.

Ideally we would like to continue in the vein of the cal-
culation in Sec. IV, using an effective hard-core pair po-
tential since that is what is appropriate to *He. We also
require that few-body effects be incorporated properly,
since we are interested in the Efimov effect. Unfortunate-
ly the high-temperature series that we require have not
been calculated under both these conditions. The best re-
sult to date has been that of Boll¢,'® who calculates the
high-temperature expansions of the second- and third-
virial coefficients, incorporating few-body effects, but

only considering bounded, short-range potentials. Bollé
obtains

(62)
i(x) [dy Pi(y)

(63)

[

terms involving P, none of which has any dependence on
—X2. The resulting summation will thus not be an ex-
ponential. Furthermore, it is not obvious that the sum
can be explicitly done.

Even if we could resum Egs. (62) and (63) so that they
were defined for hard-core potentials, we would still have
the further problem of treating the other terms in g,(p)
which involve the temperature-dependent components of
the effective potential. Each of these individual terms is
undefined if V*;*;[, for i >0, have hard cores. Again par-
tial summations are needed. In view of these complica-
tions we satisfy ourselves for the present with the (unreal-
istic) model system involving bounded short-range pair
potentials.

In obtaining our high-temperature expansion for the
equation of state we require high-temperature expansions
for g,(p). In fact, we will soon see that we require these
expansions only to order 8°. Thus we need expansions of
g,(p) only for n=2,3,4. We now outline the major steps
in the calculation leaving the (considerable) detail to the
reader.

Let us first consider g,(p)
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The first term is of the form of a second-cluster
coefficient. The high-temperature expansion for this is
given in Eq. (62). (Note that density plays the role of an
independent parameter in the equations of Bollé.) The
remaining terms in g,(p) are

] (66)

where the terms neglected are of order 8* or higher. The high-temperature expansion for these terms is done in the
standard way using Laplace’s method. For completeness we present the calculation of the first term

1 1 8 v 430 1
2V T’zI:PH(l)] :2—Vf0 d‘rfd3rld3r2d3r,d3r2?

2

A (-

—1T (rz—rlz)z

Xexp

One then changes variables to r,,r,,r;—rj=x, r,—r;=y
and does the x,y integrals by Laplace’s method. This in-
volves expanding the potential as a Taylor series in X,y.
We keep terms up to and including quadratic. All higher
terms in the Taylor series contribute terms of order 8* or

higher. We then simply evaluate the Gaussian integrals
to obtain
a1
~24mP 36 fdsrpV?g‘
1 ’ 1
~545 |7 | B 6fd tVipVE) . (68)

The other terms are calculated in a similar manner. The
high-temperature expansion for g;(p) can be done in an
entirely analogous manner.

The lowest-order terms in the high-temperature expan-
sion are always easy to calculate because the product of
propagators tends to a product of & functions (see
Bloch’s'® discussion of the classical limit). With this in
mind we can see that, for instance, to lowest order a;
goes like B* because these must be at least four pair in-
teractions since the diagrams contributing must be con-
nected.

The calculation of g,(p) is somewhat different to the
calculation of g,(p) and g;(p) because the high-
temperature expansion for the effective fourth-cluster
coefficient, taking into account few-body effects, is not
available. We content ourselves with finding the high-
temperature terms using Laplaces’s method as above.
For instance, g4(p) contains the following diagram:

]

Using the above method, we obtain, in a straightforward
calculation

A2 (r/BX1—1/8)

1 1 oxp | =T (r,—r})?
/B (/8372 | TP | N (7/BN1—1/B)
ol L I B PG UEAR 67)
[
EyVy }\1233|fd x V,( x)] . (70)

The expressions for a3 and a, in the Appendix show that
we also require, to order 33, the high-temperature series
of the contributions of the ignored diagrams. These are

_ZH_40- + - + %*... s (71)

-
+ PO , (72)
(73)

- HEH - o
H—Ti i, (75)

where we have listed only a representative subset of the
terms needed in each trace. The high-temperature expan-
sions of these are straightforward.

By grouping together high-temperature expansions of
all components of a,,a;,a, we arrive (after more
straightforward but tedious calculation) at the final form
for the high-temperature series for the equation of state

P

%7 =Pl1+d:B+d3B'+dB+0(BY)] . (76)

The coefficients d,,d4,d,, are long expressions which are
given in the Appendix. This expression, Eq. (76), is valid
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for arbitrary density, provided one is at a sufficiently high
temperature.

VII. THERMODYNAMICS

The expression derived for the equation of state is typi-
cal of what one would expect for an imperfect gas. One
interesting feature to note is that bound-state contribu-
tions do not appear in the high-temperature expansion of
the second- and third-cluster coefficients. These are can-
celled by equal and opposite contributions in the continu-
um integration. This can be seen explicitly in Bollé’s
derivation.'® It thus appears that the full richness of the
Efimov effect is not reflected in the high-temperature
properties of the “He gas. This, however, is only partially
true, for while the bound states make no contribution, the
two-body continuum does. This contribution appears
through the two-body threshold — Xﬁ which appears in
g3- At the Efimov point y;=0. If we assume that the
bare potential has a bound state and that the three-body
force is predominantly repulsive, then, as a function of
density, x2 has the form given in Fig. 2. For p>p, there
is no two-body bound state; thus the threshold is zero.
For p <p, the perturbation expansion of the two-body
binding energy tells us that

X?l=_(p_pe)<¢e | V?;;O I '/’e)+0(P—Pe)2 ’

where |9, ) is the wave function of the zero-energy bound
state. We thus observe that x2(p) is a continuous func-
tion with a discontinuous first derivative at the Efimov
point. This discontinuity, however, is small since the x?
contributions are of order 3. (We now see why the ex-

(77)

+ —
V4 z
Plia ] TPl || T , 2
¢ e _B |z fd3r
+ 2 }\'3
i T e
P e e’
=k(BV0)2(BVI)
2
Xz (p)

Ce e

FIG. 2. Behavior of two-body threshold in the vicinity of the
Efimov point.

}\'3
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pansions were carried out to order 8°.)

What are the consequences of this discontinuity for the
thermodynamic behavior? At this stage some care must
be taken. The equation of state, as given in the Appen-
dix, contains a term which has a factor (3/3p )X(ZI. This
implies that at the Efimov point the pressure exhibits a
discontinuity as a function of density. This, however, is
not the case because density is not an independent vari-
able. The independent variable is the fugacity z, and the
density is given by the second Mayer equation. In order
to examine the thermodynamic behavior we must thus re-
turn to the Mayer equations.

Using the expansions of Bollé in g;(z/A3) we readily
see that there is a term in Eq. (52a) here which contains a
factor x2(z /A*). With Fig. 2 in mind (where the indepen-
dent variable is now z /A% and not the density) we see that
the pressure, as a function of z /A3, for constant tempera-
ture, has the form given in Fig. 3(a). The density subse-
quently has the form given in Fig. 3(b). Thus at the
Efimov point we find that the gas exhibits behavior
characteristic of a first-order phase transition. [In Sec.
IV we used a high-temperature approximation z/A*=p
and defined the Efimov point as the density for which
Via +pr'2f;o had a zero-energy two-body bound state.
Our discussion here shows that we must examine the
fugacity dependence of the pressure rather than the den-
sity dependence. As a result we must now define the
Efimov point to be the value of z/A’ where
Vi, +(z/A3 Vi, has a zero-emergy bound state. We
denote this value as (z/A3%),.]

The discontinuity in the density can be readily calcu-
lated and is found to be

2
Vit |25 | vito | (v | |55 | Vilo|ve) 008"
2 .
a*| (78)
P (a) p (b)
4 4
i ¥

FIG. 3. Qualitative behavior of the Mayer equations in the
vicinity of the Efimov point. (a) Pressure and (b) density.
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where k is a number of order 1, o is of the order of the
range of the effective potential, ¥V, is of the order of the
depth of the effective well, and V'=V,—V,, where V, is
of the order of the depth of the bare well. At 100 K we
find that the fractional density discontinuity is roughly of
the order of 1076, Note that unlike the gas-liquid phase
transition, there is no critical point here.

VIII. DISCUSSION

If our aim is to model a *He gas at densities sufficiently
close to the Efimov point and at temperatures sufficiently
high so that a virial expansion is an accurate representa-
tion of the equation of state, then our approach has limi-
tations. First, as we have previously discussed, the
three-body force in the helium system contains a hard
core. Our expression for the effective potential diverges if
the three-body potential possesses a hard core. We need
to improve our construction to handle this more realistic
case. We know, however, what to expect from a more
proper treatment, for we are guided by the use of effective
potentials to represent three-body forces in other situa-
tions (e.g., by Sinanoglu'® in the classical theory of liquids
and in nuclear-matter calculations®®). In these cases one
finds the following form for the effective potential:
V?g(rl,r2)=pfd3r3g(3)(r1,r2,r3)V123(r1,r2,r3) , (79)
where g3’ is a three-particle correlation function. The
form of this function expresses the obvious face that, be-
cause of the hard cores, there is little probability of
finding the particles close to each other. Thus they only
rarely “feel” the short-range component of the three-
body potential. This correlation function counteracts any
hard-core component in V,; so that the effective poten-
tial is finite. Our treatment thus ignores the strong
short-range correlations which exist in the system.

A more serious problem exists in the fact that to calcu-
late thermodynamic properties one requires the calcula-
tion of various quantum-mechanical traces. To calculate
the part of g;(p) which has the form of a third-cluster
coefficient requires a solution of the three-body problem.
On top of this, g,(p) and g;(p) have contributions which
cannot be written as cluster coefficients, i.e., the terms in-
volving the temperature-dependent effective potentials.
The prospects of calculating the thermodynamic proper-
ties explicitly, even numerically, constitute a difficult
problem. With this in mind we have considered the less
ambitious case of calculating high-temperature expan-
sions for the equation of state, using the series of Bollé.
These, however, are only valid for bounded, short-range
potentials. In order to evaluate the high-temperature
properties of a realistic system, we thus need to general-
ize the results of Bollé to include hard-core potentials as
well as needing to write the other terms so that they too
are defined for hard-core potentials. A low-temperature
expansion should also be considered.

Another limitation is the use of Boltzmann statistics.
Helium is a Bose system (in fact the Efimov effect relies
on this). The Mayer equations are well known for the
case of Bose statistics.!> The generalization of our con-

struction is then rather straightforward, and we expect
only slight quantitative differences to the results given
here. This is not surprising given that we are considering
the high-temperature case. We feel it best to present the
full Bose result when other limitations have been over-
come.

A further limitation lies in our assumptions when ap-
plying our formalism to the “He system. It has not been
established whether the dimer of helium is slightly bound
or slightly unbound. All that is known is that it is close
to zero energy. We have assumed the dimer is bound.
The reason for this is that in the gas the long-range van
der Waals tail of the three-body interaction is dominant
in the effective potential, and this tends to be repulsive.
Thus the energy of the effective dimer can only be greater
than the bare dimer. If we had an unbound dimer, densi-
ty effects would lead to an effective dimer which was even
more unbound. This does not mean that *He will not
show the enhancement of the Efimov effect if the poten-
tial has an unbound dimer. The reason is the following.
For intermediate ranges the three-body force is attrac-
tive. For lower temperatures and higher densities the
effective potential will tend to increase binding, because
under these conditions the correlation function has more
probability in these intermediate ranges. Thus one gets
more of a contribution to the effective potential from the
attractive portion of the three-body force. How low in
temperature or how high in density one needs to go to
make the effective potential attractive is a subject for fur-
ther investigation. These qualitative considerations are
given quantitative support by the calculations of
Blaisten-Barojas et al.!! who calculate these effective po-
tentials for use in the classical theory of liquids.

Clearly some obstacles need to be overcome in order to
model a realistic system. Work aiming to overcome these
is in progress. In the meantime our simplified model has
shown that there exists the prospect for microscopic
few-body dynamics to induce interesting macroscopic
properties. In concluding we would like to point out that
a more realistic model will show qualitatively similar
thermodynamics to our simple model. Also, as outlined
above, this behavior will occur whether helium has a
bound or virtual dimer. As a result, the thermodynamic
behavior outlined above is expected to occur in a real gas.
The Efimov point, where the interesting behavior lies is,
however, somewhat ill determined by the theory at
present.

Note added in proof. In the process of generalizing
Bollé’s work on the high-temperature expansion of b3 to
include the case of hard-core potentials we came across
an element of Bollé’s derivation which cast doubt on the
presence of the y2 term in the series, Eq. (63). Professor
Bollé has confirmed in correspondance that the term in
X% is absent from Eq. (63) and that he has provided de-
tails in an erratum [Phys. Rev. A 39, 2753 (1989)]. A re-
sult of the removal of the 2 terms is that the phase tran-
sitionlike behavior outlined in Sec. VII does not occur.
Consequently the appearance of bound-state effects at
high temperature depends on whether Bollé’s series are
convergent or asymptotic. We will discuss this question
and our generalization of Bollé’s work in a future paper.
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where the symbol p as an integration variable denotes, in this expression, the use of generalized Jacobi coordinates and
the starred sums denote that only connected contributions, which do not appear in the partial summations, are included
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