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Soft Coulomb hole for the Hartree-Fock model to estimate atomic correlation energies
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An empirical model for the correlation energy (E, ) of atoms is proposed. The method, a pertur-
bation applied to the Roothaan Hartree-Fock atomic functions, requires the reevaluation of the
two-electron integrals due to the introduction of a "soft" Coulomb hole whose magnitude is cali-
brated semiempirically. We have tested it by computing the total correlation energy, the first ion-
ization potentials for atoms helium through xenon, by considering excited states of the ground-state
configuration for Z = 3 to Z = 18 and the electron affinity for fluorine, chlorine, bromine, and iodine
ions.

I. INTRODUCTION

The difficulties in obtaining reliable estimates of corre-
lation energy for electronic systems are we11 known. '

Despite the fact that one knows in principle the solution
to the problem, the accurate estimation of correlation en-
ergy (E, ) remains a most stubborn bottleneck. The
numerous approaches dealing with the computation of E,
may be naively classified into two broad categories: ab in-
itio and semiernpirical. The former class of methods con-
sists of variational and nonvariational methods, ' e.g. ,
configuration-interaction (CI), multiconfiguration self-
consistent-field method (MCSCF), many-body perturba-
tion theoretical methods (MBPT's), electron-pair
theories, density-matrix methods, etc. A11 these methods
are numerically intensive and require vast amounts of
computer time to obtain accurate estimates of correlation
energy. Moreover, these methods exhibit limitations for
large systems with more than one or two dozen electrons.
Hence it is advisable to resort, for some time, to paramet-
ric theories, statistical models, and semiempirical
methods. In our opinion, since the Coulomb hole and E,
is defined with reference to a Hartree-Fock (HF) wave
function, it is most reasonable to start with HF quality
functions before meaningfully attempting to introduce a
term which approximates Coulomb correlation.

In the present work an empirical parametric perturba-
tion term to the HF total energy is developed for atoms.
A number of checks to the constituents of the total corre-
lation energy are provided; specifically, ionization poten-
tials, total correlation energies, and the corresponding
pair correlation energies have been computed. The com-
putationa1 time remains essentially as modest as for the
HF model.

II. THEORETICAL BACKGROUND

Electron correlation is of two kinds: the Fermi hole in
which electrons of parallel spin are kept apart, and the
Coulomb hole in which electrons of opposite spin are
kept apart. As is well known, electrons of parallel spin
are correlated via the antisymmetry principle leading to

the exchange term in the HF model. However, the HF
model clearly ignores the Coulomb hole correlation. This
means that the conditional probability density of electron
1 and electron 2 with opposite spin being at the same site
is not zero but finite for the HF model. There have been
a number of studies attempting to graft a Coulomb hole
onto the HF model. One of the earliest is Wigner's pro-
posal of a local density-functional correction for an elec-
tron gas of low density. This study and the development
of density-functional theory led to a number of local and
nonlocal density-functional models for correlation ener-
gy. We recall that the local density-functional models
are based on the assumption that the functional deriva-
tive of E, with respect to density is mainly a function of
electron density at that point rather than its gradients or
integ rais.

Following Wigner, Gombas gave a combined expres-
sion for the correlation energy which covered both high-
and low-density regions. Clementi fitted the form pro-
posed originally by Wigner to the E, of various atoms.
This functional was suitably adapted and also worked
reasonably well for molecules as has been shown by Lie
and Clementi. Among the electron gas models a recent
one parametrizes the results of Ceperley and Alder. '

Colle and Salvetti" derived an approximate expression
for E, by modeling the first- and second-order density
matrices. Their model has been employed satisfactorily
in the studies of small molecules such as ethylene, formal-
dehyde, " and also to derive an interaction potential for
liquid water. ' Among the nonlocal models for E, we re-
call, for example, the functionals of Langreth and co-
workers, ' Gunnarson et al. ,

' and Alonso and Balbas. '

However, due to the form of the correction prescribed in
some of these theories, ' '' requiring the normalization of
the exchange correlation hole at every step of the self-
consistent-field (SCF) process, such functionals are com-
putationally somewhat complicated. Although some of
the electron-density-based models for E, provide a
simpler alternative to accurate atomic wave-mechanical
prescriptions such as configuration interaction (CI) and
MCSCF, in general, the density-functional methods be-
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come rather impractical in molecular computations, since
one has to deal with integrals of fractional powers of the
density, often requiring numerical integrations. Recent-
ly, Fuentealba et al. ' have presented an empirical polar-
ization potential for the study of E, of atoms with up to
four electrons.

In light of the recent developments and to provide a
suEcient basis for our study, an earlier model' for the
Coulomb hole in atoms is presented in detail below.

III. HARD AND SOFT COULOMB HOLES

It is instructive to recall that there are several schemes
for the HF method leading to somewhat different ener-
gies and consequently to different values of correlation
energy. In this study, when we refer to the Hartree-Fock
energy, we mean the best energy one can obtain by em-

ploying the spin-restricted analytical self-consistent-field
method as put forward by Roothaan. ' The total energy
within the Roothaan Hartree-Fock (RHF) method is
written as

ty of the problem beyond the RHF formalism. The hard
Coulomb hole was introduced directly as a modification
of the Coulomb integral in Eq. (2a) replacing the usual in-

tegration range, '

1 '2dr2+ "2dr2 dr& 3

into

f f (1) f f'(2)dr&+ f f"(2}dr& dr& . (4)

Here f (1), f'(2), and f"(2) are functions of electrons 1

and 2 after integration over the solid angle. For a com-
plete expression see, for example, Ref. 19. Since in the in-
tegration limit of r~ in Eq. (3) the two electrons occupy
the same radial position, the effect of replacing r& by
r

&

—6 and r
&
+6 introduces a discontinuity in the poten-

tial, thus introducing a Coulomb hole. We recall that a
suitable expression was obtained for 5& „„in terms of
the constituent Slater-type orbitals (STO's) y~, yi
and g

E = 2 + Hk + g (2Jk( KI,I )—
k k, I

C)
pq

np tl n„n,
2

+
2 Spq+ 2+ 2 S„,

+f 2+H +f g(2aJ „bK „)—
m, n

+2 g (2Jk —Kk )
k, m

and

X(S „+S,+S „+S,) (5a)

Here, in referring to the individual orbitals, indices k and
l are used for the closed-shell orbitals and m and n are for
the open-she11 orbitals. The numerical constants a, b, and

f depend on the specific LS-coupling state of an atom
and its configuration.

Symmetry considerations and linear combination of
atomic orbitals (LCAO) form of Roothaan's open-shell
SCF theory require the evaluation of the following in-

teg rais:

6kpq, prs 24C2

n„n,+ S + + Ss

X(S „+S,+S „+S,) (5b)

(n +n +1)!
S

~"p+ "q+' (2n +1)!(2n +1)!

for p~p. Here n denotes the principal quantum num-

ber of the STO, g„ is the orbital exponent, and Szq is the
"radial overlap" of the two STO's:

X y,»(2)d r, d rz,

K~, „„,=(d~d„) ' g f f y~g (1)y,»(1)
a, P

Xy z (2)dr, dr~,

(2a)

1
X.»(2)

12

(2b)

where the symmetry basis functions yp& denote the pth
basis function of species A, and subspecies n and d& is the
dimension of the representation A, . Clementi' proposed
to correct for the electrons with antiparallel spins by in-
troducing a hole around each electron and not allowing
these holes to be superimposed; this technique is named
the Coulomb-Hartree-Fock (CHF} method. Let us now
brieAy comment on the CHF technique' since this is also
a starting point for our investigation. For simplicity the
hole was assumed to be a spherical well centered around
the electron; in this way a "hard" hole was grafted onto
RHF equations. A main concern was to refrain from in-
creasing the numerical as well as mathematical complexi-

The parameters c, =0.028 816 and c2 = 1. 1 had been ob-
tained by fitting the E, for the helium and neon atoms.
This functional expression had been obtained with nu-
merical experimentation and modeling and has served
well in yielding at least as reliable estimates of E, as any
other currently available method. However, there are
serious shortcomings of the model: (1) it may be applied
only to atoms and with a STO basis set, (2) the form of
the correction (cutting the Coulomb integral with a hard
hole) introduces a discontinuity in the effective potential,
and {3)only s and p electrons were considered, thus limit-
ing the model's usefulness. All the above drawbacks are
eliminated in the "soft" Coulomb hole model presented
below.

The evident inadequacy of the two-electron conditional
probability density distribution within HF theory to obey
limiting conditions at small ~r, —

rz~ can be corrected by
constraining the approach of electron 1 to electron 2. In
contrast to Eq. {4),here a Coulomb hole is introduced by
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Here g is a parameter determining the magnitude of the
Coulomb hole and is to be calibrated. The "corrected"
two-electron integrals are rewritten as follows:

2alt'
1 2J', „„,=(d d„) 'g f fy* ( 1)y, (1)

a,P 12

Xy„"„&(2)y,„&(2)dr,drz (8a)

and

Kzpq, „„,=(did„) ' g f f gpss. (1)y,„ii(1)
12

"I' &2
2

Xy„'„&(2)y z (2)dr, drz .
(8b)

adding a perturbation term in the effective potential of
the form

2

IV. FITTING DETAILS

All the 12 parameters, i.e., 4 for each symmetry
species, have not been fully optimized; however, they
have been obtained by a judicious cyclic relaxation of
each of them one or, at maximum, two at a time. For in-
stance, with both a, and f, set to zero the correlation en-

ergy of the helium isoelectronic series was Atted employ-
ing v, and e, . The parameter a, was obtained by a fitting
of lithium and beryllium atoms. After this e, was reop-
timized to At all the data considered so far and the ioniza-
tion potential (I). A similar strategy was employed for
the vp, ap, and e with f =0, fitting for the neon isoelec-
tronic series and the argon atom E, and I. At this point
it is important to mention that we have tried to systemat-
ically keep a check on the relative magnitudes of the pair
correlation energies (E ). Thus, in our parametrization,
we had to satisfy many more constraints than simply ob-
taining a reasonable value of the total correlation energy.
The E are obtained with no additional numerical effort
and are given by the following equations:

Here in Eq. (8) the correcting term exp( gr, z )—
represents a soft hole, which leads to a smooth cutoff for
the potential at small inter electronic distances. This
choice of a correction term allows an analytic evaluation
of the J and K integrals with a Cartesian Gaussian-type
orbital (GTO) basis set. Since 2) defines the size of the
Coulomb hole, it has been assumed, as before, ' that q
should depend on the basis functions ypg~7 pqg~7 pppp)

g,„&, and Z the atomic number. We have employed the
following form in the parametrization:

where

and

P'= J' —
—,'K', Q'=aJ' —,'PK', —

P =J —,'K, Q =aJ —,'PK . ——

D;z, =N;z, C;z C;2, bP =P' P, b Q =Q' ——Q,

(10)

1lpq, Isrs ~zp( + zp, )CzpqCyrsDzpq, mrs r

=eg+e

&z.„=f~+f„

D„,„„,=[3(+spqs„, +esp, s-q„+esp„s„)]-'

(9a)

(9b)

(9c)

(9d)

(9e)

Here g is the orbital exponent for y z, Spq is given by
the expression

Here P', Q', P, and Q are the supermatrices of Roothaan
and J, K, J', and K' have already been defined in Eqs. (2)
and (8), N, z is the occupation number of the ith shell of
symmetry k, and D, & is the ith shell density matrix. a
and p are the vector coupling coefficients denoting the LS
state under consideration. The pattern for the relative
magnitudes of the pair correlation energy was obtained
by comparing the experimental hE, (defined as

for A, =p
pq uu qq

0 for A,&p,

(9f)

4. 4

3.6—
CS

v, =0.375
v =0.325
vd =0.3

a, =0.25
a =0.43
ad =0.60

e, =11.1
e =9.0
ed =8.75

f, =0.005

fp =0.004
f„=0.

and s is the overlap integral:

1 X3 X X(2X—1) vr
S

2k —1
)

( 22. + i ) /2 (9g)
s'

The constants v~, a&, ez, and fz, have been fitted and the
optimized values for s, p, and d orbitals are listed below:

2.8—

2.O—

1.2—
CS

Ck

0.4

O
5

I

15
I I I I I

25 35

Atomic Number

I

45
I

55

These values are given to a few decimal figures only, since
the parametrization was careful but not exhaustive.

FICx. 1. Correlation energy (hartrees) of neutral atoms plot-
ted against atomic number Z ( +, ab initio models;, com-
puted).
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TABLE I. First ionization potential (I) (in eV) of atoms heli-
um through xenon.

Z

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

49
50
51
52
53
54

Hartree-
Fock

5.34
8.04
7.93

10.79
13.96
11.89
15.72
19.85
4.95
6.61
5.50
7.65

10.02
9.02

11.80
14.78
4.01
5.12
5.35
5.51
5.81
5.90
5.90
6.28
7.78
7.61
6.41
7.63
5.47
7.43
9.53
8.41

10.78
13.27
3.73
4.67
5.74
5.05
5.66
5.87
5.29
5.92
5.92
6.67
5.91
6.90
5.05
6.83
8.66
7.62
9.62

11.68

This
work

5.39
9.28
8.17

11.07
14.29
13.61
17.44
21.58

5.18
7.95
5.69
7.91

10.32
10.51
13.32
16.35
4.35
6.49
6.81
7.06
7.35
6.24
7.67
8.03
7.92
7.82
7.03
9.29
5.64
7.66
9.81
9.75

12.14
14.67
4.18
6.03
6.07
6.65
6.13
6.34
7.16
6.55
6.63
8.23
6.75
8.64
5.22
7.04
8.91
8.82

10.84
12.93

Expt.

5.39
9.32
8.30

11.26
14.53
13.62
17.42
21.56

5.14
7.65
5.99
8.15

10.49
10.36
12.97
15.76
4.34
6.11
6.54
6.82
6.74
6.77
7.44
7.87
7.86
7.64
7.73
9.39
6.00
7.90
9.81
9.75

11.81
14.00
4.18
5.70
6.38
6.84
6.88
7.10
7.28
7.37
7.46
8.34
7.58
8.99
5.79
7.34
8.64
9.01

10.45
12.13

I,„, I—H„) which is compared with its computed analog
(Imod„I—H„). For the parameters vd, ad, and ed with

fd =0 the same strategy has been used. The total correla-
tion energy estimate for iron and the experimental AE,

for atoms with open 3d and 4d shells have been used for
the fitting. In a related paper ' we give a full tabulation
of the E for the neutral atoms and singly charged posi-
tive ions in their respective ground states.

In the present study, we chose to employ Cartesian
Gaussian basis sets; the motivation for this choice is that
molecular computations are generally carried out with
Cartesian GTO's. This also required the derivation of
the familiar Roothaan vector coupling coefficients for
ground and excited states of d" and sd" configurations.
The coupling coefficients for p" and sp" have already
been provided by Roothaan' and Huzinaga. Also, an
atomic structure code has been modified to explicitly
compute wave functions with Cartesian Gaussian basis
sets. In the present study the so-called geometrical basis
set has been used for the computation of correlation en-
ergy; we recall that in this basis set the orbital exponents
are constrained by the relation

go and K being parameters to be optimized. We have
computed the geometrical GTO basis sets for the neutral
atoms and singly charged positive ions up to Z =54
which yield HF energies that are as accurate as the ones
obtained with a STO basis set of Clementi and Roetti.

C5

Ck

I

15
I I I I

25 35

Atomic Number

I I

45
I

55

FIG. 2. First ionization potentials (eV) of atoms with
Z =1—54 ( —,experiment; . , HF; ———,computed).
The corresponding errors in the present model and HF method
are also plotted.

V. CQMPUTATIONAL TESTS AND DISCUSSIDN

Figure 1 displays the plot of E, versus Z, the atomic
number. The solid curve represents the E, estimate pro-
vided by the present model and the starred points denote
the available ab initio estimates of E, in the literature. '

In Fig. 2 the first ionization potentials computed with our
method are compared with the HF and experimental
values and in Table I the numerical values of the first
ionization potentials are tabulated. We stress that we as-
sume that the relativistic corrections to total energy for
neutral atoms are equal with their singly charged positive
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ions. Thus the relativistic corrections to the computed
first ionization potential are not considered in this study.
Clearly this is an approximation which becomes more
and more questionable the higher the Z values; thus we
felt it to be somewhat unreasonable to pursue any further
the optimization of the parameters. The computed I
values for atoms with Z = 1 through Z = 18 are in good
agreement with their experimental ones. Along with the
I curves, the error curves for the soft hole model and the
HF model are also presented. It may be seen that our er-
rors in the I estimates are discernibly smaller than their
HF counterparts.

The b,E, plots (see Fig. 3) are particularly revealing; to
start we compare small differences between large num-
bers, e.g., for argon the energy of the neutral atom is
527.5536 a.u. , the energy of the corresponding singly
charged positive ion is 526.9527 a.u. , and the AE, which
is defined as I,d, ~

—IHF is 0.0578 a.u. In addition, often
one or more types of electron pairs are involved in the

ionization process, thus not only the total E, but also the
E must be reasonably computed. Finally, we provide
data to test the model for a sizable portion of the periodic
table. In Fig. 3 the computed AE, curves for the ele-
ments with open 3d and 4d shells are close to the experi-
mental ones and the irregular trends with Z are nicely
reproduced. For the 4p and 5p the AE, estimates provid-
ed by the present method systematically deteriorate as
may be seen from Fig. 3. A rationalization for this be-
havior may be the neglect of relativistic corrections and
the choice of an appropriate coupling scheme. The hE,
curve represents the variation caused in the number of
electron pairs after the ionization of the neutral atom to a
singly charged positive ion. Take, for example, the AE,
curve for the 2p electrons for the oxygen, fluorine, and
neon atoms; there is an annihilation of a p pair which is
exemplified by the magnitude of AE, . In contrast, for bo-
ron, carbon, and nitrogen atoms there is no change in the

2.0-

'S S 'I 3I 'S 3I 'I 'S
'S S 'S I' P "S P P

0 I 0 0 0 I I I

2.0—

'S 'p 3p "S 3l 'P ~S

'S -S S p 3p S 'I'

0 I 0 0 0 I I I

I.O— 1.0—

0.0-
4 5 5 7 I 9 10

0.0—
I I I I I I

ll iZ 13 l4 l5 l6 l7 15

2.0—

2D 3l, 4I- 7S f&S SD 4I: 3I.

3D 4l- sD as 7S "D 3I D 'S -S

0 I I I I 0 I I 0 0 0 I

2 ~ 0—

2P

IS

1 p
2 p

4s

1p

1p

4s

2p

1p

I

1.0— 1.0—

0.0—
I I I I I I I I I I I I

I9 Zl Z3 Z5 Z7 Z9

0.0—
31 3Z 33 34 35 36

S 'S D . I. "D S "S . I' I' 'S S 'S
IS 4[.. SD As 7S 4f. 1I- 2D IS 2

0 I 0 I 0 0 I 0 0 I 0 I

2.0— 2.0—

2p

's
1p

2p

S
lp

1p

4S

2p

lp

I

's
2p

I

1.0— 1.0—

0.0,
39 41 43 45 47

Atomic number

0.0—
I I I I

49 50 51 5Z 53 54
Atomic number

FIG. 3. AE, (eV) for ns, np, and nd electrons. The process of neutral atom becoming singly charged positive ion brings about a

variation in the number of electron pairs denoted by Ap ( + — +, experiment; + ——+, computed).



39 SOFT COULOMB HOLE FOR THE HARTREE-FOCK MODEL TO. . . 2295

TABLE II. Variation of E, and HF energies (hartrees) among different basis sets for neon and zinc
atoms.

HF energy

Neon

Zinc

basis

7$3p
9s Sp
11s7p
13sSp
6s 3p
8s4p
10s5p
12s 6p
9s Sp
10s6p
13sSp
6s 3p
7s 3p
9s3p
10s6p
13s8p

14s9p 5d
15s7p 5d

16s 10p 7d
19s 1 1p 8d

neutral

0.3492
0.3471
0.3472
0.3472
0.3558
0.3510
0.3492
0.3483
0.3475
0.3476
0.3474
0.3499
0.3500
0.3501
0.3476
0.3472

1.7422
1.7612
1.7402
1.7398

positive

0.2850
0.2870
0.2872
0.2872
0.2897
0.2880
0.2874
0.2872
0.2871
0.2872
0.2871
0.2851
0.2852
0.2855
0.2872
0.2872

1.6896
1.7109
1.6879
1.6877

neutral

—128.2849
—128.5282
—128.5452
—128.5465
—127.0534
—128.0965
—128.3936
—128.4894
—128.4647
—128.5281
—128.5440
—127.8098
—128.1774
—128.2903
—128.5281
—128.5466

—1777.7594
—1774.9647
—1777.6099
—1777.8162

positive

—127.1681
—127.3778
—127.3949
—127.3963
—126.0017
—126.9880
—127.2656
—127.3516
—127.3185
—127.3804
—127.3951
—126.6846
—127.0573
—127.1757
—127.3804
—127.3963

—1777.3996
—1774.6280
—1777.2448
—1777.4506

0.20—

2p

Is

~ ID

D
lD 'S--

-- ~ 'D

lp
ls

'D

Si

FICx. 4. Relative differences in total energy (hartrees) for ex-
cited states with respect to the total energy of the ground-state
configuration for neutral atoms with Z=6, 7, 8, 14, 15, and 16
(-——0, HF; ———+, computed; ———+, experiment).

status of number of pairs from neutral to the positive ion
and hence, in turn, the AE, for these cases is compara-
tively smaller. However, the experimental AE, curve for
5p electrons shows an anomalous trend. It may be seen
that the AE, for indium has almost the same magnitude
as AE, for xenon, in spite of the fact that there is a loss of
a p pair, whereas indium loses only a p-shell electron.
This may perhaps be attributed to a systematic break-

down of the LS-coupling scheme; this occurs gradually
from 2p through 5p shells as seen from Fig. 3.

For the excited states of the ground-state HF
configuration, the present functional exhibits a satisfacto-
ry discrimination among the magnitudes of E, estimates
of the various states. Moreover, the relative diA'erences
between the excited states are satisfactorily reproduced as
displayed in Fig. 4 for atoms with Z =6, 7, 8, 14, 15, and
16. %'e have also computed the electron affinity for
fluorine, chlorine, bromine, and iodine ions and they are
2.80, 3.84, 3.78, and 3.62 eV as compared to the experi-
mental values 3.4, 3.61, 3.36, and 3.06 eV and the corre-
sponding HF values 1.36, 2.58, 2.58, and 2.54 eV. Of
course, one can obtain more reliable values but at the
cost of much more work (see, for example, a recent study
on electron affinity of bromine in Ref. 30). Finally, to
complete our investigation with the present prescription
of a soft Coulomb hole model we have verified that there
is no appreciable change in the computed E, with a
diff'erent choice of basis set. In Table II we present the
E, estimates for neon and zinc with a number of di6'erent
basis functions. The variations in E, estimates are not
appreciable enough to cause alarm.

In conclusion it appears that the present model overs
an avenue to provide a reasonable estimate of the E, for
atoms. It has been argued' that perhaps it is too op-
timistic today to think of available ab initio techniques as
being practical and fully satisfactory for quantum-
mechanical computations of large molecules including
electron correlation. Since this situation is changing very
slowly despite the remarkable progress of computer tech-
nology and software, the present empirical model may be
of some utility.
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