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A linear equation of motion for the state vector is presented, in which an anti-Hermitian Hamil-
tonian that fluctuates randomly is added to the usual Hamiltonian of the Schrodinger equation. It is
shown how the resulting theory describes the continuous evolution of a state vector to an ensemble
of reduced state vectors while retaining important physical features of the Ghirardi, Rimini, and
Weber [Phys. Rev. D 34, 470 (1986)] theory of spontaneous localization, in which the state-vector
reduction occurs discontinuously. A novel aspect, compared with ordinary quantum theory, is that
the state-vector norm changes with time. The squared norm of each state vector is interpreted as
being proportional to the probability possessed by that state vector in the ensemble of state vectors.
This interpretation is shown to be consistent with the independent Markovian evolution of each
state vector.

I. DYNAMICAL REDUCTION

Dynamical reduction of the state vector is a process
whereby a superposition such as

lq, o & =a, (o) Iq, &+a, (o) lq, &

continuously evolves with time into

~@,t&=e "~g&& (k=1 or 2) . (2)

A number of theories have so far been constructed'
which modify the usual Schrodinger equation to achieve
dynamical reduction. They enable one to interpret the
state vector as corresponding to an individual situation in
nature. A superposition of macroscopically distinguish-
able states cannot be interpreted in this way. The reduc-
tion is designed to prevent the existence, for any appre-
ciable time interval, of such a superposition.

Stochastic dynamical reduction theories ' add terms
with randomly fluctuating coefficients to the Schrodinger
equation, causing the squared amplitudes Xk(t) = ~ak(t) ~

to fluctuate randomly, although their sum gk Xk ( t ) = 1

remains constant. Eventually one XI, reaches the value 1

and the other Xk's vanish.
The squared amplitudes Xz can be thought of as play-

ing a (continuous in time) "gambler's ruin" game, until
one of the state vectors in the superposition "wins" the
game. For example, the following game is analogous to
the evolution (1)~ (2). Two gamblers with initial
"stakes" of d, (0),dz(0) dollars toss a fair coin, and ex-
change a dollar depending on the outcome of each toss,

until one of them wins all d ] +d 2 dollars.
dk(t)/(d, +d2) is to be identified with Xk(t), and a par-
ticular sequence of coin tosses is to be identified with a
particular fluctuation of the coefficients.

It is easily shown, because it is a fair game, that the
average of dk(t) over the ensemble of games does not
change with time and, as a result, the gambler with initial
stake dk(0) has probability d&(0)/(d, +d2) of winning
the game. It is precisely the analogous Martingale prop-
erty

d (X„(t)& /dt =0

[the average ( & is over the ensemble of trajectories of
Xk(t)] that ensures agreement with the predictions of
quantum theory: the outcome X„(t)~1 in Eq. (2) occurs
with probability Pt, =Xk (0). Here is the argument.
From Eq. (3), (X&(0)&=(X&(t)&. On the one hand,
(Xk(0) & =Xk(0) since we start with the pure state (1).
On the other hand, for sufficiently large t so that Eq. (2)
obtains for all state vectors in the ensemble
(Xk(t) & =OX(probability Xk —~0)+1 X(probability Xk
~1). Thus, Xt, (0)=P&.

Present dynamical reduction theories have concentrat-
ed on achieving the evolution (1)~(2), but have left im-
portant problems unanswered. Among these are the fol-
lowing problems.

(1) The preferred basis problem What chooses . the
basis vectors which are the end products of reduction?
Why does the reduction end in the macroscopic states we
see around us [e.g. , Eq. (2)], and not in a superposition of
such states [e.g. , 2 '

( ~P, &+~$2&)]?
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(2) The trigger problem W. hat turns the reduction on?
What mechanism is responsible for initiating a rapid
reduction for a superposition of macroscopically distin-
guishable states while leaving a superposition of micro-
scopically distinguishable states essentially unaffected?

II. SPONTANEOUS LOCALIZATION

Recently, Ghirardi, Rimini, and Weber (GRW) (see
also Bell ) have presented a "spontaneous localization"
theory that deals with the preferred basis and trigger
problems in an interesting way. Theirs is not a dynamical
reduction theory: the state-vector alteration is presumed
to occur instantaneously (we shall call this a "hit"), not as
the result of a continuous evolution in time.

However, GRW give a prescription for what the state
vector should be after a hit. If the wave function of a sin-
gle particle before the hit is g(x), after the hit it is multi-
plied by a Gaussian exp[ —(a/2)(x —z) ], and divided by
a numerical factor N to correctly normalize the altered
wave function. (GRW have chosen the localization width
a '~ =10 cm. ) We shall call the point z the "center"
of the hit. It is chosen randomly, but all centers are not
equally likely: the frequency of hitting is presumed pro-
portional to N . (GRW have selected the proportionality
factor A, = 10 ' s ' = 10 y '). Thus centers are most
likely to appear where the wave function is largest.

A wave function well localized within o. ' will
scarcely be affected by a hit. However, a wave function
which is, for example, a superposition of two such local-
ized packets separated by a distance »a ' is most
likely to be hit by a center near one packet, and that will
dramatically reduce the size of the other packet in the re-
sulting wave function. In this way (an excellent approxi-
mation to ) the reduction evolution (1)~(2) is achieved.
This resolves the preferred basis problem, for a single
particle, in favor of spatially localized (within a '~

)

states.
The GRW response to the trigger problem is subtle.

The trigger mechanism remains mysterious: no reason is
given for the occurrence of a hit. It is presumed to be a
universal process affecting all particles with equal likeli-
hood. But, given this process, the different behavior of
microscopic and macroscopic superpositions is cleverly
explained. For a single particle, the hits occur so infre-
quently that no one has so far been able to think up an
experiment precise enough to detect their presumed pres-
ence. But for a large object composed of many distin-
guishable particles, in a superposition of two spatially
separated states (e.g. , center of mass separation

), a hit of a single particle will reduce the whole
wave function. The frequency of such a hit is proportion-
al to the number of particles in the body, so such a reduc-
tion will take place rapidly.

III. SYNTHESIS

In this article, we will present a stochastic dynamical
reduction theory which resolves the preferred basis and
trigger problems using the ideas of GRW. However, the
Poisson process of instantaneous hits is replaced by a
Markov process, with continuous evolution of the state

vector. We shall call this a "continuous spontaneous lo-
calization" theory.

For simplicity, we will begin with an extensive discus-
sion of a single particle moving in one dimension. This is
sufficient to illustrate most of the novel features of this
process. We propose the following equation of motion
(an Ito stochastic differential equation) for the wave func-
tion:

df(x, t)= —iHQ(x, t)dt+[dw(x, t) —
—,'ddt]g(x, t) .

Equation (4) is remarkable, for a dynamical reduction
theory, in that it is linear in f Hi.s the usual Hamilton
of the Schrodinger equation. w(x, t) is a real Brownian
motion for each value of x. It is characterized by the fol-
lowing expectation values over the ensemble of Brownian
motions:

(dw(x, t)) =0,
(dw(x, t)dw(x', t)) =A@(x —x')dt [N(0)=1] . (5b)

Thus the Brownian motions at different points of space
are correlated.

The function 4 suggested by the GRW theory is

NoR w(x —x ') =exp[ —(a/4)(x —x ') ] (6)

(dB(z, t)) =0, (dB(z, t)dB(z', t)) =5(z —z')A. dt,

dw(x, t)= f dz dB(z, t)(a/vr)' exp[ —(a/2)(x —z) ]

(7a)

[Eqs. (5) and (6) follow from Eqs. (7)].
In the remainder of this section we will give a qualita-

tive discussion of the behavior of the solutions of Eq. (4):
the quantitative justification for these remarks is in Secs.
IV, and V, and VI. We will assume for simplicity that
H =0, in order to concentrate on the effect of the new
terms in Eq. (4). ' Their most obvious feature is that they
change the norm of the wave function.

Indeed, the last term in Eq. (4) acting by itself would
cause the norm to exponentially decay with time constant

However, the randomly Auctuating term can increase
or decrease the norm.

We will adopt the precept that the squared norm of
each (unnormalized) wave function represents the weight
associated with that (normalized) wave function in the
ensemble of wave functions. This is a natural generaliza-
tion of the GRW prescription that the frequency of a hit
is proportional to the squared norm of the wave function
after the hit.

It might appear that this precept makes the probability
that a particular state vector is in the ensemble dependent
upon the composition of the rest of the ensemble. This
would be unacceptable, because an ensemble of indepen-
dently evolving state vectors is an ensemble described by
classical probability theory, in which there can be no in-

but there are other suitable choices. To make the con-
nection with the GRW hits, and to facilitate later physi-
cal discussion, it is useful to write dw(x, t) in terms of un
correlated Brownian functions:
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g(x, t+dt)=[1+dw(x, t) ,'Adt—]g—(x,, t)

1+J dz dB(z, t)(a/~)'

(10a)

X exp[ —(a/2)(x —z) ]

,'A, dt f(x, t) . — (lob)

One expects that, since dw (or dB) is as likely to fiuctuate
positively as negatively, the randomly fluctuating term
will have only a modest effect for the majority of Browni-
an motions in the raw ensemble. Therefore the norms of
the wave functions evolving subject to these Brownian
motions will decrease roughly exponentially due to the
last term in the bracket of Eq. (10). Thus these wave
functions will be essentially unaffected in shape, but after
a few time constants they will be of negligible norm and
of neglible importance in the physical ensemble.

On the other hand, for that minority of Brownian
motions for which dw(x, t), or a set of dB(z, t) with
x —a ' ~ z ~ x +a ', happens to be positive
significantly more often than it is negative, the norm of
the associated wave functions will grow ifx also happens
to have an a '~ neighborhood where g(x) is large. This
can be seen most easily from Eq. (10b), where the explicit
appearance of the Gaussian shows that, e.g. , a sequence
of positive increments of dB(z, t) will increase the ampli-
tude of the wave function in the neighborhood of x =z, at
the expense of the amplitude of the wave function for x
outside the a ' neighborhood of z.

Of course, this can also be seen from (the equivalent)

terference of probabilities. That this precept is, in fact,
consistent with an independent Markovian evolution of
each state vector is demonstrated in Appendix C. In
what follows we shall take this consistency for granted.
However, we must comment here upon how probabilities
are to be calculated.

Usually when dealing with dynamics driven by Browni-
an motion there is, so to speak, one dynamical trajectory
associated with each Brownian motion. That is not the
case here. Let dQ is the probability measure in the space
of Brownian functions, and w& be the particular Browni-
an function responsible for the evolution of the particular
wave function gn, with squared norm

Nn(t)= Jdx~fn(x, t)~ (8)

Then, according to our precept, the probability that gn
lies in the ensemble is N&d A, not d O. Or course this in-
terpretation requires, for consistency, that the sum of
probabilities remains equal to 1,

J N'„(t)dQ=(N'(t)) =1, (9)

which we will see [Eq. (18a) and the following] follows
from Eq. (4). We shall refer to the ensembles with
weights dA and NzdQ as the raw and the physical en-
sembles, respectively. Now, what will be the behavior of
the ensemble of norms, and which wave functions will
predominate because their norms are largest?

Let us write out the essential part of Eq. (4) as

d t, NI2(t) ) /dt =0 . (13)

Now, the squared norm associated with gn is

Nn(t)=NI(t)+N~n2(t) [Eq. (8)]. However, for t =T
greater than a few time constants, either Nz, or Nzz or
both essentially vanish as we have discussed. Therefore
the probability Pk, in the physical ensemble, that a wave
function consists of just the kth packet, for t ~ T, is

Pk= N~k T dQ= Nk T . 14

Eq. (10a) if we remember that a sequence of positive in-
crements of dw at x implies also a sequence of positive in-
crements for locations within the a ' neighborhood of
x, because of the correlation (5b). Conversely, the incre-
ments in dw outside the u ' neighborhood of x are un-
correlated with those inside, and are most likely to be
equally positive and negative. Therefore, if g should
grow in the o; ' neighborhood of x, it is most likely
that there will be a concomitant approximate exponential
decrease of g outside that neighborhood.

After a few time constants, the ensemble that results
from a wave function which initially is a superposition of
two packets each of width (&a ' separated by a dis-
tance )&a ' (we shall call this the "canonical" wave
function hereafter), is as follows. In the raw ensemble,
the huge majority of wave functions still contain two
packets, but their norms have decreased exponentially.
There is also a small set of wave functions which consist
essentially of just one packet, with very large norms. On
the other hand, in the physical ensemble the weighting is
reversed. The measure of wave functions containing two
packets is negligibly small. The overwhelmingly probable
wave functions in the ensemble consist of essentially just
one packet.

Now, what does the theory predict for the probability
associated with the wave functions containing a single
packet? The prediction is identical to that of quantum
theory: in the physical ensemble, the description of the
evolution of the two packets turns out to be the gambler' s
ruin description. In particular, using the notation of Sec.
I [e.g. , ~P, ) and ~$2) in Eqs. (1) and (2) represent the two
packets], the squared amplitudes X&(t) possess the Mar-
tingale property (3). From this follows agreement with
the predictions of quantum theory, as we have seen in
Sec. I.

We may understand the origin of this crucial agree-
ment by anticipating a result [Eq. (18a)] of Sec. IV. As a
consequence of Eq. (4) (with H =0), the individual
squared amplitudes at each point x are a Martingale:

d( ~P(x, t)~ ) /dt =0 .

To see how Eq. (11) is responsible for producing agree-
ment with the predictions of quantum theory, define the
norms Nn, and Nn2 of each separate packet (occupying
regions 1 or 2) belonging to an individual unnormalized
wavefunction Pn(x, t),

N„l, (t)= J dx(fn(x, t)~ (12)
k

By integrating Eq. (11) over region 1 or 2, and using the
definition (12), we see that
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It follows from Eq. (13) that (Kk(0)) = (iVk(T)). But
since (Nk(0) ) =Xk(0), we obtain from Eq. (14) the quan-
tum theory prediction Pt, =Xk(0).

IV. SINGLE PARTICLE: BEHAVIOR
AT A POINT

We now wish to justify the statements of the previous
section by analyzing the consequences of Eq. (4) (with
H =0). The phase of P(x, t) is unaffected by the evolution
(4) because w is real. " To see how the unnormalized
squared amplitudes Y(x, t)= ~1{(x,t)~ behave in the raw
ensemble (all we consider in this section) we utilize the
Ito formula

d( fg) =f dg+g df + (df dg ), (15)

where f=g(x, t) and g = i'*(x ', t ), to obtain from Eq. (4)

d [P(x, t)g*(x', t )]= [
—i [H(x ) H(x')—]dt

+[dw(x, t)+dw(x', t)]
+X[4(x —x') —1]dt ]

X P(x, t)P*(x', t )

Equation (21) shows that p(0; t ) =0, and p( 1'; t ) rises to
a peak at Y= Yoexp( —2j,t), falling to zero as Y~oo.
Thus, in the raw ensemble, most wave functions have
squared amplitudes which decrease roughly exponentially
with time at each point. However, there is a tail in the
distribution, so some wave functions acquire very large
squared amplitudes.

Next consider the correlated behavior of
Y(x i, t ), Y(xz, t ) at two different points x i, x2. From Eq.
(17) we find

(dY( x, , t) Y(x~, t)) =4AN(x, —x~)Y(x, , t)Y(x, , t)dt .

(22)
Putting (22) and (18) into the generalization of Eq. (19) to
more than one variable

Bp(Y;t )/Bt = —g (a/a Y„)[((dY„)Idt )p]
n

+ —,
' g (a/BY„ )(a/BY )

n, m

X[((dY„dY ) Idt)p], (23)

we obtain, for an arbitrary number of points,

ap( Y; t ) Iat =2X pa (x„—x )(a/a Y„)(a/a Y )

(which will be useful later, when we discuss the density
matrix in Sec. VII) and, setting x =x' and H =0,

n, m

XY„Y p, (24a)

dY(x, t)=2dw(x, t)Y(x, t) . (17) which, for two points, is

Equations (17) and (5) contain the complete information
about the ensemble of wave functions.

First, consider the behavior of Y(x, t) at a single point
x, according to the raw ensemble description. From Eq.
(17) we can calculate the moments

(dY(x, t) ) =0,
( [dY(x, t)]') =4k Y{x,t)'dt .

(18a)

(18b)

[Note that Eq. (11) follows from Eq. (18a) while Eq. (9)
follows from integrating Eq. (11) over x.] Using Eqs.
(18a) and (18b) we can construct the Fokker-Planck equa-
tion describing the behavior of the ensemble of squared
amplitudes Y(x) by means of the prescription

ap(v;t)/at=2'[(a/a Y, )'Y', +(a/a Y, )'Y',

+2@(x,—x, )(a/a Y, )(a/a Y, )

X Yi Yq]p . (24b)

We see from Eq. (24b), when xi is distant from x2 (i.e.,

~x i
—x z ~

&&a ', so 4 =0), the evolutions of Yi and Yz
are uncorrelated, and the raw probability distribution is
the product of separate distributions (21) for Yi, Y&. On
the other hand, for nearby points ( ~x i

—xz ~
&& o. ', so

& =1), the solution of Eq. (24b) subject to the initial con-
dition p( Yi, Yz, 0) =6( Yi —

Yio )6( Y~ —
Y2o ) is

p d Yid Yz =5[in( Yi /Y2) —ln( Yio/Y2O)](32wkt )

Bp(Y;t)
Bt

B

BY
(dY) X exp[ [ —(32kt ) ']

X [ln Y, Y&
—ln Yio Y20 +4At]).

B

BY

2
((d Y)')

P (19)

p( Y; t)d Y is the probability that Y lies in the range d Y in
the raw ensemble.

Putting Eqs. (18) into Eq. (19) we obtain

Bp( Y;t)Iat =2k(a/BY) [ Y p( Y;t )] . (20)

The solution of Eq. (20), subject to the initial condition
p( Y;0)=5( Y —Yo) is

p(Y;t)dY

Xd ln Y[d ln Y2 . (25)

Because of the 5 function in Eq. {25), the ratio of squared
amplitudes at nearby points remains constant. This con-
clusion is also reached using the physical ensemble.

This feature, that the shape of each wave function in a
a ' neighborhood of each point x remains relatively
undisturbed, is worth emphasizing. To examine this be-
havior more precisely, without making the approxima-
tion 4= 1 employed above, we write down the equation
of motion for the ratio Yi /Y2. Using Eq. (15) with

f= Yi and g = 1/Yz, together with the Ito formula

=(8vrkt) '~ [exp[ —(ln Y—ln Yo+2At) Iglt]]dlnY . dg ( Y) =g'd Y+ —,'g" ((d Y) ) (26)

(21) and Eq. (17), we obtain
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d( Y, /Y2 ) =(2[dw(x „t) —dw(x~, t )]

+4A, [ 1 —exp[ —
( a /4)(x, —x ~ ) ] ] dt )

As in Eq. (12), we define the norm Nt, (t) of each packet.
From (17) we find how the norms change with time,

X(Y, /Y2) . (27) dN„(t) =d f dx Y(x, t)=2f dw(x, t)Y(x, t)dx,
k k

(30)

From Eq. (27) we pluck out the drift and diffusion of
Y, /Y

by means of which we can calculate the drift and
diffusion of N, , N2,

(d( Y, IY, ) ) Idt (dN, ) Idt =0, (dN~ )/dt =0, (31a)

=4k, [1—exp[ —(a/4)(x, —xz) ] j ( Y, /Y2), (28)
(dN„'dNt2 ) =4k f dx f dx'+(x —x')Y(x, t) Y(x', t)dt .

k k'

(31b)
=4( [dw(x „t)

—dw( x~, t )] ) Idt

=SR.[1—exp[ —(a/4)(x, —xz) ]](Y& /Yz) (29)
For k =k' we have 4&(x —x') =1, while for k&k' we
have N(x —x') =0, so from (31b)

According to Eqs. (28) and (29), both drift and
diffusion of Y, / Y2 are proportional to A, for
~x&

—xz~ ))a ', while for ~x&
—x2~ &&a ' they are

proportional A,a(x, —x2) «A. . In this way the global
wave function is altered dramatically on a time scale of
order A,

' while locally it is scarcely affected on the same
time scale.

V. ONE PARTICLE: BEHAVIOR OF PACKETS

Now we turn to the canonical situation of an initial
wave function consisting of two well-separated packets.

I

((dN ) )=4k(N ) dt, (dN dN~)=0. (31c)

Thus the squared norms of the two packets are un-
correlated. In fact, by Eqs. (31a) and (3lc) the Fokker-
Planck equation and its solution describing the distribu-
tion of Nt, in the raw ensemble is given by Eqs. (20) and
(21) (Nt, replaces Y): the squared norms of the two pack-
ets behave precisely the same way as did the squared am-
plitudes at two distant points.

We now are in a position to discuss the evolution of the
joint probability distribution for N, , N2. In the ram en-
semble, the probability density p(N, , N2, t ) is given by

p(N &, N&, t )dN &dNz =p(N, ; t )p(Nz, t )dN, dNz =(Snit ) 'dlnN &dlnNz

Xexp[ —(SAt) '][[in(N& /N&o )+2lt] +[in(Nz/N2O )+2kt] ] (32a)

[using Eq. (21) for p(Nt„t)]. In the physical ensemble, the probability density is r(N, ,Nz, t )—:(N, +N2)p(N, ,N2, t )

which may be written as

rdN, dN2=(N&oexp[ —(Slt) '][[In(N&/N, o) —2At] +[I (Nn/2N )2+02kt] ]

+Nzoexp[ —(Sit) '][[ln(N, /N, o)+2k t] +[ln(Nz/N20) —2At] ] )(S~kt) 'dlnN, dlnNz . (32b)

Equations (32a) and (32b) display the dramatic difference
between the physical and raw ensembles.

The raw ensemble probability density (32a) is the prod-
uct of two probability densities, in each of which there is
a peak which moves toward Nk =0. The physical ensem-
ble probability density (32b) is the sum of two terms.
Each term is itself the product of two probability densi-
ties, in one of which the peak moves toward N& = ~
(N2= ~) while the other peaks moves toward N2=0
(N

&
=0). Moreover, the overall probability associated

with each term is N, 0 =X,(0) [N2O =X2(0)], the squared
amplitude for the packet in the original wave function.
Thus Eq. (32b) shows explicitly the reduction behavior,
how the initial wave function with probability density
r (N &, N2,'0) =5(N

&

—N &0 )5(N z
—N zo ) evolves into an

ensemble, with correct probability distribution, of wave
functions of ever-increasing norm, each containing
(essentially) just one packet.

VI. GAMBLER'S RUIN

In the previous sections we discussed the unnormalized
wave functions. We described the behavior of the
squared amplitudes Y(x, t) and the behavior of the norms
of localized packets Nt, (t). In this section we comment
on the behavior of the squared amplitudes and packet
norms of normalized wave functions, using the correct
probability densities of the physical ensemble.

The Fokker-Planck equation for the probability densi-
ty of the squared amplitudes

Z(x, t) = ~q(x, t) ~'I f dx ~q(x', t ) ~' (33)

is obtained in Appendix A, Eq. (All). That the Z(x, t)
for different x play a gambler's ruin game among them-
selves is discussed in Appendix A, and we will say no
more about this here.

Now let us consider the canonical two-packet situa-
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tion. We shall use the result (32b) of Sec. V to find the
probability density distribution for the squared norm of
packet 1,

R(X&', t)= f dN r(X, N, (1—X&)N;t)
0

XJ(N, , NPX, , N ) . (35a)

X, (t) =N', (t)/[N', (t)+N,'(t)] (34)

(Xz's distribution is implied since X2 = 1 —X, ). This
probability density R (X&', t) is obtained by integrating
r(N&, Nz, t) over all norms N:N, —+N2,

J is the Jacobian determinant, whose value is calculated
from Eq. (34) to be N . Upon substituting the expression
(32b) for r into Eq. (34a), and performing the integral, we
obtain

R (X&, t )dX, = [X,oexp[ —(16kt ) '][ 4kt —+lnX, /(1 —X, )
—lnX, o/(1 —X,„)]

+(1—X,o)exp[ —(16kt ) '][4k t+1nX, /(1 —X, )
—lnX, „/(1 —X,o)] ](16rrkt ) 'dlnX& /(1 —X, ) .

(35b)

In Appendix A, Eq. (A17), we give the generalization
of Eq. (36) to any number of packets

X X~
BX

aR (X; t ) /at =2k g a
BX

Equation (35b) describes a solution whose initial distri-
bution 6(X, —X,„) breaks up on a time scale X ' into
two peaks which travel toward X, =1 and X] =0, the
areas under the peaks being x]0 and 1 —X,0, respectively.
It may be directly verified that Eq. (35b) is the solution of
the Fokker-Planck equation

aR(X, ;t)/at=4m(a/aX, ) [X,(1 —X, ) R(X, ;t)]. (36)

I

upon the density matrix alone. One is then obliged to use
the probability density to construct the density matrix
and thus to make predictions. However, this is not the
case here, as will be shown.

To construct the density matrix from an individual un-
normalized wave function gt&(x, t), it is necessary to nor-
malize it first, obtaining gn(x, t)/Nn(t) The p.robability
that this normalized wave function is in the physical en-
semble is d AN&(t) Therefore th. e density matrix is

D(x, x', t ) = f dQ N~n(t)[g„(x, t)/N„(t))

X [Qti(x', t )/Nn(t)]

X X, +Xi —g X,' R (X; t ) . (37)
=(P(x, t)g*(x', t)) . (38)

The Martingale property Eq. (3), the constancy of g, X;,
and therefore the gambler's ruin nature of the competi-
tion between the Xi, 's follows immediately from Eq. (37).

Equations (35b}, (36},and (37}are not new in the histo-
ry of stochastic dynamical reduction theories. Some time
ago we proposed a theory whose two-state sector we
showed is described by Eqs. (35b) and (36). More recent-
ly, Gisin' has suggested another theory whose two-state
sector is also described by Eqs. (35b) and (36). We have
proved' that Eq. (37) is the unique description of sto-
chastic dynamical reduction theories with nonevolving
phase angles whose off-diagonal density matrix elements
decay exponentially with a universal time constant, that
this behavior is a necessary condition for there to be no
superluminal communication via the reduction mecha-
nism, and that Gisin's theory is described by Eq. (37).
We have also emphasized that a superposition described
by Eq. (37) is never completely reduced.

UII. DENSITY MATRIX

The probability density description of the behavior of
the ensemble of wave functions is a complete description.
In particular, it enables one to calculate the quantum-
mechanical density matrix which, although it contains
much less information than the probability density, is a
sufficient tool for making all experimental predictions.

In some dynamical reduction theories the equation of
time evolution of the density matrix does not depend

Thus the density matrix can be found from the expec-
tation value of g(x, t)f*(x', t) calculated in the raw en-
semble. As a direct consequence of the equation of
motion (4) for d6 we have already found the expression
(16) for d[gi(x, t)g*(x', t)]. Taking the expectation value
of Eq. (16) we obtain

aD(x, x'; t )/at =
}
—t'[H(x) H(x')]—
+X[4&(x —x') —1]]D(x,x';t ) . (39)

Equation (39) clearly shows how the usual Hamiltonian
evolution occurs for density matrix elements in the posi-
tion representation taken between nearby points
( ~x

—x' &&a '~, 4= 1), but is modified by the exponen-
tial decay of off-diagonal matrix elements between dis-
tance points (~x —x' ))a ', 4=0). Of course, Eq.
(39) can also be obtained from the probability density [see
Appendix A, Eqs. (A12) and (A13)].

Equation (39) is identical to the equation of evolution
of the density matrix proposed by GRW. However, we
wish to emphasize that the behavior of the ensemble of
wave functions subject to the GRW Poisson process is
difterent from their behavior subject to the Markov pro-
cess described here, even though their density matrices
are identical at every instant of time.

To illustrate, consider the canonical two-packet situa-
tion. The Markov process probability density
R (X, ,X,O;t ) is given by Eq. (35b). The Poisson process
probability density Roaw(X, , X,O;t) is obtained in Ap-
pendix B, Eq. (B13),as
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R Gi~w(X„Xio', t ) =5(X, —X,o)exp( —At )+R (X, , X,O;a(x2 —x, ) )[1—exp( A—t)]
=5(X, —X,o)exp( At—)+[X,O5(1 —X, )+(1—X,o)5(X, )][1—exp( —At)] .

(40a)

(40b)

Both probability densities R and RGiiw have initial value 5(Xi —Xio) and final value
=Xio5(1—X, )+(1—Xio)5(Xi). However, for t «A, , R describes an ensemble in which a negligible amount of
wave-function reduction has occurred, i.e., there is a negligible probability that L& =1 or 0. It takes a few time con-
stants for the initial probability density peak to diff''use toward X, =1 or 0 and build up significant probability concen-
trations at these locations. On the other hand, RGi~w describes the immediate creation of reduced wave functions [last
term in Eq. (40b) —A, t] for small t.

VIII. DISTINGUISHABLE PARTICLES

The generalization of Eqs. (4) and (5) to n distinguishable particles moving in three-dimensional space is

dg(xi, . . . , x„;t)= iHg—dt+ gdwi, (xi„t)—( ,'nAdt)—
k

(dwi (xi, , r ) ) =0,
(dwg(xi, , r )dwi(xi, r )) =5i,&A, N(~xi, —xi ~)dt .

(41)

(42a)

(42b)

First we look at the density matrix evolution equation. dg P can be calculated from Eq. (41) just as Eq. (16) was ob-
tained from Eq. (4) in Sec. IV,

d [1'(x,, . . . , x„;t)g'(x', , . . . , x„';t )]= i [H—(x) H(x'))d—t+ g [dwi, (xi„t )+dw„(x'„, t )]
k

+A. g &0( ~xi,
—x'i,

~
) ndt f(—x, t)g*(x', t ) .

k

(43)

BD( , xxt )/Bt = —i[H(x) —H(x')]

+A, g 4( ~xi,
—x'i,

~
) n—

k

XD( , xtx) . (44)

Equation (44) is precisely the density matrix evolution
equation proposed by CxRW. Following them, consider
an initial wave function describing a macroscopic body
whose center of mass R=n ' gi,. xi, (we take all masses
equal for simplicity) has an arbitrary probability distribu-
tion, but whose relative coordinates rk

—= xk —R are each
well localized within a spherical volume of radius
«a ' . Since 4((xi, —x'i, ))=4([ri, —ri,. +R—R'(),

and when )R —R'( is comparable in size to (ri,
—ri, )

we
have 4= 1, we may replace each 4( ~xi,

—x'i,
~ ) in Eq. (44)

with 4(
~
R —R'

~
) to a good approximation. Then Eq.

(44) (with H =0) becomes

BD(r, R, r', R';t )/dt

= n A, [4(
~
R —R'

~
)
—1]D( r, R, r', R', r ) .

(45)

Equation (45) expresses GRW's result that for a mac-

Remembering the result of Sec. VII,

D(x, , . . . , „x, ,'x, . . . , x„';t)
= ( Q(x, , . . . , x„;t )g*(x', , . . . , x'„; t ) ),

by taking the expectation value of Eq. (43) we obtain the
density matrix evolution equation

roscopic body there is a rapid reduction [time constant
(A, n ) '] in the center of mass, while there is essentially no
efT'ect on the relative motion. This can be seen by taking
the trace of Eq. (45) over the relative coordinates ri, or
over the center of mass coordinate R: the reduced densi-
ty matrix D(R, R'; t ) satisfies Eq. (45), while the other re-
duced density matrix satisfies ~3D(r, r'; t )/r)t =0.

Of course these results for the density matrix have
their counterparts in the probability density description
of the ensemble of wave functions. Let us examine the
behavior of the squared amplitudes of the unrenormal-
ized wave function Y(xi, . . . , x„;t )

—= ~P(xi, . . . , x„;t )
~

just as was done for a single particle moving in one di-
mension in Sec. IV. Setting xz =x& (and H =0) in Eq.
(43) results in the basic equation of motion for Y,

(dwi, (xi, , t)dw, (xi, t)) =5„,A@(~R—R'~)dt . (47)

Therefore, from Eqs. (46) and (47), the diffusion
coefficient for Y(r„. ~ . , r„&,R; t )—:Y(x], . . . , x„;t ) is

(dY(r, R;t)dY'(r', R';t ) ) /dt

=4A,n@( R —R' )Y(r, R;t) (Yr', R';t), (48)

which is all one needs (to construct the Fokker-Planck
equation and therefore) to describe the complete behavior
of the ensemble of squared amplitudes Y.

First let us look at the behavior of the center of mass.

d Y(x, , . . . , x„;t)=2 g dw„(x„,t) Y(x„.. . , x„;t), (46)
k

while the approximations made prior to Eq. (45) convert
Eq. (42b) to
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By integrating Eq. (48) over the relative coordinates
rj„r~, k =1, . . . , n —l we obtain

(dY, (R;t)Y, (R';t))

=4kn 4(
~
R —R'

~
) Y, (R; t ) Y, ( R', t )dt, (49)

where Y, (R;t)= fdri. . . dr„ i Y(r, R;t) is the

squared amplitude for the center of mass alone.
Equation (49) is identical in form to the diffusion

coefficient for a single particle given in Eq. (22), except
that A. in Eq. (22) is replaced by An, an, d one spatial di-
mension is replaced by three. Therefore the whole single
particle behavior discussed in Secs. IV —VI and Appendix
A holds for the center of mass, except that reduction of
the center of mass in the canonical two-packet state
proceeds more rapidly, with time constant (A,n )

To see that the relative coordinates are not disturbed,
one need only employ Eq. (46) to calculate the diffusion
and drift of Y(r, R;t)/Y(r', R', t) as was done in Sec. IV.
The result has the same form as Eqs. (28) and (29),

( d( Y/Y') ) =4An [1—4( ~R —R'~ )]dt,
([d(Y/Y')] ) =8An[1 —N(~R —R'~)]dt .

(soa)

(50b)

For R =R' we see that both drift and diffusion
coefficients (50) vanish, so there is no change in the shape
of the wave function in the relative coordinates.

Extending the GRW Poisson process to many indistin-
guishable particles has proved to be not an easy task. '

The utility of the Markov process described here makes
itself apparent in the ease with which this extension is ac-
complished within its framework. The generalization of
Eq. (4) or Eq. (41) to many indistinguishable particles is

d( ,x, . . . , x~g, t) = iH+ —mdiv(xk, t) —
—,
' g dw(x„, t) ') (x, , . . . , x~P, t )

k k

iH+ g—div(x„, t) —
—,'A. dt+Ci(~x„—x, l) (xi, . . . , x„lf,t)

k kl

(5 la)

(51b)

The statistical properties of div( xt) are described by Eq. (5) as usual [with (x —x') replaced by ~x —x'~]. Unlike Eq.
(41) for distinguishable particles, only one Brownian function iv(xk, t ) is needed.

The calculation of the evolution equation for the density matrix proceeds as in Secs. VII and VIII. One calculates
d[P(x; t )g*(x', t )] using Eq. (51) and the Ito rule (15) and, upon taking the expectation value, one obtains

BD(x„.. . , x„,x'„. . . , x'„;t )/r)t = —i [H(x) H(x')]+X—g [&0( x&
—

x& ~
)
—

—,4( ~x&
—xt )

kl

—
—,'@(lxi, —xII)] D(x, x';t) . (52)

After having tantalizingly displayed the basic equa-
tions (51) and (52) of the theory for many indistinguish-
able particles, we will refrain from drawing the interest-
ing physical consequences here. They will be discussed in
a forthcoming paper. '

IX. CONCLUDING REMARKS

The equations of motion presented here [Eqs. (4) or
(41) or (51)] describe a nonunitary but linear evolution of
the state vector. Subject to a particular Brownian func-
tion iv( titx), a sum of two state vectors at time 0 be-
comes, at time t, a state vector which is the sum of the
two evolved state vectors. However, the theory is non-
linear in its rule of weighting each state vector's impor-
tance in the ensemble by the squared norm of the state
vector. In these respects it is similar to ordinary quan-
tum theory, with its linear evolution equation and non-
linear probabilistic interpretation.

The linearity of the equation of motion should prove
useful for further development of the theory, in that it in-
vites the use of already developed formalisms (e.g. , Ham-
iltonian, Lagrangian, sum-over-histories) that have been
applied in the context of the usual Schrodinger equa-
tion. '

Along with the preferred basis and trigger problems
mentioned in Sec. I to which the CxRW theory and the

theory presented here respond, there are at least two oth-
er important problems for which there is as yet no
response.

(3) The relativity problem How can yo. u make a rela-
tivistically invariant theory of state-vector reduction?

(4) The link problem What is . the connection of the
reduction mechanism with the rest of physics? Is there
some aspect of an already known field that is responsible
for reduction?

There is an indication that this continuous spontaneous
localization theory may be useful in solving problem (3).
A number of authors' ' have described a conAict of re-
lativity with quantum theory-plus-instantaneous state-
vector reduction.

Consider the canonical two-packet situation, as seen
from one Lorentz frame. Suppose that for t & 0 the
squared amplitude associated with each packet is —,', but
that for t )0 the squared amplitude of one packet is 1

and of the other is 0, i.e., this is the frame in which in-
stantaneous state-vector reduction occurs. Then in other
Lorentz frames there will be intervals of time over which
the sum of squared amplitudes is either —,

' or —,'. that is,
the norm of the state vector is not always equal to 1 in
these frames, and of course this means that the usual
quantum theory is not valid in these frames over these
time intervals. But state-vector norms which are not
equal to 1 are the basis of the theory presented here, so
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one might hope for progress using these ideas.
Regarding problem (4), there have been a number of

suggestions that gravity may be linked with state-vector
reduction. We close with the remark that a continu-
ous spontaneous localization theory might solve a prob-
lem of semiclassical gravity.

Semiclassical gravity is a theory in which the classical
Einstein equation of general relativity has as its source
the quantum expectation value of the energy-momentum
tensor. Kibble has shown how to obtain the coupled
Schrodinger equation and Einstein equation from an ac-
tion principle, by varying the state vector and the metric
tensor. However, he has also pointed out that semiclassi-
cal gravity has an obvious conflict with experiment.

Consider a quantum experiment for which the
Schrodinger equation describes the evolution of a physi-
cal system into the canonical two-packet superposition,
where the packets describe the center of mass position of
a massive object such as a bowling ball. The expectation
value of the energy-momentum tensor in such a state is
the same as if there actually were two large masses locat-
ed at the packet sites, and the metric tensor in the semi-
classical theory responds to both masses. Of course, in
an actual experiment (and a rather tongue-in-cheek ex-
periment has actually been performed ), the mass is to be
found centered on only one of the packet sites, and the
metric tensor responds accordingly. We remark that, if
the Einstein equation were coupled to a Schrodinger
equation which included the terms given here that reduce
the state vector, this embarrassing conflict of semiclassi-
cal gravity with experiment would disappear.
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APPENDIX A

We give here the complete probability density descrip-
tion of the evolution of an initial wave function g(x, O)
into a physical ensemble of normalized wave functions.
First consider the behavior of squared amplitudes at M
points uniformly spaced along the x axis, with spacing A.
We define

Z (t):—Ig(x, t)l'g &~/(x„, t)~'= Y„(t)/&Y(t) (Al)

( Y—:g Y ). Z (t) approaches the squared amplitude
of a normalized wave function in the continuum limit
M~~ followed by 6~0. However, even before the
limit is taken

p(Y;t)~p(Y, b, ', t):p(Y;t)6(—b, ' —bo '), (A4)

which still satisfies Eq. (A3). The probability density of
Z, Y,

W'( Z, Y; t )d Z d Y

=—(bg Y„)p(Y;t)6(b, ' —bo ')dYdb,
n

will be normalized to 1

60 '=[+„Y(x„,O)] since

(A5)

with the choice

f W d Z d Y= b.og ( Y„(t)) = b,og Y„(0), (A6)

the last step following from the Martingale nature of each
Y„. The (b, g„Y„) factor in Eq. (A5) approaches the
squared wave-function norm in the continuum limit, and
therefore is the right factor to correct the raw ensemble
to the physical in that limit.

Actually, we are most interested in the probability dis-
tribution of the Z 's regardless of Y,

W(Z, t )
—= f d Y W(Z, Y;t )

dYAOYp(Zb, oY;t)6(QZ„—b, o ')
0

XJ(ZboY, DO 'iZ, Y), (A7)

obtained by integrating Eq. (A5) over Y, and by using
Eqs. (A 1) and (A2) to write Y, b, ' in terms of Z, Y. In
Eq. (A7), J(Y,b, '~Z, Y) is the Jacobian of the transfor-
mation from (Y, b, ') to (Z, Y), and is readily calculated
to be

J(Y, b, '~Z, Y)=(Y/QZ„) (AS)

Now, to obtain the Fokker-Planck equation for W,
take the derivative of Eq. (A7) with respect to t. Substi-
tute Eq. (A3) for Bp/Bt into the right-hand side of the re-
sulting equation. Use

a/a Y„=(s/ Y)a/az„—( I / Y) y z a/az. +a/a Y

(A9)

Our starting point is the Fokker-Planck Eq. (24a),

Bp(Y;t)/Bt =2k g 4(x„—x )(B/BY„ )(a/BY ) Y„Y p,
n, m

(A3)
for the probability density p(Y;t) of the unnormalized
squared amplitudes Y„ in the raw ensemble. From this
we will be able to obtain the Fokker-Planck equation for
the probability density W of the Z s in the physical en-
semble.

Equation (A2) states that there is a linear relationship
between the Z 's. In order to treat the Z 's as indepen-
dent variables we employ the following trick. We in-
crease the number of independent variables to M+1,
treating b ' as an independent variable along with Y,
and Y as an independent variable along with Z. We re-
place p by

gbz =1 . (A2) (S—:g Z ), which follows from Eq. (Al), to replace
derivatives with respect to Y„s by derivatives with
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respect to Z„'s. After integration over Y, and after some
manipulation we obtain

BW(Z, t)/Bt =2k, g 4(x„—x ) S a

n, m n

X a
az.

a
BZ„

Z.
S

XZ„Z WS (A 10)

After further manipulation, Eq. (A10) can be put in the
forms

=X y (a/aZ„—a/aZ )'[ —~„.(Z)]W,
n, m

(Al lb)

I

aW(Z, r)/ar =u. g(a/aZ„)(a/aZ )p„(Z)W (Alla)
n, m

P„(Z)=Z„Z 4„+S g 4)«Z, Z«
j,k

'g«'. k+~' «»k
k

—=4(x„—x ) . (A 1 lc)

Equation (A 1 1) describes a gambler's ruin game among
the Z 's. Since any function of S= gk Zk commutes
with the differential operators (8/BZ„—8/BZ ) in Eq.
(Al lb), if W is initially proportional to 5(b,S —1) it
remains so. Thus the amount the "money" in the
"game" is preserved. Likewise, it follows from Eq. (Al 1)
that d(Z„)/dt=0, so each Z„ is a Martingale, and the
game is "fair."

The complicated dependence of the diffusion constants
on the Z„'s may be interpreted as a rule whereby each
player's gain and rate of play depends upon the amount
of money possessed by all. It is not hard to show that the
probability distribution of Z;/Zj does not change with
time if ~x,

—x
~

((a ' . In other words, "nearby" gam-
blers win and lose together in such a way that the ratio of
their wealth is constant. We remark that, in the continu-
um limit, Eq. (lib) can be written as a Fokker-Planck
functional differential equation,

a W(Z(x);r )/at =2k, f f dx dx'[5/5Z(x) —5/5Z(x')] Z(x)Z(x')

X dxi N x —xi +4 x' —x2 Z x] —W x —x

f f—»(«, C(x( x, )z—(x, )Z(x, ) W . (Al id)

As an interesting application of the use of Eq. (11),one
can calculate the equation of evolution of the density ma-
trix,

D(X,X';r)= f dZ W(Z;r)g(x, r)p*(x', r)

i 6(x)—i 8(x')

of the normalized wave function at x
To find the probability density R of the packet squared

norms

R(X;t)—:fdZ W(Z;t) g 5(kg bz„—Xk), (A15)
k=1 n

X f dZ W(Z;t)[Z(x)z(x')]'" (A12)
we take the derivative of Eq. (A15) with respect to t, and
substitute Eq. (Al lb) for 8W(Z, t )/Bt The d.iffusion
coefficients (Al lc) in this situation are

[8(x,t) —= (2i) 'In/(x, r ) Ip (x, t) ]. Taking the derivative
of Eq. (A12) with respect to t, substituting (All) for
9 W/Bt, and integrating by parts over Z yields

BD(x,x', t ) IBt =A [&b(x —x') —1]D(x,x'; t ), (A13)

which was obtained much more easily in Sec. VII, Eq.
(39).

It is easy to apply Eq. (Allb) to the situation of K
wave packets, each of width ((a ' separated by dis-
tances ))a ' . We define the squared norm of the kth
packet as

Pnm n m 5k(n)k(m) rf Xk Xk(n) Xk(m)
k

where we have used 4„=1 or 0 depending upon wheth-
er x„and x are in the same packet or not. In Eq. (A16),
k(n) denotes the index of the packet which has support
at the point xn. After integrating by parts, and convert-
ing the derivatives with respect to the Z„'s to derivatives
with respect to the Xk's by means of the 6 functions in

Eq. (A15), the following result is obtained:

Xk(t)=k g bz —+k f dx Z(x, t), (A14) aR(Xr) a a X.Xk

where the subscript k restricts the sum or integral to the
x interval of support of the kth packet. The arrow refers
to the continuum limit where Z ~Z(x, t ) is the square

X X +X„—g X, R (X; t ) . (A17)
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Equation (A17) describes a gambler's ruin game among
the squared packet norms X&. It's significance is dis-
cussed in Sec. VI.

APPENDIX B

In this Appendix we consider the canonical two-packet
situation in one spatial dimension in the GR8' theory.
We obtain an expression for the probability density distri-
bution R(X&, t ), where

X&(t)—:f dx~g(x, t)~ (k =1 or 2)
k

(81)

is the squared norm associated with packet k belonging
to the normalized wave function 1t (so Xz = 1 —X, ).

Consider an ensemble described by R (X&, t ). Accord-
ing to GRW, in the time interval dt there is probability
A, dt that a particular wave function will be hit. If f is hit
with a center at z, the wave function immediately after
the hit is

(a/~)' [exp[ —(a/2)(x —z) ]]P(x,t)/N(z, t), (82)

where N(z, t) normalizes the new wave function and
N (z, t)dz is the probability that the center lies between z
and z +dz,

N (z, t) =(tz/m )' f dx [exp[ —a(x —z) ]J ~P(x, t)~

In obtaining Eq. (83b) from (83a) we have used the ap-
proximation that packets 1 and 2 are narrowly spread
about points x& and x2, respectively. In the same ap-
proximation, by squaring Eq. (82) and inserting it into
(81), we obtain the result that a packet characterized by
X, =X' before a hit becomes characterized by

X=a,X'/[a, X'+az(1 —X')] (84a)

X'=a2X/[azX+a, (1—X)] . (84b)

The probability R(X;t+dt)dX that X lies in the range
dX at time t+dt has two contributions. The probability
that there is a transition into this range is, using (83b),

A, dt(aim)'~ f dz[a &X'+a2 l 1 —X')]R (X'; t )dX'~, ,

(85a)

where it is understood that X' in Eq. (85a) is the expres-
sion (84b), which is a function of z and X. The probabili-
ty that there is a transition out of this range is

{[a&=—exp[ —a(x& —z) ]) after the hit. The inversion of
Eq. (84a) is

=(a/m. )' (X, [exp[ —a(x, —z) ]]
+Xi[exp[ —a(x~ —z)']J) .

(83a)

(83b)

k

dt(alar�)'~

fdz[a, X+a&(1 —X)]= A, dt .

Therefore the equation of evolution for R (X;t ) is

(85b)

r}R(X;t)ldt=A(ale)' f dz[a&X'+a2(1 —X')]R(X';t)(BX'/BX), —AR(X;t) .

In order to solve Eq. (86), it is useful to change the variable of integration from z to X'. We note from Eq. (84b) that,
as z ranges from —oo to + oo, X' ranges from 0 to 1 (with the choice x2 )x

&
). By use of

(Bz/BX')x(BX'/r}X), = —(Bz /BX)x Eq. (86) becomes

BR(X;t)lr}t=A(a/m)' f dX'[[a&X'+a&(1 —X')] /2a(x2 —x&)a, azX'(I —X')]R( Xt) —AR(X;t)
0

=A[(a/m)' /2a(xz —x|)X (1—X)]f dX'X'a&[z(X X')]R(X';t)—AR (X;t) .
0

(87a)

(87b)

By solving Eq. (84) for z in terms of X,X' we obtain

a&[z(X X')]=[X(1—X')/X'(1 —X)]' exp[ —(a/4)]((xz —x|) +(x2 —x& ) [In[X(1—X')/X'(1 —X)]J ) . (88)

Remarkably, it turns out that X'a& multiplied by the
bracketed expression outside the integral in Eq. (87b) is
G(X,X',a(x2 —x&) ), where G(X,X', T) is the solution
Eq. (35b) of Eq. (36),

BG(X,X', T)Idt =(BIBX) [X (1 —X) G(X,X';T)],

We can now proceed to solve Eq. (810). The explicit
expression for G(X,X', T) appears in Eq. (35b) (with
4A, ~I, t~T, X&~X, and X&0~X'). Since
a(x2 —x, ) ))I, we only need to know G for large
T=a(xz —x, ),

(89) G(X X' T ) =X'5(1—X)+(1 —X')5(X) . (811)
with the initial condition G(X,X',0)=5(X—X'). Thus
our equation for R is

r}R(X;t)lr}t=A, f dX'G{X,X';a(x —x, ) )R(X', t)
0

(8 10)

The 5 functions in Eq. (811)are actually narrow peaks of
height —e and of area close to 1, centered at
X= [ 1+[e—r(1 —X')(X') '] ] '. Putting the expression
(811)for G into Eq. (810) yields
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The solution of Eq. (812), subject to the initial condi-
tion R(X;0)=5(X—Xo) is

R (X; t ) =5(X —Xo )exp( —kt )

+ [X05(1—X)+(1—XO)5(X)]

X[1—exp( A, t)] —. (813)

The significance of this solution is discussed in Sec. VII.

APPENDIX C

In this Appendix we explain how the probability
weighting of the physical ensemble is consistent with an
independent Markovian evolution for each state vector in
the ensemble. Actually, the truth of this assertion follows
immediately from Eq. (A 1 1), which shows that the proba-
bility density of the normalized state vectors in the physi-
cal ensemble obeys a Fokker-Planck equation. However,
here we wish to provide a more intuitive understanding.

Consider an ensemble of state vectors, each of which
evolves for 0 ( t ( T, according to the Schrodinger equa-
tion, by means of one of a set of possible non-Hermitian
Hamiltonians H, , j = 1, . . . , J. Suppose that a particular
state vector "chooses" the Hamiltonian H according to
a certain probability rule. Furthermore, suppose that for
each successive time interval of T seconds a (possibly)
new Hamiltonian is similarly chosen.

The probability P that the jth Hamiltonian is chosen
might depend upon the time interval, upon the history
and present state of the state vector making the choice,
and indeed upon the histories and present states of all the
other state vectors in the ensemble. However, it is natu-
ral to choose the probabilities P, to be fixed numbers (an
especially simple choice is P/=1/J) because of the fol-
lowing beneficial consequences.

It is a rudimentary time-translational invariant process
because the probability rule does not depend upon the
time interval. (In the limit T~O, it is truly time transla-
tional invariant. )

It is a rudimentary Markovian process because the
probability rule for a given interval does not depend upon
the history of any state vector in the ensemble in any pre-
vious interval, and the Hamiltonian evolution depends
only on the choice made at the beginning of the interval.
(In the limit T~O, it is truly Markovian. )

Each state vector evolves independently because the
probability of the choice made by a particular state vec-
tor depends only upon the Hamiltonian to be chosen (i.e.,

upon the index j), and not upon the other state vectors in
the ensemble. In fact, the probability does not even de-
pend upon that state vector itself, and here is the point.

BR(X;t)/Bt =A[X'R(1;t)+(1—X')R (0;t) R—(X;t)] .

(812)

The probability rule can be generalized without losing
these three properties. If the rule depends upon the state
vector making the choice as well as upon the index j, that
state vector still evolves independently. If in addition the
rule is independent of the time interval, and depends only
upon the state vector at the beginning of the time inter-
val, we have all three properties. Now we will choose a
peculiar probability rule that satisfies these requirements,
but it is a rule that is only suitable for a set of Hamiltoni-
ans H- with a peculiar property.

Consider a particular state vector which has evolved to
the beginning of a particular time interval ~ Generally
that state vector's norm will not equal 1. So, normalize
it. Now, consider the evolution l1()~VJ(T)lg) of that
normalized state vector over the time interval T by means
of the Hamiltonian H, i.e., i dV/(t)/dt =H Vi(t). The
state vector's squared norm at time T is
N = ( gl V ( T)*V ( T) l g). Our rule is P =N, /J.

Note that N, and therefore P, depends only upon the
state vector at the beginning of the time interval and
upon the chosen Hamiltonian H . Thus we have the
three desirable properties.

This rule only makes sense if the probabilities sum to 1

for an arbitrary state vector lP),

QPJ=J 'gN, —:(N ) =1 for any l1(), (c»)

so this is a necessary consistency condition for the proba-
bility rule [see Eq. (9)]. It can be achieved for a set of
Hamiltonians [H I if and only if

J 'g V(T)*V(T)=1
J

(C lb)

and we will suppose this is the case.
Finally, we can obtain an interesting result concerning

the norms of an ensemble of state vectors at time t =NT
which evolved from a single state vector l$, 0).

Consider one of the evolved state vectors
I pn, NT ) = lgj (N), . . . ,j (1)) in the ensemble which
utilized the j(n)th Hamiltonian at the nth time interval
The probability that it is in the ensemble is

n =1
N

g N,'~.)[j(n), , j(1);l&, 0&] .
n=1

(C2)

[We have indicated in Eq. (C2) that the squared norm
N [„]acquired during the nth interval depends not only
on j(n), but also on the state vector at the beginning of
the nth interval, and that state vector in turn depends
upon the initial state vector and its subsequent history,
up to that interval. ]

On the other hand, the norm of this state vector is

( (j t(n), . . . , j(l)lg j(n), . . . , j(1))=(tpOl V ~, ~(T)* V~~~(T)" V I~~(T) V(, ~(T)i/0)
N= g N („)[j(n),. . . , j(1);l&, 0&] .

n =1
Combining Eqs. (C2) and (C3) we obtain the result

(C3)
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P( ittti, NT))=J (P„,NT~grt, NT) . (C4)

Thus the probability that the state vector ~1bti, NT ) belongs to the ensemble at time NT is proportional to the norm of
that state vector. The proportionality factor J is the probability that a particular "path" of Hamiltonians is chosen
according to the simple rule that all Hamiltonians are equally likely.

It is to be expected, with an appropriate choice of Hamiltonians, that an appropriate limit T~O can be taken in
which the process described in this Appendix approaches the process described in the main body of this paper. In par-
ticular, Eq. (C4) becomes the probability rule P„=d0 N„of the physical ensemble.

'D. Bohm and J. Bub, Rev. Mod. Phys. 38, 453 (1966).
2P. Pearle, Phys. Rev. D 13, 857 (1976). For recent reviews see

Quantum Concepts in Space and Time, edited by R. Penrose
and C. J. Isham (Clarendon, Oxford, 1986), p. 84; Ann. N.Y.
Acad. Sci. 480, 539 (1986).

N. Gisin, Phys. Rev. Lett. 52, 1657 (1984). See also P. Pearle,
Phys. Rev. Lett 53, 1775 (1984); N. Gisin, Phys. Rev. Lett. 53,
1776 (1984); L. Diosi, J. Phys. A: Math. Nucl. Gen. 21, 2885
(1988).

4P. Pearle, Found. Phys. 12, 249 (1982).
5W. Feller, An Introduction to Probabi/ity Theory and its Appli-

cations (Wiley, New York, 1950), Chap. 14.
G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470

(1986). For a recent review see Found. Phys. 18, 1 (1988).
~J. S. Bell, in Schrodinger Centena-ry Celebration of a Polymath,

edited by C. W. Kilmister (Cambridge University Press, Cam-
bridge, 1987), p. 41.

In the GRW theory and in the theory presented here the state
vector is never completely reduced. There is always a small
but nonvanishing piece of "what might have been" included
in the state vector. We do not regard this as satisfactory. If
the reduced state vector is to correspond to what is actually
observed in nature, it is hard to see what meaning can be
given to an additional term that describes another observa-
tion, no matter how small its coefficient may be. (We have
fulminated over this issue in Refs. 3 and 12, pointing out that
the theory described in Ref. 2 does not have this defect. ) I
hope that further development of the theory presented here
will contain correction terms leading to complete reduction,
perhaps because it may possess a more realistic noise source
than white noise.

9Since ( f dx f(x)dw(x, t) f dx'f(x')dw(x', t)) ) 0 for arbi-

trary f&0, 4 must be positive definite, i.e.,
f f dx dx'f(x)4(x —x')f(x')) 0. Any such function will

do which also has N(0)=1, 4(~)=0, and a characteristic
length governing the transition of 4 from 1 to 0.

' Taking H =0 amounts to the assumption that the reduction
dynamics takes place over a time interval short compared to
the time characterizing the Hamiltonian evolution. This will
often not be the case. However, we will not discuss in this pa-
per the interference between the Hamiltonian and reduction
evolutions. In the canonical two-packet situation upon which
we focus our examples, inclusion of the Hamiltonian is an
inessential complication: a wave function consisting of two
widely separated moving packets responds to the reduction
process in the same way as if the packets were at rest.

iiMore precisely, if we define ii(x, t)=(2i) '1 n[P( xt) Ig*( xt)],
we calculate (d8) =0, ((di))') =0 using Eqs. (4) and (5) and
Eqs. (15) and (26). Since 6(x, t) has vanishing drift and
diffusion, it does not change with time.
P. Pearle, Phys. Rev. D 33, 2240 (1986).

'3It has, however, been recently accomplished [G. C. Cshirardi,
O. Nicrosini, A. Rimini and T. Weber (unpublished).

' G. C. Ghirardi, P. Pearle and A. Rimini (unpublished).
~5P. Pearle, Phys. Rev. D 29, 235 (1984).
' In this regard it is worth pointing out that the Stratonovich

equation, equivalent to the Ito equation (4) or (51) upon
which this theory is based, is also linear in g. For example,
Eq. (4) is r)g(x, t)It)t = —iHQ(x, t)dt+[c)w(x, t)It)t —A]P(x, t)
in Stratonovich form [i.e., the —' in Eq. (4) is replaced by 1].
The Stratonovich form may be manipulated using the rules of
ordinary calculus, and it is this form that arises when one
considers more realistic noise sources for Bw(x, t)/Bt than
pure white noise [N. Van Kampen, Phys. Rep. 24, 171
(1976)]. It can be shown [E.Wong and M. Zakai, Ann. Math.
Stat. 36, 1560 (1965)] that, if a sequence of functions converg-
ing toward white noise is inserted in a Stratonovich equation
(making it a standard partial differential equation with time-
dependent coefficients), the behavior of the limit of the se-
quence of the corresponding solutions of the equation is de-
scribed by the Fokker-Planck equation (23).

' I. Bloch, Phys. Rev. 156, 1377 (1967).
' Y. Aharanov and D. Z. Albert, Phys. Rev. D 21, 3316 (1980);

24, 359 (1981).
' S. Malin, Phys. Rev. D 26, 1330 (1982).

F. Karolyhazy, A. Frenkel, and B. Lukacz, in Physics as Natu-
ral Philosophy, edited by A. Shimony and H. Feshbach
(M.I.T. Press, Cambridge, MA, 1982), P. 204; Quantum Con
cepts in Space and Time, edited by R. Penrose and C. J. Isham
(Clarendon, Oxford, 1986), p. 109.
P. Pearle, Int. J. Theor. Phys. 18, 489 (1979).

22R. Penrose, in Quantum Gravity 2, a Second Oxford Symposi
um, edited by C. J. Isham, R. Penrose, and D. W. Sciama
(Oxford University Press, Oxford, 1981); Quantum Concepts
in Space and Time, edited by R. Penrose and C. J. Isham
(Clarendon, Oxford, 1986).
D. W. Sciama (private communication).

24L. Diosi (unpublished).
2sT. W. Kibble, in Quantum Gravity 2, a Second Oxford Sympo

sium, edited by C. J. Isham, R. Penrose, and D. %'. Sciama
(Oxford University Press, Oxford, 1981),p. 63.
D. N. Page and C. D. Geilker, Phys. Rev. Lett. 47, 979 (1981).


