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We investigate theoretically the statistical properties of the bad-cavity laser with field and pop-
ulation Auctuations. This system is equivalent to the stochastic Toda oscillator, whose probability
distribution obeys the Kramers equation with a position-dependent diA'usion coefficient. An ap-
proximate probability distribution function is calculated in the stationary state by the method of
the orthogonal polynomial expansion. We predict novel statistical features of the laser intensity
resulting from the power tail of the intensity distribution. Diverging intensity moments and the
deviation of the photon-counting statistics from the Poisson type are also given.

Deterministic and statistical dynamics of lasers have
been extensively studied in recent years from a viewpoint
of the nonequilibrium and nonlinear dissipative statistical
physics. The laser is a good example of a deterministic
dynamical system for the study of chaos, instabilities, and
bifurcation sequences. ' On the other hand, statistical
fluctuations in laser radiation have increased current in-
terests in the field of wide applications of lasers: The in-
formation transmission rates in optical communications,
the accuracy of optical computing techniques, and the re-
liability of spectroscopic data are all crucially dependent
upon and limited by the fluctuations present in laser light.

The Langevin equations and/or the Fokker-Planck
equations of laser variables have been investigated in de-
tail by many researchers to clarify the statistical features
of lasers, especially, dye lasers. Dynamics of lasers are
characterized by three time scales: the field decay time
K ', the polarization relaxation time y& ', and the popu-
lation relaxation time @~I . Thus far, the lasers with a
high-Q cavity (under the good-cavity condition) have re-
ceived great attention because its condition is more easily
accessible experimentally. In the limit of K«y&, y~~, we
can employ the simplest model, i.e., the one-variable
Langevin equation to study the statistics of dye laser in-

tensity, while in K, y~~ && y&, both intensity and population
diA'erence must be considered by the adiabatic elimination
of only the polarization. In addition to dye laser, the
CO2 laser has been recently studied in the limit of
y~~&&K, y&. On the other hand, the laser with a low-Q
cavity (under the band-cavity condition K» y&, y~~) is also
an interesting system in terms of the dI'ssipative nonlinear
statistical physics. In this system, we need to consider
both the atomic polarization and the population diA'erence
to discuss its dynamics by eliminating only the electric
field. Experimental studies on this system have recently
progressed by use of the far-infrared (FIR) lasers.
Deterministic modulation properties of the bad-cavity sys-
tem were comprehensibly clarified in terms of optical
chaos and bifurcations. In this Rapid Communication,
we pay attention to the stochastic dynamics of the laser
with a low-Q cavity described by the coupled Langevin
equations and the two-variable Fokker-Planck equation

and clarify for the first time the statistical properties of
the radiation under the bad-cavity condition.

Here we should mention that the number of operating
modes affects drastically the deterministic and the statisti-
cal dynamics of laser radiation. In accordance with its
number, we must use the proper model to describe the
lasers. In the single-mode operation, the laser becomes a
low-dimensional system if fluctuations can be neglected,
which has been studied in terms of chaos. When several
longitudinal modes oscillate, on the other hand, the sys-
tem has many degrees of freedom which requires the
high-dimensional model. ' In particular, infinitely many
modes operate simultaneously as in the dye laser; stochas-
tic forces can be employed to describe the eAects of the
oA-resonant modes on the relevant radiation mode. How-
ever, the central limit theorem cannot be applied in this
multimode system because the modes are not independent
of one another.

This Rapid Communication involves the bad-cavity
laser with field and population fluctuations. The field fluc-
tuation which is paid particular attention in our model in-
cludes both the spontaneous emission noise and the off-
resonant mode fluctuations to the relevant resonant mode.
No polarization fluctuation is considered and it is shown
to be suppressed in, e.g., the strong excitation case. Con-
cerning a low-Q cavity, our Langevin equations contain
not only the additive noises but also the multiplicative
noises. We treat the relevant Langevin equations as the
stochastic Toda oscillator model and transform it to the
two-dimensional Fokker-Planck equation. We seek an ap-
proximate analytic solution in the stationary state by the
method of the orthogonal function expansion developed by
Risken. ' Under the condition that the population
difI'erence has the Gaussian distribution, the intensity dis-
tribution function with a power tail is approximately ob-
tained. Novel statistical features of the laser intensity
which come from its power tail are predicted. The photo-
electron counting probability for short observation time is
also given to show a difference from the Poisson statistics.
The comparison with the good-cavity case is also made.

There are three kinds of fluctuations: the field fluctua-
tion I p(t) =I ~(t)+iI 2(t), the atomic polarization fluc-
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tuation I p(t):I 3(t) +iI 4(t), and the population fluctua-
tion I D(t)—:I 5(t), which are applied respectively to each
variable. With a very low-Q cavity (K» y&, y~~), the elec-
tric field can be adiabatically eliminated" from the
Maxwell-Bloch equations to obtain the Langevin equa-
tions:

c„(u,z)
W(u, u, z) = g exp

in&

(u) '
2v j(u)

This Fokker-Planck equation is the same as the Kramers
equation ' with the position-dependent diffusion
coefficient yvd(u) which is characterized by the difl'usion

velocity vd (u) = [As~ exp(u)+4SD] '

Applying the natural boundary conditions W(~ ~,
u, r) W(u, + ~, r) =0, which stem from the shape of
the Toda potential f(u), the Fokker-Planck equation can
be solved exactly by the Hermite polynomial expansion'
of the distribution function W with respect to u:

——,
' (yAS )' Im[P I (z)], (lb)

D(z) - —yD+ y(&+I) —y& I P I
'+ (ySD) '"rD(z) u 1

vd (u ) vd (u)
(5)

d u

dr2

where r y&t is a normalized time, P(z) and D(r) are
the normalized polarization envelope and the normalized
population difference, respectively. In the deterministic
case (S~ Sp =SD 0), ~P

~
and D become unity in the

steady state above threshold. Ratio y= y~~/y& is restricted
to be less than 2 and the pump parameter A is positive
above threshold. Noise strengths Sg, Sp, and SD are as-
sumed to be constant parameters for simplicity.

In the strong excitation case A&&1, fluctuating forces
applied on the polarization become weak. Then the phase
of polarization is nearly constant in time. Thus, we con-
sider the situation that I z(z) and I D(z) play dominant
roles as the fluctuations on the population difference D of
this system. Eliminating D, Eqs. (1) become the second-
order stochastic differential equation of

~
P(z) ~. In addi-

tion, using the logarithmic transformation u (z)
—=21n ~P(z) ~, the stochastic Toda oscillator model with
the Toda potential f(u) exp(u) —u —1 is derived:

1'

du —d u—
y

—2' + exp —(yes~) '"r) (z)dr du 2

Bc„(u,r) „(3) -(—]) - (0) - (i)
&n Cn —3+ &n Cn —]++n Cn+ +n Cn+ I ~
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where c„(u,r) 0 for n (0 and a„'sare the coefficient
operators with respect to u:a„—[n(n —1)(n —2)] ' [dvd(u)/du], (7a)

-(—i) ~ ( )
8 + 2' df(u)

Bu vd (u) du

—2n Jn [dvd (u)/du], (7b)

(7c)

where H„(x)is the Hermite polynomials. Using the or-
thogonal relation of the Hermite functions, we obtain the
one-sided recurrence equation of motion for the expansion
coefficients c„(u,r), n=0, 1,2, . . . , that is,

+2(ySD) '"rs(z) . (2)

8u

+ y u+v j(u)
Bu 8u

The third and fourth terms of the right-hand side of Eq.
(2) work as a multiplicative and an additive noise on u, re-
spectively. u can also be considered as the position of the
Brownian particle in the potential 2yAf(u) under the
position-dependent temperature. In the first approxima-
tion, the fluctuations are assumed to be the Gaussian
white noises: (I;(r)) -0 and (I;(r) I j (r'))

28;t8(z —r'). In this case, this Langevin equation for
two variables u(r) and u(r): du(r)/dr lea—ds to the two-
variable Fokker-Planck equation for the probability distri-
bution W(u, u, r):

8W(u, u, r)
XFp(u, u ) W(u, u, z), (3)

where XFp is the Fokker-Planck operator:
r

( )—= — +2 a
8u du

a„"'- an+ I v—„(u) —(n + 1 )dn + 1 [dvd (u )/du ] .

(7d)

These recurrence relations are exactly equivalent to the
original Fokker-Planck equation (3).

Now we consider the stationary state (a/az-0) and

pay special attention to the case c„"(u) 0 for n-1, 2, . . .
where the probability current in u direction integrated
over the "velocity" u vanishes, in order to obtain an
analytical expression of the solution. This corresponds to
the situation in which the population difference D has a
Gaussian distribution around its mean (D). In this case,
the 0th coefficient co'(u) must satisfy the equation
a~ co'(u) a3 co'(u) =0, then the probability distri-
bution becomes trivial, i.e., W"(u, u) =0 in a mathemati-
cally rigorous sense. Here we seek an approximate solu-
tion to discuss analytically the statistical properties. In-
tegrating the differential equation: a~ co'(u) 0, we
obtain an approximate expression of the distribution func-
tion of u's:
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ASEW"(u) = W"(u, u)du =co'(u) =Nexp u 1+ exp(u)
2SD 4SD

—(1+2y/S~+ y&/2SD)

where N is the normalization constant independent of u.
This result is valid only under the case of a3 co'(u) =0,
that is

ASE exp(u)co'(u)/[AS' exp(u)+4SD] '/ =0, (9)
which will be discussed later. Here, we note that the solu-
tion (8) is exactly correct in the SE =0 case.

The intensity distribution function is easily derived
from W"(u) by use of the normalized intensity

I

I

I—:2 exp(u) ~ 0 and W"(I) =co'(ln
~
I/A

~
)/I:

—(1+2y/Sz+ yA/2SD)SEW"(I) =mr' ' 1+
4SD (10)

where JV is the normalization constant independent of I.
This resembles the F distribution with a power tail of the
exponent 2+2y/SE and is plotted in Fig. 1 for several
values of S~ and SD. In the limiting cases, we have

W"(I) ='

' 2+2y/S~
1

JV')
I exp —:for S~ && SD, where the approximation is bad,2yA 1

S

Ã2I ' exp — I for SD » SE, where the approximation is good .
2SD

(1 la)

(1 lb)

yA 2y +
2SD Sp

(12)

Here A~ and Ã2 are the normalization constants. In the
S~ &&SD case, the exponent of the power tail remains the
same as 2+2y/SE of Eq. (10). On the other hand, the
laser intensity has the 1 distribution (1 lb) without a
power tail only in the case of SD »SE where the multipli-
cative noises are neglected in Eqs. (1).

Stationary moments of the laser intensity are calculated
from W"(I) as

r ' n

M„=(I")- 4SD A 28 +n, +1 —n
SE 2SD SE

K2-M2 —M)2 =

where 8(x,y) is the beta function and integer n is restrict-
ed to be less than 1+2y/SE (i.e., M„does not exist for
n ~ 1+2y/SE). Mean intensity (I) is 2, which shows no
shift from the deterministic value A in contrast with the
good-cavity case in Ref. 3. One novel feature is the fact
that the nth intensity moment M„(n~ 2) diverges as the
field noise strength SE approaches 2y(n —1) which is in-
dependent of the population noise strength SD. The sta-
tionary cumulants E„arealso calculated from the mo-
ments M„and plotted in Fig. 2 as a function of SE/y to
show the diverging behaviors. The variance (the second
cumulant) Ir'. 2 exists when 0 ~ SE/y ( 2 as

SE/2y —, 2S,/y+ A, 13
1 —SE/2 y 1 —SE/2 y

C

10
I

FIG. 1. The probability distribution function of the normal-
ized intensity in the stationary state at A =7.0. The tails show
power decays. Thick solid lines: SE/y=0. 09, thin solid lines:
SE/y=0. 5, thick broken lines: SE/y 1.0, and thin dotted lines:
SE/y=2. 1, with three cases of SD/y=0. 15, 0.35, and 0.55. The
most probable intensities (the maxima of the distribution) be-
comes small as SE/y increases.

2/3 1

SE/P
FIG. 2. The stationary cumulants of the intensity normalized

by Kl =(I)"=A". The second-, third-, and fourth-order cumu-
lants in the A =7.0 case are plotted as a function of the filed
noise strength SE/y, with a parameter SD/y=0. 0, 0.2, 0.4, and
0.6. Thick lines correspond to SD/y=0. 0. The nth-order cumu-
lants diverge as SE/y 2/(n —1) —0.
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which is proportional to the square of the pump parameter
A in the strong excitation regime. This is also different
from the good-cavity system whose variance is indepen-
dent of or depends linearly or sublinearly on A. This in-
tensity variance becomes larger and larger as SE/y~ 2,
as shown in Fig. 2.

The statistical properties of the intensity are measured
by the photoelectron counting experiments. The relative
deviation from the Poisson statistics is described by
((n —(n)) ) (n)+ri(n), where ri is the photon counting
coefficient and connected to the intensity moments '

M2 Sp/2 y 2SD/yg- +
1 —S~/2y 1 —Ss/2y A

' (14)

SE
P(n, T,b, ) =

~ &n+ i )/2+ y/SE
2yqTob, A

Sp

i/2-
8 yq TobsAxg, SE

(15a)

where I (x) is the gamma function, q is the efficiency of
the photon detector, and v= I+2y/SE —n(& ——, ). In
the another limiting case SD»S~, we have the negative

which exists when 0 ~ SE/y (2. This coefficient ri can be
defined in A & 0. Contrary to the good-cavity case,
has a finite value even far above threshold (A »1). The
first term of the right-hand side of Eq. (14) Sz/(2y —SE)
is a measure of the deviation from the Poisson statistics
in which g becomes zero. Additionally, we consider the
stationary photoelectron counting distribution P(n, T,b, )
in which n photoelectrons are registered in an observation
time T,b,. For simplicity, we confine ourselves to the case
of the short observation time T,b, (& ~„where i, is the in-
tensity correlation time and is to be calculated. Then,
P(n, T,b, ) is represented as the integral form for
n =0, 1,2, . . . . ' In a special case of S~&&SD, the in-
tegration can be carried out and it is expressed by the
vth-order modified Bessel function K,(x):

binomial distribution (which is an exact result)

I (n + yA/2SD ) 2SDq T,b,P n, Tob~ 1+
ntI (yA/2SD)

—n

x l+ (15b)
2SDqT, b,

These show explicitly differences from the Poisson distri-
bution.

The analytical results obtained in this Communication
are valid under Eq. (9). In the Ss -0 case, above results
are rigorously exact. This approximation (9) is good
when (i) SD & Ss and/or (ii) A is not so large. Treating
all coefficien c„(u,r) for n 0, 1,2, . . . of Eq. (6), the ex-
act stationary solution can be obtained by the matrix con-
tinued fraction method. ' Although we must discuss the
validity of these approximate results by comparing with
the exact one, numerical analysis' shows that the approx-'
imation in this Communication is good. In addition, tran-
sient properties are also to be investigated to discuss the
correlation function and the correlation time of macro-
variables of this system. The relations of the probability
distribution with a power tail to the fractal and the Levy's
statistics are an interesting problem. What kind of the
stochastic process the laser variables in the bad cavity
obey is also to be clarified. Detailed study on this bad-
cavity system including the above subjects will be reported
in the near future. ' '

In conclusion, we investigate the statistical properties of
the bad-cavity laser with field and population fluctuations
by the stochastic Toda oscillator model. It is shown that
the multiplicative field fluctuation results in the power tail
of the intensity distribution function and the novel statis-
tics of laser intensity. Comparing with the good-cavity
case, the cavity quality is also shown to strongly aff'ect the
statistical properties of the laser radiation in addition to
the deterministic behaviors.

The author thanks Professor E. Hanamura for discus-
sions. This work is supported by the Scientific Research
Grant-in-Aid from the Ministry of Education, Science,
and Culture of Japan.

See, for instance, Instabilities and Chaos in Quantum Optics,
edited by F. T. Arecchi and R. G. Harrison (Springer-Verlag,
Berlin, 1987), and references cited therein.

2H. Haken, Laser Theory, in Encyclopedia of Physics
(Springer-Verlag, Berlin, 1970), Vol. XXV/2c, and refer-
ences cited therein; W. H. Louisell, Quantum Statistical
Properties of Radiation (Wiley, New York, 1973).

3P. Jung, Th. Leiber, and H. Risken, Z. Phys. B 66, 397 (1987);
Th. Leiber, P. Jung, and H. Risken, Z. Phys. B 68, 123
(1987).

4M. Morsch, H. Risken, and H. D. Vollmer, Z. Phys. B 49, 47
(1982).

5P. Paoli, A. Politi, and F. T. Arecchi, Z. Phys. B 71, 403
(1988).

See, e.g. , C. O. Weiss and J. Brock, Phys. Rev. Lett. 57, 2804
(1986).

'

~T. Ogawa, Phys. Rev. A 37, 4286 (1988).
sT. Ogawa, Jpn. J. Appl. Phys. 27, 2292 (1988).
9T. Ogawa and E. Hanamura, Appl. Phys. B 43, 139 (1987).
'OH. Risken, The Fokker Planck Equation (-Springer-Verlag,

Berlin, 1984), and references cited therein.
''Rigorous treatment of the adiabatic elimination is found in

Ref. 10 and K. Kaneko, Prog. Theor. Phys. (Kyoto) 66, 129
(1981).

~2H. A. Kramers, Physica 7, 284 (1940); and Ref. 10.
~ For example, L. Mandel and E. Wolf, Phys. Rev. 124, 1696

(1961).
'4L. Mandel, Proc. Phys. Soc. 72, 1037 (1958).
'ST. Ogawa, Appl. Phys. B (to be published).
' T. Ogawa (unpublished).


