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We report on a new mechanism that can lead to line narrowing. We show that the line-
broadening effects associated with a broadband source can be suppressed by irradiating the system
with a coherent pump. We give explicit results for this suppression in spontaneous emission from a

two-level system.

One of the important problems of high-resolution spec-
troscopy is to achieve better and better resolution tech-
niques to suppress the sources of various line-broadening
mechanisms. Several dynamical processes are known to
lead to line-narrowing phenomena. The well-known ex-
ample is the collisional narrowing' of the spectral lines,
which arises due to the mixing of the lines when the pres-
sure increases. The collisional narrowing has been stud-
ied extensively in linear as well as in nonlinear spectros-
copy. Line narrowing has also been found in several oth-
er contexts.>”> For example, Agarwal et al.? reported it
in the radiation produced by a Rydberg atom in a cavity
driven by incoherent radiation. Lewenstein et al. found
line narrowing in resonance fluorescence produced by a
coherently driven atom contained in an optical cavity.
Hanamura* and also Agarwal® found that the spontane-
ous emission produced by an atom can be considerably
modified when an atom is strongly driven in the presence
of certain types of frequency modulations. Carmichael
et al.® have proposed use of squeezed cavities to obtain
line narrowing.

Here we report a mechanism that leads to the suppres-
sion of the line-broadening effects. We show that a
strong competition between the effects of the coherent
and incoherent pumps can lead to the narrowing of the
spectral profiles, which obviously can have spectroscopic
applications, for example, in the study of the otherwise
overlapping lines. Consider the interaction of a system
(two-level for illustration purposes) with a broadband in-
coherent pump. It is known that the effects of a broad-
band pump can be accounted for by changing the relaxa-
tion times T, and T, in the Bloch equations. For exam-
ple, for the case of radiative relaxation (rate 2y ) we have
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where |x| is the Rabi frequency associated with the
broadband pump and I is its bandwidth. The
spontaneous-emission spectrum from such a system in
the presence of a coherent drive (Rabi frequency Q) is the
Mollow spectrum, i.e., it consists of (i) a line at w=w;
with width ~(y+pB) if Q@ <1/T, and (ii) lines at 0 =w,
©,;£Q with widths (y+B) and 2(y+pB) if Q>1/T),.
Thus the broadband incoherent pump contributes an
amount S to the widths of the observed peaks.

The question arises—is there a way to suppress the
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effects of B, i.e., how can the spontaneous emission lines
be narrowed? We demonstrate that line narrowing is
possible if the strength of the coherent pump is such that
many Rabi oscillations are possible within the coherence
time of the incoherent pump. This is the regime where
Bloch equations’ (or the usual relaxation equations for a
multilevel system®) cannot be used and thus one has to
work with more general relaxation equations and the
specific models of the pump field.
We take the atom to be driven by a pump of the form
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E(1)=€(gy+¢g,(2))e +c.c., (2)

where €, is the coherent part and €, is the fluctuating
part. We write g,(¢) as

g(t)=e xy(1), (3)

where @ is the random phase and x,(¢) is a dichotomic
Markov process®!® with zero mean and with a correla-
tion time T 1, i.e.,

(xo()xo(2")) =xBe Tl )

Thus the pump spectrum is the sum of a coherent part
and a Lorentzian of half-width I'. It should also be noted
that in the limit of I'— 0, the process x,(?) is essentially
S-function correlated and the dynamics of the atom is de-
scribed by optical Bloch equations. The spectrum of the
emitted radiation would then be a Mollow spectrum. We
will see that the spectral characteristics of the radiation
emitted by our system are very sensitive to the relative
values of the parameters such as the correlation time and
the Rabi frequency associated with the coherent part of
the pump.

It should be noted that we have adopted a two-state
model for the incoherent part of the pump so that many
of the results can be obtained analytically.”~!! However,
the essential physics is expected to be insensitive to the
details of the model.

We next discuss the results of our exact calculation val-
id for arbitrary values of T, x, g, etc. Let Q be the Rabi
frequency associated with the coherent part of the pump,
i.e., Q=—2d-€'*"e,. The density matrix equation in a
frame rotating with the frequency of the pump (which is
on resonance with atom) is
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Introducing the column matrix ¥ with components (S*)
and (SZ), Eq. (5) can be written in the matrix form as

P={Co—i[x(1)C4 +x*(1)C_1}¢+g , (6)

where the matrices C,, C, and g are to be obtained from
(5). Calculations show that the ensemble average of ¢
over the fluctuations of the pump is

(P(2))=D U2z 'g +{((0)N], @)
D(z)=z —Cy+|x|*)C,(z+T—Cy)"'C_
+|x|?)C_(z+T—Cy)"'C, , (8)

where the carets denote the Laplace transforms.

We have proved that the exact result for the spectrum
of the radiation emitted by the two-level atom is obtained
from

S(w)=Re lim

z—ilo—w,
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where §,(z) is given by the first element of the column
vector

S(2)=D "N (2) |T,(2)+Tp(2)+ M (¢( o )>+§¢2(m) ,

(10)
where (( 0 )) is the steady-state value of (1) and
T,(2)=—C,(z4+T—Cy) 'M(I'—Co) 7 'C_ x| ¢h(=))

+AC,=2C_),

~

I,(z2)=—C,(z+T—Cy) 'N(T'=Cy) Hz+T)!
XC_{( Pl ) |x|?*+aC,=2C_) . (11)

Here AC,<=C_) denotes terms obtained by interchang-
ing C, and C_ and the nonvanishing elements of M and
Nare N32=_7/, M13=_‘2M32=1.

The results (7) and (9) are exact. Thus the spectrum of
the emitted radiation can be calculated for a wide range
of parameters by using Egs. (7)-(11). The important pa-
rameters are Rabi frequency Q, correlation time I' ~ ! the
usual relaxation width 8=2|x|?/T, and detuning A.

We show the results for the spectrum of the emitted ra-
diation for some typical cases in Figs. 1 and 2. We only
plot the incoherent part of the spectrum for pump on res-
onance with the atom. Figure 1 shows how the central
component narrows with increase in the Rabi frequency.
For small € the spectrum exhibits only the central peak
with width y +pB. However, as  increases the central
peak exhibits dramatic narrowing approaching asymptot-
ically a value y for Q>>T". In contrast, the side peaks
show only a marginal amount of narrowing. Thus the
dramatic reduction of the linewidth occurs predominant-
ly in the region w~w;=w, when many Rabi floppings
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during the coherence time of the pump are possible. This
in fact is the case when optical Bloch equations fail to
characterize the dynamics of the atom. This narrowing is
reminiscent of the narrowing noted in related contexts® %
and is essentially achieved by effectively decoupling the
dipole from the bath degrees of freedom. This can be
seen in a qualitative fashion from optical Bloch equations
which contain stochastic terms like x(2){S%1)),
x(£){S(1)) etc. If the frequencies associated with x ()
and (S%t)), for example, are very different, then terms
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FIG. 1. Spectrum of fluorescence as a function of (0 —w,)/y
for B=20y, I'=100y, and for Rabi frequency (Q2/7), of the
coherent pump equal to (I) 40, (II) 200, (IV) 400, and (V) 1000.
Part (a) [(b)] gives the behavior of the central (one of the side)
peak. The central peak shows dramatic narrowing. For clarity
the origin on the y axis is shifted for curves (I), (II), (III), and
(IV) in (a) by 0.5, 0.4, 0.3, and 0.2, respectively. In (b) each
curve is shifted relative to the next by 0.6.



39 BRIEF REPORTS 2241

Slw)
0.

0.6 1

0.4

0.2 |

-2 -8 -4 0 4 8 12 16 20
(w-w)/¥

FIG. 2. Same as in Fig. 1 but now the correlation time of the
broadband source is comparable to the lifetime of the atom
I'=y. The curves from top to bottom are in the order of in-
creasing Rabi frequency Q/y=0.2, 1, 2, 10, and 20. For clarity
the maximum in the subsequent curves is shifted relative to the
bottom-most curve by 0.2, 0.3, 0.4, and 0.6, respectively. For
last two cases only the side bands on one side are shown. The
side bands for Q =20y, are shifted to the left by eight units.

such as x (¢){.S%t)) would average out to zero. Thus the
(S*) component effectively gets decoupled.

In Fig. 2 we consider a different regime which is not
traditionally considered though experimentally possible.
Here the correlation time of the incoherent part of the
pump is comparable to the spontaneous-emission time.
This is the region in which the non-Markovian effects are
most significant. In such a case Mollow-like spectra can
be obtained even if the Rabi frequency corresponding to
the coherent amplitude of the pump is zero. Figure 2
shows how the characteristics of the spectrum change
with changes in ). A new feature that we observe now is
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The usual relaxation dynamics (optical Bloch equations
for a two-level system) is obtained if ¥ ~1. This is possi-
ble if Q7. <<1 where Q is a typical frequency scale asso-
ciated with 4 and 7, is the correlation time for the heat
bath. Note that the eigenstates of 4 are the so-called
dressed states and the eigenvalues are the energies of the
dressed states. Thus for a two-level system Q will typi-

that the side peaks are split because of the competition
between the Rabi flopping effects associated with the
parts gy and €, of the pump. For still larger coherence
time of the pump our calculations lead to a spectral
profile that reflects essentially the coherence time of the
incoherent part of the pump. This arises from the pole
z=—T in (11), which in the limit I'—0 goes to the elas-
tic component produced by the incoherent field. Note
that we have already subtracted the elastic component
produced by the pump. The splitting depends on the pa-
rameter |x| which essentially is the Rabi frequency asso-
ciated with the incoherent part of the pump. In fact,
peaks occur roughly at the frequencies Q+2|x| corre-
sponding to the two fields being in phase or out of phase.
The splitting of the side band for the case of long correla-
tion time for the incoherent pump is similar to a recent
result!? obtained while considering the resonance fluores-
cence in the field of two diffusing modes. This is because
in the limit of large coherence time, the second pump also
behaves almost like a coherent pump. The changes in the
spectral line shapes can be understood in terms of the
zeros of the polynomial D(z) which depend on the rela-
tive values of I' and () for a fixed 3.

We next demonstrate on general grounds how the
external fields can modify the relaxation dynamics and
how this modified dynamics leads to various line-
narrowing effects. The modification of the relaxation dy-
namics is important even if I is large but QX I'. This in-
validates the applicability of Eq. (1). To understand this,
consider a system with Hamiltonian Hg interacting with
a heat bath (which is the source of relaxation) and an
external field so that the total Hamiltonian H is equal to
Hg+H_ (t)+Hp+Hps. The external interaction is
supposed to be coherent in nature. We also assume it to
be a resonant interaction. It is then possible to work in a
rotating frame so that H becomes h +Hg+Hg(1),
where the Hamiltonian 4 is static in nature. Let py be
the equilibrium density matrix for the heat bath. The de-
gree of freedom associated with the heat bath can be el-
iminated using the standard master-equation methods.'3
We treat the part h as the unperturbed Hamiltonain.
Note that 4 includes the interaction with the external
field and thus the interaction with the field is accounted
to all orders. Born and Markov approximations with
respect to the system-heat-bath interaction Hgg lead to
the following master equation for the system:

§3+i[h,p]+ Trg fowdT[ﬁRS(t),[V(t,t—T)ﬁRS(t —r)WWit,t —1),pr(0)p(1]]=0,

I
cally be the Rabi frequency (generalized to take into ac-
count the detuning effects). It is clear from (12) that re-
laxation dynamics will undergo considerable modification
if Q7. 1, as then the evolution of the system described
by V, during 7., is important. In the context of the sys-
tem studied in this paper the incoherent part of the pump
acts like a stochastic heat bath and we have discussed
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how the spectrum changes in a dramatic way if Q7. % 1.
It should be evident from our discussion leading to (12)
that the effects discussed in this paper occur rather gen-
erally. It is only for illustration purposes that we have
considered a simple two-level optical transition. The
effect reported here can be observed by examining the
changes in the spectral profiles produced by a laser with
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controlled amplitude noise!* when the intensity of the
coherent part is increased substantially.
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