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The dynamics of the system of N two-level atoms in the free space is studied, when at the initial
moment just one of the atoms is excited. It is shown that though the number of the field modes is
sufficiently larger than the number of the atoms and all energy is transferred into radiation field for
t — o, the radiation suppression (in a broader sense) can be still observed.

I. INTRODUCTION

The QED models describing the two-level atoms in-
teracting with the radiation field""? attract due attention
not only for their mathematical simplicity and elegance,
but also because they actually describe the physical reali-
ty and can be verified in experiment (see recent experi-
ments with Rydberg atoms in high-Q cavities® 7). These
are the reasons why the Jaynes-Cummings model® and its
various modifications and generalizations are still in the
focus of the interest.

In the present paper we want to reanalyze the dynam-
ics of the system of N identical, but distinguishable, two-
level atoms interacting with the radiation field, when at
the initial time (r =0) only one of the atoms is in the ex-
cited state and all others are in the ground state. The
field is supposed to be in its vacuum state at ¢ =0.

Such a problem was treated earlier by Stroud et al.’
They discussed for the first time the effect of the radiation
trapping (in the framework of the semiclassical approxi-
mation). This effect consists of the fact that the presence
of the N —1 unexcited atoms in the cavity prevents the
emission of the whole energy of the excited atom. The
emitted energy gets shared equally by the field and the
N —1 initially unexcited atoms.

Later the model was analyzed in a completely quan-
tized fashion by Cummings and Dorri.!® They showed
that the interaction of N atoms, in the equivalent mode
position, with the single-mode resonant field leads to the
radiation suppression, i.e., the photon never gets a frac-
tion greater than 1/N of the energy and the initially ex-
cited atom definitely traps [(N —1)/N]? part of its ener-
gy.

Successively Cummings'! presented the exact solution
for the spontaneous emission of a single atom which is in-
itially excited in the presence of the N —1 initially unex-
cited atoms, interacting with the M modes of the field.
The model was solved under the condition that the atoms
were at random space positions. In this case the radia-
tion suppression was observed when the number of the
accessible modes M was less than the number of the
atoms N. When M was larger than N the radiation
suppression did not persist. Particularly, in the free-
space case the radiation-suppression effect is preserved
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only when the near-continuum limit is accompanied by
letting N approach infinity. Recently, the physical origin
of the radiation suppression has been given by Benivegna
and Messina.!? By constructing the N collective modes of
the atomic sample through which the actual interaction
with the field takes place when only one excitation is
present in the system, they show that the radiation
suppression is a consequence of the interatomic coher-
ence induced via the electromagnetic field.

In the present paper we will study the dynamics of the
system of the N two-level atoms in free space. We will
show that in spite of the fact that the number of field
modes is sufficiently larger than the number of atoms and
the fact that all energy is transferred into the radiation
field for ¢t — o, the radiation suppression in a broader
sense (to be detailed below) can be observed.

In Sec. II we will describe the model—actually, we will
study the Lehmberg model.’> Then, in Sec. III we will
solve the problem when at ¢t =0 one of the atoms is in the
excited state and the others are in the ground state. Us-
ing the Wigner-Weisskopf approximation'®!> (WWA) we
will derive compact analytical expression for the proba-
bility to find any atom of the system in the excited state.
Section IV is devoted to discussion and conclusions.

II. MODEL AND EQUATION OF MOTION

We will suppose the system of N identical nonoverlap-
ping two-level atoms, at positions r,,r,, ..., ry, coupled
to a near-continuum electromagnetic field via the
electric-dipole interaction. In the rotating-wave approxi-
mation the model Hamiltonian is

N
A=Y ltwg Y+ S fiod o,
j=1 k

N .

+ 3 3 (Fire a6 P +H.c.) (1)

ji=1 k

where 6 ', 6 ), and 6§ are the Pauli raising, lowering,
and inversion operators of the atom at the position r;, re-
spectively. The two states of the atom are separated by
the energy #iwno=FE ; —E _. The coupling constant A, be-
tween the atom and the mode with the wave vector k is
assumed equal for all atoms. Finally, al and @, are the
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creation and annihilation operators for k mode
(2, 11=8, o)

Due to the fact that the excitation number operator

N o o
R=3eVeV+ S ala,
ji=1 k
is the integral of motion, the time-dependent Schrédinger
equation

. d _
tﬁzl¢(t))—ﬁi¢(t)) @)

for the state vector |¥(z)) can be solved for the initial
condition we are interested in. The solution of the
Schrodinger equation strongly depends on the space posi-
tions r; of the atoms. To make the calculations as easy as
possible and the results transparent, we will consider the
distances between the atoms equal. This actually can be
true just for N <4 in three-dimensional space. Neverthe-
less, the results given below can serve generally as a sort
of the first approximation for the atomic systems with
N >4, when |r,—r;|=r +8,;. Of course, if |r,—r;| >0
for all i, j, then the results are valid for any N.

It is further assumed that the system of the atoms is
small enough that the relativistic (time-of-flight) effects
may be ignored. In other words, we will impose the re-
striction that the time required for a light signal to cross
the system is small in comparison to the time required for
appreciable changes in the atomic levels (for more de-
tailed discussion see Ref. 13).

III. DYNAMICS OF THE N-ATOM SYSTEM

First we briefly describe the dynamics of the two-atom
system when at the initial time just one of the atoms is in
the excited state. The result (presented here in the
WWA) will be given in a closed analytical form for the
amplitude of the probability to find the atom at the posi-
tion r; in the excited state.

At t =0 let the atom at position r; be in the excited
state; the atom at r, is in the ground state and the field is

in its vacuum state,
lg(r=0))=|+—;0) , 3)

where the symbol + (—) in the first (second) place on the
right-hand side of (3) denotes the excited (ground) state of
the atom at position r; (r,); O is for the vacuum state of
the radiation field.

The solution of the Schrdodinger equation (1) with the
initial condition (3) is

|¢(2)) =exp(—iE Lt /A)C (t)|+ —;0)+C,(2)| —+;0)]
+ 3 exp[ —i(E_ +#w )t /AID, (1) — —;1,) ,
k

4)

where the amplitude of the probability C,(¢) [C,()] used
to find the atom at the position r; [r,] can be written in
the energy representation as

i s ilwy—€)t
C,(t)=— d 0
== f_w ce

% e—wy— A(g, r =0)
[e—wo— A(e, r =0)1>— A(e,r) ’

(5a)
i © i(wy—et
C,(t)=— 0
2(8) Y. f_mdse
A(g,r)
X ;
[e—wy— A(e, r =0)]*— A%, r)
(5b)
and
Ikklz —ik-r
A(E,r)—gm ; T=TI|—Iy, r=I|rl. (6

In the continuum limit'® the function A4 (g,r) can be cal-
culated explicitly,

A(e,r)=A(g,r)—il(g,r) . (7)

For the “Lamb shift” A(e,r) and the “linewidth” I'(g,r)
we have!®

e’wi|Dpl? g(e,r)

A(e,r)=P ,

(e,)=P [do, P (8a)
e’ |Dy,|?

T(e,r)=£(e,T(e), Tle)=——12- (8b)
6mefic

where £(g,r)=sin(er)/er. Here ¢, is the electric permi-
tivity and D, is the electric dipole matrix.

If the relativistic effects may be ignored, than we can
take A(e,r) and I'(g,r) equal to their constant value at
€=uw, [this corresponds to the WWA (Refs. 14 and 15)],
so that

Ale,r)— Alwg, r)=E(wy, P Alwg) =EA (9a)
I'(e,r)—>&(wg, )T (wy)=ET , (9b)

where A(wg) and I'(wg) are the Lamb shift and the radia-
tion linewidth in the Wigner-Weisskopf theory!*!> of the
spontaneous decay of the single atom in the free space.
Due to the fact that A(wg) is small, we can for a while
neglect terms proportional to A. Therefore using the
WWA the functions C;(¢) [Egs. (5)] can be found immedi-
ately,

Ci(r)=1e (e T4 eler) (10a)

e—rx(e—rgr_ergx) ,

C,y(1)= (10b)

1
2

and for the probability to find at least one of the atoms in
the excited state we have

2

I(t)= 2 lcj(t)llz%eA2r(l—§)t+_|i_e—21'(l+§)t . (1)
i=

The results presented here for two atoms can be gen-

eralized for the system of N atoms which are localized at
equal distances. The calculations in this case do not in
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principle differ from that in the two-atom problem (for
details and a more general discussion see Ref. 17).

As mentioned in Sec. II, N atoms can be localized at
equal distances only for N <4. In the opposite case, the
solutions given below can be interpreted as an approxi-
mation of the exact solutions. Such an approximation
makes sense if the linear extensions of the system are less
than the wavelength of the resonant mode.

If we suppose the atom localized at r; to be excited at

t =0, then the probability amplitudes C;(¢) are

C}(,):—N—N——l—e“r(ltg)t‘kie‘r[H(Nﬂ)g]t , (12a)
1 - L, -ra-
Cz(t):...:CN(t)=—]\7€ e 1)5]'-——1\7e R
(12b)
and
N N—1 _ra-p
I(= 3 [Cin)]*=""F—e o
j=1 N
+%e_zr[1+(1v~1)§]t, (13)

IV. DISCUSSION AND CONCLUSIONS

From the expressions (12) and (13) it follows that in
free space for finite N and r=£0 the radiation suppression
really disappears as predicted by Cummings.!! The radi-
ation suppression disappears in the sense that after some
time (¢ >>1/TI") all atoms pass to their ground state, i.e.,

lim [C;(1)]*=0,

t—
and the whole energy is transferred into the radiation
field.

Nevertheless, the effect of radiation suppression does

£=0.75

¢ (w)
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FIG. 1. Spectral line ¢(w) for N =1, 2, and 4 when £=0.75
and I'=A=0.20,.
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FIG. 2. Spectral line ¢(w) for N =1, 2, and 4 when £=0.999
and I'=A=0.2w,.

not disappear totally if we understand it in a broader
sense: From (12a) it is seen that the initially excited atom
does radiate with three different rates and [(N —1)/NJ?
part of the energy is radiated with the smallest rate
2I'(1—¢&). If the distances between the atoms go to zero,
so that £—1, then this fraction of the energy will be
“trapped” by the initially excited atom.

It is very instructive to analyze the expression (13) for
the probability to find at least one of the atoms in the ex-
cited state. This expression gives us information about
the global energetical balance in the system and demon-
strates that the collection of the N two-level atoms (local-
ized at equal distances) with one excited atom at t =0
effectively behaves like a system of two independent,
noninteracting even via electromagnetic field, “fictious”
two-level atoms in the free space. These two ‘“‘effective”
atoms are characterized by the different damping
constants (I')=I(1—§) and TI,=T[1+(N —1)&])
and with the different Lamb shifts (A, =A(1—§) and
A,=A[1+(N —1)&]). Each of these atoms radiates a
different fraction of the energy—the ““first” (N —1)/N
and ‘“second” 1/N part of the whole energy. It is seen
that the “first” atom is effectively responsible for the ra-
diation suppression.

The best way to see this is to study the spectral proper-
ties of the radiation from our system of atoms. The spec-
tral line ¢(w) defined as

lim <¢(t)!%alﬁk'¢(t)>= =;1;fdw¢(w) (14)

t—

is the sum of two Lorentzian contours, each of them is
characterized by the parameters A; and [},

_N-—1 r,
$l0)= 2 2
N [(w—wy+A)?+T7]
r
+L 2 : (15)

N [(0—awg+A,)?+T2)
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Here we explicitly write also the Lamb shifts because
they indicate the frequency splitting of the radiation from
the “effective” atoms. The spectral line ¢(w) for £=0.75
is given in Fig. 1. The narrow peaks (for N =2,4) in the
figure correspond to the suppressed radiation and can be
distinguished from that part of the radiation which is em-
itted with the high rate T', proportional to N (wide peak,
which is well seen in Fig. 2 for N =2). For comparison
the spectral line of the radiation from an isolated atom in
the free space is plotted in figure also. The radiation
suppression is more transparent when r—0. In Fig. 2
the spectral line is plotted for £=0.999 (this value of &
corresponds, for instance, to interatomic distances in the
crystal and for o, proportional to the optical frequencies

~10' s71). In this case N =2 two peaks can easily be
distinguished and the narrow peaks become very sharp.

We can conclude that one can find the radiation-
suppression effect by studying the spectral properties of
the radiation from the system of N atoms prepared at
t =0 in a fashion defined earlier. We have demonstrated
this claim assuming the atoms to be equally separated. In
general, the effect persists also if the separations among
the atoms are not equal in the sense that the system of N
identical atoms with an excitation number equal to 1 ra-
diate more slowly than an isolated atom.!” However, in
the case we have studied the radiation suppression can be
seen in the clearest way.
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