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Equivalence of the propagator of quasistatical solutions and the quantum harmonic oscillator
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We establish a connection between a two-dimensional field theory using a classical solution which

depends only on one of the coordinates, and the quantum-mechanical harmonic oscillator whose

frequency is one-coordinate dependent.

The problem of a harmonic oscillator with a time-
dependent frequency has been treated in a number of
works. ' Exact solutions and the exact propagator have
been found.

On the other hand, the calculation of the contribution
to the generating functional from a classical solution and
its neighborhood in a two-dimensional field theory is
thoroughly investigated.

In this paper we establish a connection between the
two problems mentioned above. We show that the case
in which the classical solution considered is a static one,
or more generally depends on only one of the two in-
dependent variables involved, the two-dimensional field
theory is formally equivalent to a one-dimensional time-
dependent-frequency harmonic oscillator. Moreover, if
the classical configuration chosen is an approximate solu-
tion of the equation of motion, we will have an equivalent
forced time-dependent-frequency harmonic oscillator,

I

with the external force being proportional to a quantity
that measures the "degree of exactness" of the solution.

Let us consider a two-dimensional scalar-field theory in
Euclidean space, with an action of the form

g[q ]=f dx dt[ —,'(BN} + V(e(x, t)) —J+(x, t)],

where V(4) is the classical potential and J is a constant
external current. For definiteness, suppose there exists a
classical static configuration 4(x}which is an almost ex-

act solution of the field equation of motion, that is,
8~4= V'(4) —J, where the prime indicates derivation
respective to the field N, and 8 =8„+0, .

In this case the contribution to the generating func-
tional coming from that quasiclassical solution and its
neighborhood may be obtained by expanding N around
N, N=@+g, and introducing this expansion in Eq. (l}.
We obtain

Z[J]= fX)gexp —f dx

dt's(Bg)

+ —,
' V"(4)g +[V'(5)—8~4 —J]gI (2)

where N is the normalization constant,

N= f2)+exp —
—,
' f dx dt(B4) (2a)

and where we dropped, as usual, higher-order terms in g. We would like to point out that the linear dependence on g in

the exponent of Eq. (2) appears only if 4(x) is not an exact extremum of the action. We note also that the functional in-

tegration in Eq. (2) has the same form as the propagator of a theory where the mass depends on only one of the coordi-
nates, subject to an external current.

We are thus led to the calculation of the quantity

f2)riexp —
—,
' f dx dt I ri(x, t)[ —8 —f(x)]g(x, t)] + f dx dte(x)g(x, t)

f 2Ã& exp —
—,
' f (BN) dx dt

(3)
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d'y(t)
dt

=E,y(t), (6a)

f (x)P(x) =—Ezg(x } .d P(x)
dx

(6b)

where for convenience we have introduced a function
e(x), which measures in some sense the "degree of exact-
ness" of the quasiclassical static solution &P(x), that is,

d Ne(x) = — + V'(@)—J,
dx

and we have defined the function of x,

f(x)= —&"(@(x)).

To calculate the numerator of Eq. (3) we consider the
Schrodinger equation associated to the operator—t} —f (x). In doing this, we enclose the system in a
box A of sides L and T, the x and t variables varying, re-
spectively, in the domains —L /2 (x +L /2 and
—T/2~t ~+T/2. We take the eigenfunction g to be
separable in the variables x and t, )i=/( x)y(t), which
leads to the equations,

The eigenfunctions of Eq. (6a) are g (t)=(1/
U'L )exp(ik t), with continuous eigenvalues of the ener-

gy F. , =k, m EZ; the eigenvalues of Eq. (6b), E2, be-

long partly to a discrete set, E2, =k„, n E%, and partly
tO a COntinuOuS One, E2m =~m, m & Z. The eigenfunC-

tions i} „(x,t)=P„(x)g (t) are chosen to satisfy periodic
boundary conditions in the box A.

Expanding the configuration g(x, t) in the functional
integrand (3) in terms of the eigenfunctions of the associ-
ated Schrodinger operator —8 —f (x), we get

i}(x,t) = g a„P„(x)y (t),
m, n

with

(7)

+L/2
a„=f dx I dt q(x, t)P„(x)y (t) . (7a)—L /2 —T/2

The functional integration in the numerator of Eq. (3) can
be rewritten in terms of the coeScients a„. Using that

f +z&zy (t)dt =&T5 0, and also that f (x) and e(x) are
functions of x only, the integrations over a„ for m&0
are Czaussians, therefore being easily performed. This
gives for the numerator of Eq. (3) the result,

2VT

Ei„+E2
m~0

1 /2

g da„oexp —
—,
' g Ez„a„o+f dx&Ta„ze(x)P„(x)

QO
—L/2

n n

After some manipulations the exponent in Eq. (8) may be recast in the form

I dx g a„,og„.(x)
n'

d2
2 f (x) g a—„og„(x) + MT I dxe(x) g a„og„(x) .

dx —L/2

At this point we are in the position to show that the two-dimensional problem that we are dealing with, reduces to a
problem in one dimension.

This is done by defining a function q (x),

+ T/2
q (x)= i}(x,t)dt,v'T rn— (10)

which allows us to rewrite Eq. (10) as

d2—
—,
' I dx q(x) — f (x) q(x)+&T—I e(x}q(x)dx .

—L/2 dx —L/2

r

Therefore, the generating functional Eq. (2) is given by

z[Jl=—
X „E,„+E2

m@0

1/2

exp( —S[N])J Xlq exp —
—,
' f dx—L/2

2

f (x)q (x)—
dx

+&T j dx e(x}q(x) . ,—L/2
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where the normalization constant is now given by
1 /2

2

n mEZ 1m 2me +e
m~0

f +L/2 dq (x)2
X 2)q exp —L/2 dX

where et =(2vrn/T) and e2„=(2mm iL), m, n HZ. We
should emphasize that e, =E, but E2„+E2„.

Equation (11) is, apart from an overall factor, formally
equivalent to the generating functional for a one-
dimensional harmonic oscillator q (x ) with a "time-
dependent" frequency f (x), submitted to an external
driving force &T e(x). This problem is the same as the
one considered in Ref. 2 where the formal problem has
been exactly solved.

From expression (10) we see also that in the particular
situation when 4&(x) is an exact classical static solution
(e(x ) =0) of the field equation, the two-dimensional prob-
lem reduces to solve the quantum-mechanical problem of

a harmonic oscillator with a time-dependent frequency
given by —V" [4&(x)].

In both cases [@(x) is an approximate or exact solu-
tion], a memory of the other dimension is kept in the
overall factor in front of the functional integration of the
quantum harmonic oscillator and in the driving external
force. In the overall factor we have the eigenvalues E,„
associated to the time dimension t.

The result we found is a general one, valid for any case
where we are calculating the contribution coming from
the neighborhood of a classical configuration which de-
pends only on one of the two independent coordinates.
This includes the calculation of the propagator of a two-
dimensional theory with a position or time-dependent
mass.
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4The only restriction to the function f(x) is that Ez ~0, such
that the Gaussian functional integration in Eq. (3) is well

de6ned. The treatment of the zero mode is well known (Ref.
3).


