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We investigate the effects of pollution on a population that is on the brink of extinction. In the
vicinity of the associated critical point, the temporal scales of the population density fluctuations
are found to be completely governed by the diffusive behavior of the pollution density fluctuations.
Moreover, the mean value of the population density is found to vanish with a larger power-law ex-
ponent in the presence of pollution density fluctuations. Results are obtained within a
renormalization-group calculation to 0 (e) (@=4—d, d being the spatial dimension).

I. INTRODUCTION

The study of ecological problems has become a major
research area of all natural sciences within the past de-
cades. Of decisive importance is the understanding of
ecological catastrophies, i.e., situations where, for exam-
ple, a given species becomes extinct. ' Such events, which
in many cases can be described in terms of continuous
phase transitions in the modern theory of statistical
mechanics exhibit a remarkable feature. In the vicinity
of such a critical point a system may be described by one
single diverging length scale. It is this length scale which
characterizes the large scale properties of a macroscopic
system. The behavior of physical quantities near a criti-
cal point can be successfully explored using renormaliza-
tion-group (RG) ideas. Among a variety of techniques
based upon these ideas, the powerful e expansion pro-
vides one of the most reliable methods to determine criti-
cal properties. It allows the analytic calculation of
universal features by means of a systematic expansion in
powers of e=d, —d around the upper critical dimension

d, .
It is the purpose of this article to analyze within a RG

approach a most important problem in ecology: the
effects of pollution on a population which is on the brink
of extinction. Before presenting any details of the model
to be studied, we stress the following point.

There are, in general, two strategies available for an in-

vestigation of the above question: either one starts from
a microscopic model which contains very specific as-
sumptions, or one starts from a phenomenological
description which contains the more global aspects of a
system. In the first case, the resulting model may not be
accessib1e to analytic treatment and therefore may re-
quire extensive numerical work, in particular if one is in-
terested in systems with a large number of degrees of
freedom. Moreover, the results may depend very
specifically on the values and the types of input parame-
ters, and a generalization may not be easy to achieve.
Nevertheless this strategy must be followed if one is in-
terested in quantitative results for stable ecological sys-
tems. On the other hand, the second strategy can be used
with great success in the case of systems which are "un-

stable" in the sense that they are close to criticality. The
modern theory of critical phenomena allows one to start
from a microscopic model and to extract all the features
which are important for the critical behavior. In this
way, simple phenomenological theories can be construct-
ed for the quantitative determination of critical proper-
ties. This enormous simplification results from the fact
that in the vicinity of a continuous phase transition, the
behavior of the system is dominated by its long-
wavelength, large-time-scale fluctuations. Thus it is in-
dependent of microscopic details. This is known as
"universality" in RG theory. It allows the analysis of
macroscopic properties for whole classes of systems. Ac-
cording to universality the relevant characteristics which
lead to different macroscopic properties are determined
by a few global features like, e.g. , the spatial dimension,
the range of the interaction (short or long range), and the
number of species.

To be more specific, let us consider a model consisting
of a population density n (x, t) and a pollution density
c(x, t) The popula. tion dynamics is assumed to contain
the following ingredients. ' (a) Members of a species are
generated and annihilated, with both the production and
annihilation rates being functions of the population den-
sity. In addition the production and annihilation rates
can be affected by the pollution density. (b) Members of a
species can diffuse in a d-dimensional space. (c) There is
an absorbing stationary state, so that the population den-
sity cannot evolve again, once it has become extinct.

The polluting substance is characterized by the proper-
ties. (i) Its motion is purely diffusive. (ii) Its total amount
is kept constant, thus no poison can be annihilated or
produced in its interaction with the species.

The description in terms of densities can be understood
in the spirit of the remarks made above. We consider a
coarse-graining procedure where a large number of mi-
croscopic degrees of freedom are averaged out. These
will be modeled as Gaussian noise terms in Langevin
equations.

Despite its simplicity the model described here reveals
some very interesting features. In the vicinity of the
point where the population density becomes extinct, both
spatial and temporal scales of its fluctuations become
significantly affected by the fluctuations of the pollution
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density. In particular, the temporal scales are completely
governed by the diffusive behavior of the latter.

The present article is organized as follows. In Sec. II
we present the Langevin equations for our model and a
generating functional which allows to discuss the statisti-
cal mechanics most conveniently. In Sec. III we consider
the influence of fluctuations close to the transition point.
These will cause singularities which can be absorbed by a
renormalization of coupling constants. In Sec. IV we
determine general scaling properties of some characteris-
tic functions and find the fixed points of the RG transfor-
mations. From these we will obtain the critical ex-
ponents describing the power-law behavior of observables
in the critical region. Section V contains our conclusions.

II. THE MODEL

—
—,'Xogon (x, t)+g(x, t) . (2.4)

Here we have only considered the lowest-order terms in
the expansion (2.3). Below we will see that the higher-
order terms neglected wiil not modify the critical behav-
ior.

In the absence of the pollution field c(x, t) and the
noise term g, Eq. {2.4) yields a stable stationary state n =0
(the absorbing state) for ~o ~ 0 and another stable station-
ary solution n&0 for ro(0. ' Thus the parameter
measures the distance to the critical point.

The Cxaussian noise g( xt) must also respect the ab-
sorbing state condition, where

+geo. We then have

8, n (x, t)=A, „An (x, t) —Aor„n(x, t) —A~on(x, t)c(x, t)

We will now construct the Langevin equations for a
population density n (x, t) and a pollution density c(x, t)
in accordance with the assumptions made in Sec. I,

(g(x, t)g(x', t') ) =kof(n (x, t))5(x — x)5(t —t'),
with

f(n(x, t))=gon(x, t)+O(n (x, t)) .

(2.5a)

(2.5b)

B,n (x, t)=k„bn (x, t)+R+(n (x, t), c(x, t))
—R (n (x, t), c (x, t)) +g( xt), (2. 1a)

On the other hand, the pollution density is conserved and
obeys a purely diffusive relaxational dynamics, where

(f (x, t)f (x', t') ) = —2XI)'66(x —x')6(t —t') . (2.6)

8, c ( x, t ) =Zoic ( x, t ) +f ( x, t ) . (2.1b)

R+ —R = —Xor(c(x, t))n {x,t)

In (2.1a) and (2.1b) the first terms on the right-hand sides
model the diffusive motion of the species and the pollu-
tion density, and g(x, t),f (x, t) are Langevin forces. The
quantities R+,R in (2.1a) describe the production and
annihilation rates which depend on the pollution density.

Expanding the difference R +
—R in powers of n (x, t)

and setting the constant (lowest-order) term equal to zero
to ensure the existence of an absorbing state at n =0, we
find

By a simple rescaling we can ensure ko=k~ which is

preserved under the renormalization group. Equations
(2.4) and (2.1b) subjected to (2.5) and (2.6) comprise our
model.

In the following, we will be interested in the behavior
of correlation and response functions in the vicinity of
the critical point. We shall extract the critical properties
using the powerful apparatus of renormalized field theory
in conjunction with an e expansion about the upper criti-
cal dimension d, of the model' (which is d, . =4 as will be
seen below).

Instead of considering all the correlation functions we
may use the generating functional

—~ kog (c ( x, t) )n '(x, t)+ (2.2) Z[h, j]=exp f dt f d'x[h (x, t)n (x, t)+j (x, t)c(x, t)] .

r(c (x, t) ) = ro+goco+goc (x, t)+ 0(c (x, t) ),
g(c (x, t) ) =g +gc„+O(c (x, t) ),

{2.3a)

(2.3b)

where co corresponds to the constant mean-pollution
concentration and c(x, t) describes the temporal and spa-
tial fluctuations of the pollution. The constant go may be
absorbed in ro defining an effective rate ~o=ro+goco.
Similarly, we may define an effective coupling go =g

I

with couplings A,„, r, and g. The first term in (2.2) con-
tains the difference between the birth and death rate of
the species which is assumed to be affected by the pollu-
tion density. Thus

(2.7)

After averaging Z[h, j] over the Langevin forces g(x, t)
and f (x, t), we can obtain the correlation functions by
functional differentiation of ( Z I h, j I ) g f with respect to
h and j at the point h =j=0. The response to external
disturbances may be studied by adding additional sources
h (x, t) and j(x, t) on the right-hand side (rhs) of (2.4) and
(2.1b), respectively.

A very convenient functional integral representation
for the averaged generating functional (Z I h, j,h, j I ),

&

has been derived in Refs. 5—9. It can be presented in the
form

(Z[h j h, j])= fD(n, n)D(c, c)exp —J[n, n c,c]+f d x f dt(hn +jc +h n +j c ) (2.8)

For further details on the functiona1 integral see Ref. 7. In this formulation the dynamic functional J completely de-
scribes the statistica1 mechanics. For our model it has the form
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J[n, n, c,c]=J„„„[n,n]+J„„&[c,c]+J,„„„.[n, n, c],
where

J„„„[n,n]= f dt f d x I rr (x, t)[cj, +k„(r„—b)]n (x, t)+ —,'A~on(x, t)n (x, t)n (x, t) —,'A—~„n(x,t)n(x, t)n (x, t) )

(2.9)

J „[c,c]=f dt f d"x[A'c(x,. t)tr c(x, t)+c(x, t)(r3, A. 'h—)c(x, t)],
J,.„„„[n,n, c]= f dt f d x Arigon(x, t)c(x, t)n (x, t) .

(2. 10a)

(2.10b)

(2.10c)

In Eqs. (2.9) and (2. 10) we have introduced a population density response field n(x, t) and a pollution density response
field c(x, t) after eliminating the noise terms g(x, t) and f (x, t) By .a simple rescaling of the fields we can ensure go=go.
In the absence of the pollution density c (x, t) the functional J I n, n ] is invariant under the transformation

n(t, x)~ —n( —t, x),
n(t, x)~ —n (

—t, x) .

(2. 11a)

(2.11b)

This property has t~'o important consequences: For ~o & 0, correlators of the population density vanish. Further-
more, the equality of g„=go is preserved under RCJ transformations. For our model, Eq. (2.9), these properties still
hold, as can be seen by integrating out the fields c (x, t), c(x, t) which appear at most quadratically. Then we obtain an
effective functional J,rrt n, n I of the form

J,rt[n, n]= J„„„[n,n]+ J;„,[n, n],
where

J,„,[n, n]= —
—,'X~o f dt f dt' f d "x f d "x'n(x, t)n (x, t)CO(x —x', t —t' )n(x, t')n (x', t')

{2.12a)

(2.12b)

n —n-p d/2 d/2
Q ~c ~p

(2.13a)

with Co(x, t) being the correlator of the pollution density
field (see below). Indeed (2.12) is invariant under (2. 11),
thus we will put go=go in the following.

Now we consider the naive scaling dimensions of the
fields and couplings in the functional (2.9). Introducing a
length scale p ', we then find

C„(k, t —t') = (c (k, t)c (k', t') )o

=5(k'+ k')e

and

G„(k, t —t') = ( n (k, t)n (k', t') )„
=O(t —t')l(k+ k')

'() ' 0
—), (/'-+-, )(I —I')

(2. 15b)

(2.15c)
(4 —d) /2go-P (4 —d)/2

gp —P (2.13b)

signaling d,, =4 to be the upper critical dimension. It fol-
lows that all higher-order couplings arising from addi-
tional terms in the expansion of R+ —R [Eqs. (2.2) and
(2.3)] or, from the noise correlation function [Eq. (2.5)],
are irrelevant in the RG approach as they would carry a
negative p dimension.

For a treatment of (2.9) within renormalized perturba-
tion theory, which is to be set up in Sec. III, we need the
free response and correlation propagators. Introducing
Fourier transforms for the fields n, n, c, c in the quadratic
part of (2.10a) and in (2. 10b),

For a graphical representation of (2. 15b) and (2. 15c), see
Figs. 1(a) and 1(b). In accordance with the path-integral
formulation equations (2.8) and (2.9), we will in the fol-
lowing always use 6(0)=0, ' a condition which ensures
causality.

III. RENORMALIZED PERTURBATION THEORY

We will now take into account the influence of fluctua-
tions close to the transition point. These will cause

n (x, t)= f e p(xik. x) (kn, t), {2.14)

etc. , where I = 1 d "k/(2rt)', we obtain

Co(k, t —t') = ( c (k, t)c(k', t') ) o

(2.15a)

FIG. 1. (a) Free correlation propagator C&)(k, t —t') of the
pollution field. (b) Free response propagator G„(k, t —t') of the
population field.
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= (n (q2, co2)n (q(, co() ) (3.1)

[see Eq. (2.8)]. Its corresponding vertex function
I (((q, , co, ;q2, ~2) is the inverse of G. Thus, to lowest or-
der

singularities which have to be absorbed by a renormaliza-
tion of coupling constants. ' These singularities can be
extracted by an evaluation of response functions.

In renormalized perturbation theory, however, it is
more convenient to consider the vertex functions. In a
graphical representation of the perturbation series they
correspond to the one-particle irreducible parts, with ex-
tracted external legs, of the diagrams contributing to con-
nected Green's functions. In a RG they can be directly
related to the renormalized coupling constants of the
theory. '

Considering the perturbation expansion in more detail,
we find that certain contributions contain divergencies
from large internal momenta. Renormalization theory
tells us that it suffices to regularize the divergences in the
vertex functions corresponding to couplings with non-
negative p dimension in order to make all individual
terms in the perturbation expansion convergent. The
regularization subtracts the divergences. These are then
absorbed in a multiplicative redefinition of the fields and
coupling constants. This simple reparametrization struc-
ture of the theory can be exploited to investigate the be-
havior of response functions on large scales. Technically,
this is achieved with the aid of RG equations which will
be discussed in Sec. IV.

Consider now the connected response function
G (q(, co(;q2, co2) which is defined by

6
G(q(, co(, q2, A@2)= (n (q(, ~())

6h (q„CO2)

FIG. 2. Graphical representation of the perturbation expan-
sion for I",

, (q, co) to one-loop order.

I, ((q, , co(, q2, co, ) =6(q
( +q2 )6(co, + co2)

X [i co, +ko(ro+ q, )] . (3.2)

To one-loop order we obtain, absorbing a common factor
6(q(+q2)5(co(+co2) in the definition of a reduced vertex
function I » ( q, co ),

I „(q,co) =i o)+ko(r„+q')

+ —,x~o( 2 2 1

c ice+A.„[p +(p —q) +2r„]

A,og ()
( i co +Ao(p + ro ) +Ao(p —

q )

(3.3)

For a graphical representation of I »(q, co) see Fig. 2.
Apart from (3.3) we will need two further vertex func-
tions in order to carry out the renormalization program
discussed above. These describe the modifications of the
(marginal) couplings go, go due to the interactions and
their definitions can be read off' from (2.10a) and (2.10c).
We find up to one-loop order for the reduced three-point
vertex function I „=1,2 [see Fig. 3(a)]

12(qA ~A qB ~B

1

( } ice, +A—.o[(q,.
—p) +p +2']}} icuB —ice—, +A.o[(qB+q, —p) +p'+2r()]}

3 g7 1 1

~ I
—icuB+k„[(q, —p)-+r„]+lop } }

—ic~B —ice, +X„[(qB+q,. —p) +(q,. —p) +2ro]}
3 12 1 1+ 2XOgog 0

I I
—ice, +ko[(q, —p)-'+r()]+2('p'} }

—icuB —ice, +ho[(qB.+q, —p)'-+ro]+k(g'}
(3.4)

where we have again absorbed a common factor 6(qA +qB+qc. )5(co A +coB+cuc ). The reduced three-point vertex func-
tion I = I (» is given up to one-loop order by [see Fig. 3(b)]

I ~~ ](qz, co~, q&, co&, q„iu, )

=~og o ~o3g og o

}
—i~, +Ao[(q, —p) +. p +2ro]I I

—icuB —ice, +Xo[(qB.+q, —p) +p +2ro]}

+X3 '-' 1

p }
—i ~, + ko[(q, .

—p)'+ ro]+ AIg-'}
I
—i eB —i(~c + A()[(qB+ q,

—p)'+ ro]+ A~.
(3.5)

We will now extract the divergences arising from the momentum integrals (for p large) in Eqs. (3.3)—(3.5). To this end
we can expand the denominators in I ]~(q, cu) in powers of the external momentum q and frequency ~. We obtain to
O(q ) and O(cu)
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1I, , (q, co) =i co+A o( ro+q )+ —Logo
P P +70

pro/2ko q /2 ( pq )&

(p'+ro)' (p'+ro)' (p'+ro)'

1—A.ogo Po J
P P +70P0

Po~zo

(p'+ roPo)'

Poq 4P o(P q)'

(p'+ oP, )' (p'+~op~)'
(3.6)

where we have introduced the quantities

~0 Po Po
Po

&
Po 1+ Po

0 Po Po

Performing the momentum integrals using the technique of dimensional regularization, ' we find

I „(q,co) =ico+k oro+koq

(3.7)

1
—e/2

e (1 —e/2)

2 (&oPo)'—k~ 0-poG, e (I —E/2)

2
&co ,~2 1 q ,/2 1

7 0
0 E 2 E

Po(reo) q A'o(rA ) +q pro(rA )
0

(3.8)

where G, = I ( I +e/2) /(47r) and a =4—d. Expanding
'=-1 —elnr, etc. , we see that Eq. (3.8) exhibits singu-

larities for @~0 arising from the O(1) terms. These pole
terms can be absorbed by introducing multiplicative re-
normalization factors for the fields and couplings, which
we choose in the form

and thus

u 22U

4E E

u 22v
2E

(3.11a)

(3.11b)

n=Z n R&
n=Z' n R (3.9a) u 32U

Z~ —1+ —
pp8E E

(3 11c)

c=Z cc R& c =Z"-c
c R

go2=G, 'Z) Z„'Z, u, u =G,g

go =G, 'Zq 2Z, , v, v =G,g'

A.o=Z„-'Z,. X, Xo'=Z,;"2Z, '2Z, , X',

70 Z) Z 7
—I

(3.9b)

(3.9c)

(3.9d)

(3.9e)

(3.9f)

At this point it is important to realize that neither
the fields c, c nor the coupling ko have to be renormal-
ized. Indeed, neither the response function
(c(q, co)c (

—q, —co) ) nor the correlation function
(c(q, co)c( —q, —co) ) acquire any contribution from the
interaction terms in perturbation theory. Thus the
response and correlation functions of the pollution field
Eqs. (2.15a) and (2.15b) are exact, and therefore

We then obtain
Z, =Z, =Z~. =1 . (3.12)

I
~ ~

( q, ro ) =Z„i co+ Z, A.r +Z) kq

2 2U
lM p4E E

u g2v—A.q
—

pp8E

u 22v
A, 7 p2E

(3.10)

Next we evaluate the vertex functions I,2, I », . From
the form of the first (zeroth-order) terms in Eqs. (3.4) and
(3.5), it follows that we can put the external momenta and
frequencies in the denominators in (3.4) and (3.5) to zero.
Performing the same steps as before, we finally secure

Z„=I+ —p(1+2p) (3.13a)

(o) x + +
Z„=1+——p

u 24v
E' E

This concludes our renormalization program.

(3.13b)

IV. SCALING PROPERTIES

(b) - ~ +

FIG. 3. Graphical representation of the perturbation expan-
sion for (a) the vertex function I"12 and (b) the vertex function
I . . . to one-loop order.

In this section we will explore the scaling properties of
the model under study. The scaling properties describe
how some physical quantity will transform under a
change of length scales. In fact, we introduced a phe-
nomenological length scale p which is undetermined [see
Eq. (2.13)]. The freedom in the choice of p, keeping bare
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couplings gp gp 7p A, p A, p fixed, can be used to derive a
partial differential equation generally denoted as RG
equation.

Consider a connected renormalized response function
G„' ' composed of X(nR, n~ ) fields. Following standard
arguments ' ' we obtain a RGE which reads

(&a„+P„a„+/3„a„+/3,a, +~ra, +-,'X}„)G,"'=' (4. 1)

(4.1), p„=)MB„l u, f3„=pB„,l„v, p =p(-}„,lop
((=p(},

l
lnr, and y'„=pB„lolnZ„, where B„lo denotes a

derivative at fixed bare parameters. Note that we intro-
duced an effective dimensionless coupling p=A, '/A, in Eq.
(4. 1) which naturally appears in all Z factors.

Using Eqs. (3.9), (3.11), and (3.13) and taking the p di-
mensions into account, we secure, to one-loop order

G(N)( Ix t I r p) —I N(g+d)/2G(N)(
t /x Izt

I /
—( lv& /t )

(4.9)

where we have introduced a scale variable I by p(l) =pl
and

r) =y„'= —u, /4+2v„p, ,

z =2+/, =2 —u, /8+2v„p „(/=pe lolnl, ),
and

1/v=2 —
K~ =2—3u, /8=2v, p ', .

From Eq. (4.9) we can determine the general scaling
behavior of physical quantities. Putting ~l ' '=1, we
find, for example,

/3„= —eu +u [=,'u —v(4p+2P +4p')],
/3„= —ev + v ( —u —4vp '),

(4.2)

(4.3)

G")(x, t) = lrl'f —,—, (4.10)

P = —„'up —2vpp

K= —„u 2Up

(4.4)

(4.5)

p„=——+2vp (4.6)

Let us now determine the fixed points u, , v, , p, of Eqs.
(4.2)—(4.4). These are obtained, if the coupling constants
u, v, p reach values such that any further change in the
scale does not affect them. The fixed points can be
identified from

E 1=1—,v =—+—,/ new 32 new (4. 1 la)

9new ~ new8
(4.11b)

where P = v(d + r})/2, g=

gaol

rl ' is the correlation
length, z is the dynamical critical exponent, and f is some
scaling function. Equation (4.10) has the typical form of
a power law and describes the vanishing of the popula-
tion density G' ''(x, t) = ( n (x, t) ) as the critical point
r~0 is approached from below (r(0). The critical ex-
ponents at the new fixed point (IV) are given by

/l„(u„, v„,p, }=0,
/3, , (u, , v, ,p, ) =0,
P (u„,v„,p„)=0,

(4.7a)

(4.7b)

(4.7c}

up to order e.
They may be compared with the critical exponents at

the fixed point (III) (characterized by a vanishing pollu-
tion density),

and we find 1 e/3= 1 ——, v= —+6' 2 16
(4.12a)

(I) u, =0, v, =0, p, arbitrary, (4.8a)
g 7 Z 26' 12

(4.12b)

(II) u, =0, v, = ——,p =0, (4.8b)

(III) u„=—'-, e, v, =0, p, =0,
(IV) u, =2@, v, =

—,",e, p, = —', .

(4.8c)

(4.8d)

As we are interested in extracting the physical behav-
ior on large length scales (or small momenta) we have to
investigate whether the fixed points (I)—(IV) are infrared
stable. To this end we consider the eigenvalues of the
matrix 8, /3, l, (a, =u, v, p). Whereas (I) and (II) are un-

stable (i.e., the matrix possesses at least one negative ei-
genvalue), the fixed point (III) describing critical behavior
in the absence of a pollution density is unstable only
with respect to the coupling v. It is (IV) which is stable
(all eigenvalues are positive) and which governs a new
critical behavior in the presence of a pollution density.

Now we turn to the solution of Eq. (4.1) at an infrared
stable fixed point u, , v, ,p, . Using the method of charac-
teristics, ' one obtains

v—
2 —e/2

(4.13)

to all orders.

Thus we see that the mean value of the population densi-

ty will vanish with a larger exponent in the presence of
pollution density fluctuations (/3„,„)/3).

Moreover, we find that the temporal scales of the pop-
ulation density fluctuations are completely governed by
the diffusive behavior of the pollution density fluctua-
tions. It follows from z =2+( =2—p 'P that if a

fixed point p &0 exists, then P =0 by definition, and

therefore z=2 in all orders of perturbation theory. Final-

ly, it is remarkable that the exponent v can also be deter-
mined to all orders in perturbation theory. Due to a
Ward identify (for details see the Appendix} which im-

plies a relation between Z, and Z, we obtain
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V. CONCLUSIONS ACKNOWLEDGMENTS

We have investigated the effects of a pollution density
on a population which is on the brink of extinction. Two
main features are built into the model and determine its
universality class. First, the dynamics of the pollution
density is purely diffusive, and its mean density is con-
served. Second, the population density is subjected to an
absorbing state condition. It is now possible to identify
those couplings between the pollution density and the
population density which are relevant to the behavior of
the system close to the (critical) point of extinction, and
close to its upper critical dimension. It suffices to include
the effect of the pollution on the production and annihila-
tion rates of the species. Beyond that we could, of
course, envisage an influence of the population on the
diffusion dynamics of the pollution (e.g. , a change of the
pollution density diffusion constant as a function of the
population density). These latter couplings, however, do
not alter the critical behavior. Thus, universality in con-
junction with an expansion around the upper critical di-
mension allows for the identification of the relevant mod-
el features and hence simplifies the construction of a
mathematical model considerably.

Our findings may be summarized as follows. In the vi-
cinity of the point where the population density becomes
extinct, both spatial and temporal scales of its fluctua-
tions become significantly affected by the fluctuations of
the pollution density. This observation finds its expres-
sion in the fact that there is a new stable fixed point
which governs the power-law behavior of physical quan-
tities near criticality. In particular, we found that the
temporal scales of the population density fluctuations are
completely governed by the diffusive behavior of the pol-
lution density fluctuations. This is reflected in the result
for the dynamic critical exponent z for the population
field: z=2 to all orders in perturbation theory.

Another exponent which can be determined to all or-
ders in perturbation theory is the exponent v which
characterizes the correlation length. We obtain
v= 1/(2 —e/2) to all orders. Finally, we find that the
mean value of the population density (the order parame-
ter) will vanish with a larger exponent in the presence of
pollution density fluctuations.

As a consequence of universality our results can be car-
ried over to phenomena in other fields of science. As im-

portant examples let us mention here chemical reactions
and cellular automata. In fact, Eq. (2.4) has been pro-
posed in Ref. 2 [with c (x, t) =0] for the description of
nonequilibrium phase transitions (Schlogl's first model) in
chemical reactions. Many related models can be found,
e.g. , in Ref. 11. Furthermore, the relation of Schlogl's
first model to certain cellular automata is well known in
the literature. ' ' Thus our above results may also be
tested by numerical simulations of appropriate cellular
automata.

For a comparison to numerical and experimental re-
sults, the investigation of finite-size effects is of impor-
tance. Ecological processes under realistic conditions are
naturally restricted to finite environments. In the ab-
sence of a pollution field finite-size effects have recently
been studied in Ref. 14.

It is a pleasure to thank Professor H. K. Janssen for
valuable discussions and a critical reading of the
manuscript. This work was supported in part by the Son-
derforschungsbereich 237 "Unordnung und Grosse Fluk-
tuationen (Disorder and Large Fluctuations)" of the
Deutsche Forschungsgemeinschaft.

APPENDIX

In the following, we derive the Ward identity which
leads to Eq. (4.13). Consider a diagram contributing to
the vertex function I

~ &
in the bare perturbation series, as

a function of external momentum and time. Due to
causality, the vertices are ordered from right to left, with
increasing time arguments. Thus, a diagram with n

vertices consists of n —1 time segments. In the tinie
segment (t, , ti t ), there are bare propagators
G~(q, t; —t, , ) and correlators C„(qb, t, —t,r,t) flowing
from right to left, with appropriate internal momenta
q, q&. A Fourier transformation from time differences to
frequencies yields a dynamical factor

F ( [ q, ro ( )
= i co+ g X()(q

'- + ro ) + g 3 „'q p~

A f3

for each segment.
Let us now insert a vertex A.ogo, with zero external

momentum and frequency, into a propagator of our time
segment (t, , t, , ). This generates a diagram contributing
to I,~, . After Fourier transforming, the dynamical fac-
tor is modified, due to the insertion

F( tq, cu()=kog„' ice+ g X„(q +r„)+g koq
n 0

If we sum over all possibilities of inserting the extra ver-
tex into the time segment (t, , t, , ), we obtain

&F()q &~) )= —go F((q ~l()
C)70

Summing finally over all ways of inserting the extra ver-
tex into any graph of I

& &, we secure

~ aI „,(q co 0 0)= go I ~~(q co)
Vo

which is the required Ward identity between vertex func-
tions.

Since the derivative with respect to ~o does not gen-
erate any new ultraviolet divergences in I

&&
we may go

over to renormalized quantities, according to (3.9). We
find immediately the relation

(A2)

Using this identity we can rewrite the Wilson function
v=pB/Bp, ~olnr, which determines the exponent v

1K= (p, , +au)
2U

where we obtain at the fixed point where P, ,
=0 by

definition
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v=(2 —tt*) '=1/(2 —e/2) (A3) density c(x, t) and the parameter rp by an arbitrary con-
stant

to all orders in perturbation theory.
The above argument was based on a diagrammatical

derivation of (Al). An alternative method exploits the in-
variance of the theory under a continuous symmetry
transformation. The dynamic functional given by (2.10)
is invariant under a simultaneous shift of the pollution

c (x& t)~c (x& t)+c p& 'Tp~'rp g pep (A4)

One may now follow standard arguments, based on the
invariance of the generating functional for the vertex
functions (see, e.g. , Ref. 10) to rederive (A1).
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