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Quantum fluctuations for multiphoton transitions in driven optical systems are treated on the
basis of a Fokker-Planck equation for the Wigner function. The equation is considered without adi-
abatic elimination of the atoms or the field. The linear stability is analyzed and time correlations
are derived. A spectrum of transmitted light associated with vacuum Rabi splitting is obtained.
The squeezing and antibunching effects in the atomic system and the field are discussed. This
theory coincides with the adiabatic elimination theory for the case of both good- and bad-cavity
limits.

I. INTRODUCTION

The extensive literature on quantum fluctuations in
driven optical systems is restricted mainly to treatments
in the good- and bad-cavity limits for one photon. '

Considerable attention has been devoted also to two-
photon or multiphoton transitions, for instance, the
works of Lugiato and co-workers, ' Walls and Walls
and Reid, Loudon, ' Agarwal and co-workers, " ' and
Lin and co-workers, ' ' but these works are restricted
exclusively to treatments with adiabatic elimination in
the good cavity or bad cavity. Recently, Carmichael
treated one-photon transitions in absorptive bistability
without adiabatic elimination, ' but did not discuss the
time correlation function and the spectrum of the
transmitted light.

In this paper we develop Lugiato's method' of the
one-photon transition in a driven optical system to treat
the multiphoton case without adiabatically eliminating
the atoms or the field. So this treatment has very wide
application. It includes the multiphoton optical-
bistability and multiphoton laser theories. Many new
phenomena which have been inadequately treated with
adiabatic elimination are carefully analyzed in this paper.

Let p be the ratio of the cavity linewidth k and atomic
linewidth y~I, y~:

obtain a linearized FPE and calculate the stationary
correlations of different operators. Section IV analyzes
the stability. Section V calculates the spectrum of
transmitted light and obtains the spectrum of vacuum
Rabi splitting. ' ' Section VI discusses the squeezing
and antibunching effects in the field and atomic system.

II. MUI.TIPHOTON FOKKER-PI.ANCK EQUATION

[A, A ]=1,
[r, , r ]=2y3, 5, , [r3, , r ]= r, 5, — (2.1)

We introduce the collective dipole operators of the atom-
ic system:

N N

R —= gr, , R, = gr„, — (2.2)

which obey the commutation rules

We consider a single-cavity mode, which interacts with
a collection of identical two-level atoms, and is fed by a
coherent field that is injected into the cavity. We call A

( A ) the annihilation (creation) operator of photons of
the mode, r,

+ (r; ) the raising (lowering) operator of the
ith atom (i =1,2, . . . , N), and y3; the corresponding
population inversion operator. The commutation rules
are

kp= dk
) [R+,R ]=2R3, [R3,R —]=+R — . (2.3)

When p « 1 (p»1), this treatment coincides with the
adiabatic elimination theory for the good- (bad-) cavity

5 —6, 14, 15, 17, 18

In Sec. II we obtain the master equation of the system
and the Fokker-Planck equation {FPE). In Sec. III we

We assume the one-mode quantum statistical model for
multiphoton transitions, and that the incident field, the
cavity mode, and the atoms are exactly on resonance. In
the interaction representation the statistical operator p(t)
of the system of the atom plus cavity field obeys the rnas-
ter equation'

dp(t) =k [( A —a),p( A —a) ]+H.c. I +g [( A "R —A "R + ),p]dt
N

+ —,
' g Iyt([r;+, pr; ]+H.c. )+yt([r;,pr;+]+H. c. )+g([r3;,pr3, ]+H.c. )]+2kn[A, [p, A ]], (2.4)
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where k is the decay rate for the cavity field, a is proportional to a real driving field amplitude, y &
() &

) is the upward
(downward) transition rate between the lower and upper level, i) is the collision dephasing term, g is the coupling con-
stant in the dipole approximation, and n measures the strength of the thermal fluctuations.

The Wigner symmetrical characteristic function is

C ii(g, g*, )i, g, g*, t)=TrIP(t)exp[i(g*R +JR +qR, +/*A +/A)]I

The quasiprobability distribution P~ is defined as the Fourier transform of C~,

(2.S)

P~(v, v *,m, p, p*, t)= — f d gd Zdi)e ''" ~ +"'~+ " ~ ~ -'Cii, (g, g*,T), g*,g, t) .
(2~)

The moments of P~ give symmetrized expectation values, for instance,

f d'v dm d'pP„, p*p= ( 3 'A )'"=:-,'(( 3 '3 ) + ( 3 3') ) .

The longitudinal (transverse) relaxation rate I (yi) and the parameter of pump o are defined

y| —yl
(1 t+l !+i)) )

~
l t+t,' tr +»+yl

It is convenient to introduce the normalized variables

(2.6)

(2.7)

(2.8)

U= — —&d
2

U, m— m 7 X
&Ns, . (2.9)

and corresponding normalized operators

v= — —&d ) R, v = — —&dN —
1 y N

2 2

where Ns, is the saturation photon number,
c 1/n

Nm=—
2

R3, x=
+Ns, QNs „

(2.10)

Ns, =
4g 2

(2. 1 1)

The FPE of P~ can be derived by the procedure of Gronchi and Lugiato

Pii, (v, v", m—, x, x*,t)=I P (iivu*, ,m, x*x, t),
at

[ —pi( v —mx ")]+c.c. — [ —k (x —y +2C„vx * " '
) ]+c.c.

aU ax

(2. 12)

) 2n 7

t
—

y~, [m +rr+ —,'(u*x "+vx*")]]+-
am 2kC Ns ~ aU aU

L

a2+ (1+2n )
ax ax

where Cz is cooperation parameter
2nNg-

S, )I
yl

0'd 8 8 + 8 ~ + d 0 (I+ )
4 am aU aU* 4 am'

(2.13)

In the one-photon case (n = 1), Eq. (2.12) coincides with Ref. 1, Eq. (176).
From Eq. (2. 12) the steady-state expectation values of the field and atomic system quantities (x )s —=xs, ( v )s —= vs,

(m )s =—ms, can be obtained, where the subscript S denotes the steady state. In the semiclassical approximation the
steady-state equations can be obtained,

0

+X 2)l
S

UP
= PlSXS =

n0XS

1+xS

(2.14)

(2.15)

2)2 —2
Xq-

1 —20.C„ 2)l
S

(2.16)
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III. LINEARIZED FPE AND STEADY-STATE CORRELATIONS

Since Ns „))1, these fluctuations will be very small, and the FPE (2.12) can be linearized. Hence we introduce the
deviations from steady state,

xs x =x xs

corresponding to these operators,

v =v vs,
Iu* =v* —us, m'=m —ms, (3.1)

x =x xs ~x x xs ~u =v —vs ~u =v —vs ~m =m —ms-

The linearized FPE can be obtained from Eq. (2.12),

(3.2)

P~(u', u", m', x', x*,t) =I"P~(u', v*,m', x', x', t),at w (3.3)

n t nB t—y v —x m-s 2C n 1
x

nxs
, I

—k [x'+(n —1)Bx"+2C„xs 'v']) +c.c.

Bm'
xs, , nBxs—

y~~
m'+ (u'+v* )+ (x'+x" )

2 4C„

a2 a2 a2 82+L&,+L2 +C ~ C. +L3 2 +L4
m Bv Qm'

(3.4)

where

3'

xs

2tl 2xs—1 = —2C„o.n ~+ Zn
s

(3.5a)

4y

Xd
2C„k

L~= (1+2n ) .
nyz

(3.5b)

Let

Ix'I (x] xp x3 x4 x5) (v, u, m x x )

Equation (3.3) can be rewritten

5 g g2—p (Ix) t)= g —
y M x+ L; P ([x I t),

at
(3.6)

where

M=IM, , I
=

0

0

dxs/

nxs

nxs

nB

2C„xs

0

dnBxs

0

nB

2C„xs
dnBx,

4C„
(3.7)

2@Cqxs

0

0 0
—2pC xs ' 0

p

( ]un1)B

—p, (n —1)B

0 1 L2 0 0

0 0 L4

0 L4 00 0

1 0 L2 0 0
L,

L = IL, )= L2 L~ 2"L3 0 0

0 0
(3.8)

From Eq. (3.6) we have
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(x, ) =) iM, (x ), i,j =1,2, 3,4, 5 .
dt

Let the stationary state physical correlation matrix

G,, (t)=(x, (t)x, (0)), i j =1,2, 3,4, 5 .

By the regression theorem the time evolution of G, (t) is

d G(t)=yiMG(t) .
dt

%e introduce the steady-state symmetrized correlation matrix

G,", (0)= —,
' [G,, (0)+G,, (0)] .

The superscript (s) denotes the symmetrized matrix. The G,' (0) satisfies the following equation, by Eq. (3.6):

yi(MG "+G "'M)= —(K+I. )

(3.9)

(3.10)

(3. 1 1)

(3.12)

(3.13)

Equation (3.13) defines a set of nine linear equations for the elements of the covariance matrix G "(0). We solve Eq.
(3.13) by tedious calculations; the steady-state correlations are given by the following.

(l) Field fteld corre-lations:

(5x 5x ) = -(T —2),
4Xs

(5x ) = (T —2M),1

4Xs,.
where

(3.14)

(3.15)

T=
I'

P =(1+xs") j p f (f +nB +df)+p[f (1+d) +nB (1+dxs")]+d (1+d)(1+xs")I
2n

X
5

(3.16)

(3.17)

Q =nB.p ——(1+xs") df + +od(1+d)fxs" +d(1+d)[(1+d)oxs"——(1+xs") ] .
0 dxs 0

+(1+2n )(1+xs") p, (f +nB+df} +p (1+d} +dnB(xs" —1) +d(1+d)(l+xs") +PM,
dxs dxs

(3.18)

nB (1+xs—")+(1+2n )(1+p+pB)

(1+8)[1+p(2—f)]
dy 1 [f+nB+(1 B)xs"], —

(1+x,'")

f =1+(n —1)8 .

(2) A tom ftield correlations:-

(5U5x )=,(fT —2M),
4Xs „2C,xs

(5U 5x )=,[fT —2(n —1)BM —2(1+2n )],
4Xs,.2C„xs

(5m5x ) = 1 V

4Xs, 2C„xs '
x~

where

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

[—
( 1+pf )(f +nB ) +d ( 1 B)xs~"]T+2M p(n —1 ) 8 —+p( 1+nB) ——(1—B)xs"+1+nB

1+d +pf 2

+2(1+2n )[p(n —1)8 —
—,'dxs" ] (3.25)
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(3) Atom at-om correlations:

(5u 5u )=, I
nB—fT+2(n —1)nB M+2nB(1+2n )+—[W' —2nB — —2nB(1+xs")]I,1 2 1 1 2/7

4%s, (2C xs ) p
(3.26)

(5u') = 1

4%s „(2C„xs ')
—nBfT + 2nBM + 8

p
(3.27)

(5m5u) = 1 1
( W +dnBxs" ),

4Ns, (2C„xs ) pxs
(3.28)

(5m ') = 1

4%s „(2C„xs ')
—nB V+ ——W+ der nB — dn—B (1+xs")1 1 2'

p 0
(3.29)

W = —(d +pf ) V+dxs "[(1 B)(T——M) —(1+2n )] .

Let n = 1, d =2, o = —1, n =0, Eqs. (3.14)—(3.30) coincide with Ref. 16, Eqs. (3.3a)—(3.8d).

(3.30)

IV. LINEAR STABILITY ANALYSIS

a
p = —2y cos —+—

1 3 3
(4.1a)

When these fluctuations are very small, we can neglect
the nonlinear terms and obtain Eq. (3.6), which is the
basis of the stability analysis of the system. We obtain
the eigenvalues of the matrix M in Eq. (3.7) by tedious
calculations. The eigenvalues are [

—p, ; ), i =1,2, . . . , 5,
where

have

—o.C„& n(n —1)' "

2(n —1)
(4.4)

For the one-photon transitions (n =1), whatever the
values of C„, cr, p may be, Eq. (4.4) is always satisfied.
For the multiphoton transitions (n & 2): (1) in the case of
a laser (o & 0), Eq. (4.4) is always satisfied; (2) in the case
of —1 &a &0, the values of C, , p are restricted; for ex-
ample, in the two-photon optical bistability (n =2,
cr = —1), Eq. (4.4) is rewritten

0.'
p =2+ cos2 3 3

a+
3

(4.1b)
1

C2 & 1+—
p

(4.5)

a m a@3=2+cos + +
3 3 3

' (4.1c)

p =
—,'(1+p(2 f)—

—
I [1+p(2—f)] —4p(B + 1) I

' ), (4. 1d)

p5= —,'(1+p(2 f)—
+ I [1+p(2 —f)] 4p(B + 1) I

' —), (4.1e)

When the value of p increases, the cooperative parameter
C2 must decrease otherwise the system will be unstable.
In the bad-cavity limit (p, »1), the stability condition
Eq. (4.5) is written Cz ( 1. Hence, at first, the values of n,
C„,p, d, o must satisfy Eq. (4.3) in the following calcula-
tions.

Let us discuss the case of p, , complex.
(1) pi, p3 complex conjugates Putting.

where

1 a
1/2

(4.2a)

P2 ~1 l k2~ I 3 ~1+ ~ ~2

the k1, k2 are real:

(4.6)

1cosa= —
( —'a ——'ab +c),3 27 3 (4.2b)

k, =
—,'(E++E )+—

(E+ —E ),

(4.7)

(4.8)
a =1+d +pf,
b =d(1+xs")+pnB+p(1+d)f,

c =(1+xs~") pd .2n d3

dxg

(4.2c)

(4.2d)

(4.2e)

where

1 2a ab +c
2 27 3

Hence the stability condition of the system is

Rep, & 0 (i = 1,2, . . . , 5) . (4.3)

If Eq. (4.3) is satisfied, fram Eqs. (4.1d) and (4. 1e) we ob-
tain f,„(2+(I/p); then from Eqs. (3.21) and (3.5a) we

1 2a'
4 27

ab3+'
3 1/2 1/3

a+ 6—
27 3

(4.9)



226 SI XIAN HUANG AND REN MING LIN 39

In this case the eigenvalue p, is given by

p = —(E +E )+—
1

The stability condition is

P1&0, k, &0,

and Eq. (4.4) is satisfied.
(2) p4, ps complex conjugates Put. ting

P4 —0
1 lO2, P5 —G1+lO2

where

cr, = —,
' [ 1+p ( 2 —f ) ],

o.z= —,
'

I 4@(1+B)—[1+@(2—f)] I

'~~

(4.10)

(4. 1 1)

(4.12)

(4. 13)

(4.14)

+ T4e l 4+ T5e

(6x(t)6x(0)) =T, e ' ' +T2e ' '+T3e
3 A@4 T V lPg

4e 5

where

C;
T; = [(b,c(, c,bi,

—. )((6v 6x ) + (6&6x ) )
2D

+2(c, —c~ )(6m6x )

+(b,. b, )((—6x t6x &+ (6x ') )],
where I ~j~k are cyclic values of 1~2~3, and

(5.3)

(5.4)

(5.5)

The stability condition is

Rep, )0, i' =1,2, 3

and Eq. (4.4) is satisfied.

(4.15)

C
1

2pCn xs

if i =1,2, 3

1 nBp
pf pi

(5.6)

(5.7)

V. SPECTRUM OF TRANSMITTED LIGHT
AND VACUUM RABI SPLITTING

We introduce the matrix U to diagonalize the matrix
M of Eq. (3.7):

0 0 0 0

0 0 0

~1 2 1 2 2 3 2 3 3 1 3 1

b+
T4= [ b((6v —6x ) —(6v6x ) )2b+ —b )

+(6x "6x ) —(6x '&],
—6

T, = [ b+((6& 6—x ) —(6&6x ) )
2(b+ b)—

(5.8)

(5.9)

UMU '=A= 0 0

0 0

0
t

0 0 0

0 0

0 —
p4 0

(5.1) +(6x "6x)—(6x ')],
2C, x,"

b+ = (1 —V4»nB

(5.10)

(5.1 1)

where p. &~ps, see Eq. (4.1); hence from Eq. (3.10) we ob-
tain

2C„xs
b =- (1 —ps) .

nB
(5.12)

G(t)=e ' G(0)=U 'e ' UG(0) . (5.2)

The incoherent spectrum of the transmitted light is
given by the Fourier transform of Eq. (5.3) (Ref. 4),

By substituting into Eq. (5.2) the value of G(0) given by
Eqs. (3.14)—(3.30), we get after lengthy calculations the
results

S;„,(co)= —Re f dt e (63 (t)6A (0)) . (5.13)

From Eqs. (2.10) and (5.3) we have

&S ~
T1 T2 T3 T4 T5

5,„,( )= ' Re
~

+ + + +
1 is i+ (~—~0) ) is 2+i(~ ~0) 1 lP3+ (~ ~0) 1IP4+ (~ ~0) & LPs+t(~ ~0)

(5.14)

We now consider four cases.
(1) p, (i =1,2, . . . , 5) are real. By Eqs. (5.14) and (5.5)—(5.12) we have

~0) +&'xiu& (rv ~0) +)'iPz (0' ~0) +&'&83 (~ ~0) +3'&94 (tv ~0) +1'&Ps

where

(S.1Sa)
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(v, —p ) I
—2pc„" '(v, +p. —pf —I)( & 5 5™) + &5"5") )

—4pC„xs" '&5m5x)+f(pf —p )(Vf —Vk) p nB](&5u 5x)+&5x ))I, (5.15b)

where i ~j~k are the cyclic values of 1~2~3, and

F =(pf pi)(p—z p~)(p—z+ p~ pf ——I)+(pf V')—(V3 pi )—(p3+ pi pf ——I)

+(Vf —p3)(pi —pz)(pi+ pe
—Vf —1» (5.15c)

+(1—
p4, ~)

p4)

2C„x~'
( 1 —p, 4)( & 5v 5x ) —

& 5u 5x ) ) + & 5x 5x ) —
& 5x '- ) (5.15d)

(2) p2, p3 and p4, p~ are complex conjugates. By Eqs. (5.14), (5.5)—(5.12), (4.6), and (4.12), we have

&S.Xl
S;„,(co) =

)T

T11P1

Xx p&+(~ ~o)

T2 1
k

1
+ T22 2

Yj

(co cuo pgA 2 ) + A, (pg

21 1 22

CO COO'+A

(co coo+1 yA2) +1 gA, )

where

T41C 1+ T42 2
Vl

(co coo 1'yo'p) + ) go )

T41 1 T42 2

(~ ~0+ri~2) +3 l~l2 2 2
(5.16a)

T, ,
=

I
—2pC„xs '(2k, Vf —1)(&5—u 5x )+ &5u5x ) )

—4pC„xs~" '&5m5x )
1

+[(pf —1, , )'+P.
2
—pnB](&5x 6x )+ &5x ') ) I,

F, =2k.~[A.2+(v, ,
—A. , )'-],

(5.16b)

(5.16c)

T2~ =
I 2pC„xz '(2A. , pf —1)( & 5v —5x ) + & 5v5x ) )+4pC„x&." '

& 5m 5x )
2F]

+[(Vf —p, )(2X, Vf —
V, , )+nV—B](&5x 5x )+&5x ') )I, (5.16d)

T2, =
I
—2pC„xg ='[(k, +p, Vf —1)(k,—V—, , )

—k, ]( &5u 5x )+ &5v5x ) )+4pC„xs" '(p, —A. , )&5m5x )

+[(A, ,
—p, )(pf p, )(Vf —

A. , )
—pnB(k, —p, )+—(pf —p, )A2](&5x 5x )+&5x ') )I,

T„=-,'(&5x '5x ) —&5x ') ),
(5.16e)

(5.16f)

1
T42

02

2C„~s
nB

[o&+(I—o, ) ](&5v 5x ) —&5u5x ) )
—(1—o. , )(&5x 5x ) —&5x ) ) (5.16g)

(3) p, 2, p3 are complex conjugates; p, , p.4, p, ~ are real. By
Eqs. (5.15) and (5.16), S;„,(co) is expressed by Eq. (5.15a),
but the first, second, and third terms are substituted, re-
spectively, by the first, second, and third terms of Eq.
(5.16a).

(4) p4, p~ are complex conjugates; p, , p2, V3 are real. By
Eqs. {5.15) and (5.16), S;„„.(~) is expressed by Eq. (5.15a),
but the fourth and fifth terms are substituted, respective-

ly, by the fourth and fifth terms of Eq. (5.16a).
In the following we discuss two cases: the spectra of

the transmitted light for one- and two-photon transitions.
(1) The spectrum of the transmitted light of a one-

photon transition and the vacuum Rabi splitting. For
n =1, o = —1, C1 =20, d =2, p= 1, n =0, this is the case
of the purely radiative (thermal fluctuations negligible),
one-photon optical bistability without adiabatic elimina-
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()
J.5

20 —p.S'

2-

o -2.5
I

0 2,5
l l

0 25
I I

(d)-

(e)-
0

r

0
I

0
l

(e)

Oj

2.5

(y)

-o,5—

0 )0 p
1 I

io 0 + -2.5 0 2.5

FIG. 1. Variance S;„,(co)/S, „,.(0) vs
o. = —1, C, =20, d =2, n =0, p=-1. (a)
(c) xs =0-8 {d) xs =0.95, (e) xs =7~ {f)xs

(m —coo)/y, for n =1,
xs =0.01, (b) xs=0. 5
=40.

FIG. 3. Variance S;„,.(co)/S;„,.(0) vs (cu —c~,))/y, for n =2,
o = —1, C2 =3, d =2, n =0, @=0.4. (a) xs=0.01, (b) xs=0.4,
(c) x -=0.8, (d) x -=1.4, (e) x =1.5, (f) x =40.

Pl~2 ~l 2 ~l
8pC|( —o ) —(1 —p)'

1+xs

(5.17)

For p»1 or p(&1, 0 is an imaginary number. Hence,
from the equation for S;„,(to), there is no vacuum Rabi
splitting. Only for p —1, 0=2@i(2C, )

' i, comparing
with Ref. 16, Eq. (5.6), does vacuum Rabi splitting ap-
pear. From Eq. (5.17) when cr & 0 (the laser case), there is

also no vacuum Rabi splitting.

1

C

6

tion. As demonstrated in Fig. 1, we chart the curves of
S;„,(to) with different values of xs. As shown by Figs.
1(a) and 1(b), when the value of xs is very small, there are
two peaks in the spectrum. It is just the vacuum-field
Rabi splitting. ' ' This is a peculiar feature for p —1.
Let us discuss it in the following. From Eqs. (4.8) and
(4.9), we obtain the distance (the Rabi frequency) between
the two peaks,

When the value of x& increases, the spectrum becomes
three peaked [see Figs. 1(c) and 1(d)]. For xs »1, the
sidepeaks decrease and finally vanish. We know, for
n =1, xs »1, p »1 (the bad-cavity limit), there are
three peaks of resonance fluorescence; for n = 1, xz » 1,
p, «1 (the good-cavity limit), there is one peak. Hence,
for n =1, xz »1, p-1, the spectra as shown by Figs.
1(e) and 1(f) are just between these two limiting cases.

Figure 2 indicates representative spectra for p »1,
ILt « I. The result coincides with Ref. 1, Figs. 29(a) and
30(f).

(2) The two-photon spectrum of the transmitted light.
For n =2, o. = —1, C2 =3, p=0. 4, d =2, n =0, it is easy
to verify that the stability condition Eq. (4.3) is satisfied.
As demonstrated in Fig. 3, we chart the curves of S;„,(co)
with different values of x~. When x~ is very small, there
is a single peak only [Fig. 3(a)]. For xs —1, the two peaks
appear [Figs. 3(b) and 3(c)]. This is Rabi splitting caused
by the cavity field. When xz continues to increase there
are three peaks [Figs. 3(d) and 3(e)] and the central peak
gradually becomes larger than the sidepeaks. For
xs »1, the values of the sidepeaks rapidly drop [Fig.
3(f)].

VI. NONCLASSICAL EFFECTS

0 -oc4 p 0 04 -30 0 3Q

FIG. 2. Variance S;„,.{co)/S;„,.(0) vs (co—coo)/y, for n =1,
cr= —1, C1=20, d =2, n =0. (a) @=10,xs=0. 1; (b) p= 10,
xs =40 A =(2 +A)/2, A =(A —A)/2 . (6.1)

In this section we discuss squeezing and antibunching
effects in the multiphoton case.

(1) Squeezing eQect of the field. Let
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Using Eqs. (3.14) and (3.15), we have

& ( 5 A, ) &
=

—,
' + —,

' [ & 5 A 5 A & + & ( 5 A ) & ]= —,
'

( T —M),
(6.2)

& ( 5 A 2 ) &
=

—,
' + —,

' [ & 5 A "5A &
—

& ( 5 A ) & ]= —,
' M . (6.3)

Where T, M are given by Eqs. (3.16)—(3.19).
(a) Good-cavity limit (p « 1). From Eqs. (6.2) and

(6.3), for p « 1, we obtain

&(5A, )'& =—+ " +1

4 dy

2)I 2
n 5 [xs"(n —o )+xs"[o(2n —2)+2n —n o (1+d)]+o (2n —1)+n I,

2(1+ 2n)3 dyxs
(6.4)

2/I 2
n s

1 1+—J,1+(n —1)B p

&(5A, )'& = —+ "„+1 (nxs" +cr+n) .
2 "y 2(1+ '") "y

d&s dxs

Equations (6.4) and (6.5) are just Ref. 6, Eqs. (9) and (10).
(b) Bad-cavity limit (p)& 1). From Eqs. (6.2) and (6.3), for p, &) 1, we obtain

(6.&)

(6.6)

&(5A, )'&=

where

2n B 1+ —n(—1+x ")
0 s

1 1+
1 —(n —1)B p 4(1+B)[1—(n —1)B]

(6.7)

f (f +nB+df)(1+xs")2n d3'

«s

(1+xs") dyo d (1+d)fxs" df+
CT d~s

+(1+2n )(1+xs") d(xs" —1)——(1+dxs")
d~s

(6.8)

For n =1, n =0, Eq. (6.6) is just Ref. 5, Eq. (9). For
n & 2 the first terms of Eqs. (6.6) and (6.7) are

(1+2n )/4[1+(n —1)B],
which indicate that there is a fixed squeezing value in the
cavity for the bad-cavity case. When n ~2, n =0, the
minima of the &(5A i & and &(5A2) & are

&(5A, , )'&=—1 1 +0 1
1,2 4 1+(—2~C„)—(n —1)

1 z —]en P
n

For cr &0, we obtain &(5Ai) && —,', and Ai is squeezed.
For o & 0, we obtain & (5 A z ) & & —,'; hence for the bad-
cavity limit, in the multiphoton laser the A2 can be
squeezed. From the stability condition Eq. (4.4) the value
of o.C„ is limited for p &&1, so the minimum squeezing of
&(5A, ) & or &(5A2) & is —„'.

From Eqs. (6.4)—(6.7), when thermal fluctuations exist
(n &0), the squeezing eA'ects weaken or disappear.

R i
=

—,'(R++R ), Rq= —(R+ —R=1
l

One has squeezing if

(6.9)

(6.10)

Substituting Eqs. (3.26), (3.27), and (2.3) into Eq. (6.10),
we have

Figures 4 and 5, respectively, show & (5A i ) & as a
function of changes of xs with p for n =1 and 2. In Fig.
4, for p-1 the squeezing eftect is the most remarkable;
for p « 1 & (5A i ) & slightly increases. When p increases,
&(5A i ) & rapidly tends to —,'. In Fig. 5 the more p in-

creases, the more & (5 A, ) & decreases. For p )) 1

& (5A
~

) &;„ tends to the limit I /[4(1+Cz)] =0. 139.
From Fig. 5 the more p increases, the larger the range of
values xs in the case of squeezing.

(2) Squeezing in the atomic system Let.

&(5Ri)'& —
—,'l&R, &I =

—,'[&5R+5R &+&(5R+)'& —&R, &
—l&R, &I]

pB [ f [T—M]+(1+2n ) I+ ———(I+xs")—lBl
N 1 B
4 2C x'" P cT

(6.11a)
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—,
'

I
& R, & I

=-,

8(1 (6.11b)

(6.12a)
4 ( s

X o.
&(~R )'& —

—,'I«, &, =— (6.12b)

——' I&R3 &I as a function
of xg wit

=1 the larger p, the
markable the squeez' g.er the more remar ag P, n-

y
h o-h

So in
s ueezing for t e wg

e
g

' g
(a p. , — vit limit.(a) p. ((1,good-cav' y

& 6R )'& —
—,'I &R3 & I

[1+( 1+d lr7
I )xs "]z. )z1+x

incides with Ref.

2(1+dlo I)
t (SR, )'& —

—,
'

I «, & I],„=—,

14, Eq. (6.8). The minimum isIt co

(6.12c)

X 1

2H 24 2C.x~
(6.13a)
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N 1 B
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they coincide with Ref. 15, Eq.. (44) (45).
(3) Second order co-rreia tion function; anti bunching

The second-order correlation function'

g (t==1+,[(5x "(t)6x(0))+(5x t(0)5x(t))
~s

(6.13b)

where J is given by Eq. (6.8). When n ==0 n = 1, these
expressions coincide with Ref. , q.f. 5 E . (37). When n =2,

+2Re((6x(t)5x(0)))] .

Using Eqs. (5.3) and (5.4), we obtain

(6.14)

jo
I c)

a)

3

I

2

2.5&f0

0.2 0.4

d =2 n =0. (a) xs=0.01, (b) xs=0. 5, (c)FICx. 9. VarianceV N[g' '(t) —1] as a function of t e y,he t for n=2, a= —1, C2=08, =, n=
xs = 1.2 (d) xs =20
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X 1

S

where p. , (i =1,2, 3) are real. Or

g' '(t) =1+ j T„e
Xg

(6.15)

8(b)]. For xs))1, the oscillatory behavior is intensive
and bunching appears [Fig. 8(c)].

Figure 9 shows g' '(t) —t for the two-photon case;
when xz «1 the antibunching is the most remarkable
[Fig. 9(a)]. For xs ))1, the oscillatory behavior is inten-
sive and bunching appears [Figs. 9(c) and 9(d)].

VII. CONCI. USION

3'1 A
I
l

+2e ' '
[Tz& cos(y ilzt)

+ T,z sin( yXzt ) ]I, (6.16)

where p, is real, p2, p3 are complex conjugates. One has
bunching for g ' & 1 and antibunching for g ' ' & 1. Fig-
ure 8 shows the g' '(t) —t for the one-photon case. In
Fig. 8(a) the oscillatory behavior is a new feature for
p, = 1; this is the vacuum-field Rabi oscillation (xs (( I ).
When xs increases, the antibunching is weakened [Fig.

In this paper a multiphoton quantum-statistical theory
without adiabatic elimination has been developed for the
driven optical system. This theory has very wide applica-
tion. We can study various physical processes of the
driven optical system by choosing every parameter
(n, p, o., d, C„,n ) at different values. For example, by
choosing every parameters at an appropriate value, the
best squeezing may be obtained in the best optical device.
This theory coincides with the adiabatic elimination
theory for the good- and bad-cavity limits.
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