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A connected web of stochasticity can be generated by a mapping derived from a linear oscillator
perturbed by a periodic & function. Such a stochastic web is useful for investigating global diffusion
through a phase space in which the local diffusion within the web is nonuniform. An analytic ex-
pression for the global diffusion rate has been obtained using (1) the basic phase-space concept that
the ergodic region is uniformly populated in the asymptotic limit, (2) a local calculation of the
thickness of the stochastic web, and (3) the average local period for traversing a single mesh of the
web. The results are compared with numerical computations of the diffusion rate and are found to
be in good agreement. Although the linearity of the kicked oscillator leads to a connected grid in
phase space, the diffusion rate, unlike Arnol’d diffusion, is related to that in two-dimensional phase
space, with the diffusion coefficient D, =L?2, /T scaling as K }, where K, is a perturbation param-
eter. Discrepancies are discussed, and the effect of extrinsic stochasticity is briefly considered.

I. INTRODUCTION

The motion of a charged particle gyrating in a magnet-
ic field and interacting with a wave propagating perpen-
dicular to the field is governed, within the nonrelativistic
approximation, by the equation

5c'+a)cx=7fl—Eosin(kx —ot) . (1

Here x (and y) are transverse to the magnetic field ZB,,
the wave has amplitude YE, and propagates in x with fre-
quency w and wave number k, and w.=eB,/m is the
gyrofrequency of the particle. The dynamics of this
motion has been studied in some detail' ~* and it has been
shown that for exact resonance between the gyromotion
and the applied frequency
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that the topology of the phase-space trajectories of the
motion are strongly modified even in the limit of small
perturbing amplitude E,. The reason for this
modification of the orbit topology is understood in terms
of the linearity of the unperturbed oscillator. Since all of
the nonlinearity occurs within the perturbation itself, the
size of the local perturbation in action is independent of
the perturbation strength. The limitation of this
phenomenon with increasing nonlinearity of the original
oscillator has been studied in the context of introducing
nonlinearity by allowing a component of the wave propa-
gation in the magnetic field direction.* A similar effect
can be found by employing relativistically correct dynam-
ics. A review of the problem can be found in Ref. 5.

A motivation for the study of this problem is that of
charged-particle heating by waves. For strong perturba-
tions the higher-order nonlinear interactions generate
stochastic layers around the first-order separatrices
through which particles can diffuse in action, and there-
fore heat. Because this diffusion rate is related to the lo-

, D,q integer (2)
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cal strength of the perturbation, the original calculations,
governed by interaction with a single wave as in (1), con-
sidered large values of E, and explored regions of the
phase space (in energy) for which the resonant interaction
was maximized.>>>

Recently a new look at this problem has been undertak-
en,’ in which the single wave has been replaced by a wave
packet
> sin(kx —not) . (3)

n=-—owx

E(x,0)=E,

This is equivalently represented by a periodic & function,
kicking the particle, with period 7T =2nw/w. The
differential equation for the motion then has a mapping
representation®

u, =(u, +K,sinv, )cosa+v,sina , @
v, +1= —(u, +K,sinv, )sina +v,cosa ,

where a=w,T is the rotation angle between kicks,
K, ,=(e/m)EykT?/a is the stochasticity coefficient, and
u and v are the normalized velocity components,
u=kv,/w.,v=kv,/o. The mapping is composed of a
product of two involutions, a step change in u, following
by a rotation, and is therefore measure preserving. At a
resonance we have a=2mp/q. Taking p =1 for simplici-
ty, we see that g is the number of &-function kicks per
gyroperiod.

In a series of papers, Zaslavski and associates have ex-
amined various aspects of the mapping.®”8 There is an
approximate g-fold rotational symmetry which becomes
exact in the limit of K ,—0. Furthermore, for g=2, 3, 4,
and 6, there is also an exact translational symmetry in
this limit. The combination to these two symmetries en-
sures that the phase space is tiled by the separatrix join-
ing the unstable periodic points of the mapping. For oth-
er values of g, the separatrices are much more complicat-
ed, but for small K, tend to produce structures that have
a skeleton approximated by a g-fold rotation of a set of
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parallel lines. With finite K, higher-order resonances
produce stochastic layers of finite thickness.

The purpose of our study is to calculate the rate of
diffusion through stochastic separatrix layers at finite K.
The interest in this calculation is not to determine parti-
cle heating rates, since nonlinearities such as a com-
ponent of k along ZB, (Ref. 4) or relativistic effects’ will
reintroduce energy-limiting Kolmogorov-Arnol’d-Moser
(KAM) curves for small values of K ,. Our interest, rath-
er, is to determine the effect of the divided phase space
and the phase correlations on the global diffusion rate.
These higher-order effects can be studied for doubly
periodic mappings,'® such as the standard mapping, but
only local approximations can be found for mappings
which are periodic in phase, but not in action.!! For the
aperiodic mappings the existence of KAM barriers to
diffusion limits the numerical calculation of diffusion
rates. In contrast, for diffusion through a stochastic web
the global rate of diffusion depends both on the internal
phase-space structure of the web and on the web boun-
daries. The effect of the internal structure can then be in-
ferred for the global diffusion rate.

To investigate this effect most easily it is important to
have a web with a stochastic layer that is globally uni-
form when averaged over a cell. To obtain this uniformi-
ty to order K, we must limit ourselves to g values with
translation symmetry. The simplest of these values is
q=4, for which the map (4) reduces to the form

Up 417Uy s (5)
Uy 1= —(u, +K,sinv, ) .

The twist can then be removed, to order K ,, by iterating
the map four times, keeping only the lowest order terms,
to obtain

U, 4=V, —2Ksiny, , ©
U, 4=u, +2K_sinv, .4 .

The map (6) is again a product of two involutions and
therefore measure preserving; it will be the fundamental
mapping comsidered in the following sections. Although
(6) was derived from (5) a subtle difference has arisen
which becomes very important for the calculation of the
separatrix width in the next section. That is, the map (5)
has one kick per step or four kicks per gyroperiod while
the map (6) has two kicks per step or two kicks per gyro-
period, each kick being twice as large. The first-order
structure is the same in both cases, but not the thickness
of the separatrix layer which depends exponentially on
the ratio of the 6-function period to the period going
around a cell.

The map (6), being measure preserving, has a Hamil-
tonian form>®

o

> cos

n=—wx

not
4

H,=—2K ,(cosv +cosu)—2K ,cosu

n-#0
(7)

where the summation if the Fourier representation of the
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periodic & function. Since the lowest-order oscillation
about the fixed point has the frequency Q,=2K_, for
small K, this frequency is very slow compared to the
wave frequency. This allows averaging over the rapidly
varying terms to obtain the averaged Hamiltonian>®

ﬁy=—2Ka(cosv +cosu) . (8)

The averaged Hamiltonian is clearly 27 periodic with a
separatrix web of straight lines given by®

v=*+(u +m)+2mm . 9)

It is the structure within this web, when the rapidly vary-
ing terms cannot be completely ignored, that interests us.
Clearly this is significant for K, sufficiently large that the
nonlinear resonances between the fundamental frequency
and the wave frequency become important.

In Fig. 1 the separatrix web is shown for a rather large
value of K ,=0.6, in order to be able to see the web thick-
ness. One thousand initial values of u and v were chosen
within the stochastic region at the center of the figure,
and were followed for 10° mapping iterations. The edge
of the stochastic region is bounded by KAM curves
within each mesh. Both the distortion of the separatrix
from the straight line 45° grid, and the web thickness are
clearly seen for this value of K .

In Sec. II we consider the structure of the separatrix
web. We use a combination of analytical and numerical
calculations to obtain the important quantities such as
the rotation frequency of a phase point around a mesh of
the web and the thickness of the separatrix layer. We

FIG. 1. A portion of the separatrix web for mapping (6) with
K ,=0.6. One thousand initial conditions within the web were
iterated 10’ times to generate the web.
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then use these results, in Sec. III, to calculate the rates of
global diffusion through the web, as a function of K, and
to compare these rates to numerically determined values.

We emphasize here that, although the diffusion has in
common with higher-dimensional Arnol’d diffusion the
topological existence of a continuously connected web,
the diffusion mechanisms and the diffusion rates are fun-
damentally different. For Arnol’d diffusion, motion
across a stochastic layer, which is exponentially thin in
the ratio of two frequencies associated with two degrees
of freedom, drives exponentially slow diffusion along a
stochastic layer in a third degree of freedom. In contrast,
the diffusion rate studied here has a power-law depen-
dence on the corresponding frequency ratio, despite the
exponentially thin layer width. This distinction was ob-
scured in previous work in which the main interest was in
the topology of the connected layer, rather than in the
rate of diffusion through it.%°

II. STRUCTURE OF THE STOCHASTIC LAYER

Near the separatrix of an oscillator which is perturbed
by higher frequencies, the motion can be approximated
by a separatrix mapping of the form?

(10a)
(10b)

Aw =wgysing ,
AO=2mr(w)/m ,

where w is the energy (or action) deviation from the
separatrix, 7 is the full period (in mapping steps) to
traverse the web, and w, is an exponentially small func-
tion of the ratio Q, of the mapping period to the linear-
ized mesh frequency, which can be expressed in terms of

an Arnol’d-Melnikov integral in the form>!2
T
wo=cQlexp | — fo , an

with the constant of proportionality ¢ to be determined.
We do this numerically by relating w, to the border of
stochasticity by use of the Chirikov criterion.>!> Ex-

panding the mapping (10) about a periodic point
7(w)=I, [ integer (12)

we obtain the standard mapping

AI =K sinf ,
AO=1T , . (13)
where
—_m Yo
Ks—Ka - (14)

At the stochastic border the Chirikov criterion is K, =1,
giving

w=w,=mwy,/K, . (15)
Substituting (11) in (15), with Q,=#/K ,, we have
e m?
w]—zzexp — K, | (16)
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Since we shall only need to know the logarithmic value of
w,;, a numerically determined value of ¢ will be sufficient
for our purposes.

In Fig. 2(a) we show a portion of the separatrix region
near an unstable fixed point, which is blown up in Fig.
2(b). The last island chain before a mesh-bounding KAM
curve corresponds, roughly, to the island chain satisfying
K, =1. Because we must satisfy (12) exactly, at the fixed
point, the criterion K;=1 cannot be satisfied exactly.
However, since K, varies significantly from island chain
to island chain, a more general criterion for unequal is-
land sizes will usually place the first KAM curve of the
mesh at a w, greater than that given by (15). We discuss
this further, below.

We can numerically determine the width of the sto-
chastic region for the map (6) in two ways. Expanding (8)
in u from an unstable fixed point, at (say) u =m,v =0 we
have

w=AH =K, u’; (17)

we then either put in a series of values of u, for a given
K,, and observe the transition from bounded to un-
bounded motion, or directly measure the distance (in u)to
the edge of the stochastic layer. The two methods give
quite similar results, shown for the first method, in Fig. 3,
as the crosses. In contrast, the separatrix thicknesses for
the original mapping (4) are shown (plusses). These can
be brought into correspondence with reduced mapping

FIG. 2. Structure of the phase space in the neighborhood of
an x point of the stochastic web for K,=0.4.
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FIG. 3. Thickness of the stochastic layer, w,, as a function of
K, for the reduced mapping of Eq. (6) (crosses) and the original
mapping of Eq. (4) (plusses).

(6) by reducing K ,(proportional to the mesh frequency)
by a factor of 2 (circles), to keep the ratio of kicks to
mesh frequency constant. A fit to (16) gives ¢ =20, which
will be used in the following section.

We also need 7(w) for our diffusion calculation. Using
(8), together with Hamilton’s equations, we can then ob-
tain the period

s”l(wl—l) 1

2 co
=— d , (18)
T K, fo u[l—(w—cosu)z]l/2

where, as previously, w is the deviation in energy (or ac-
tion) units from the value of H on the separatrix
(H,,=0). The elliptic integral (18) is logarithmic near
the separatrix, and has been found by numerical integra-
tion to be

(2—Inw) . (19)

Referring again to Fig. 3, with K ,=0.4, the value of
w;=4X 1073 obtained from (16) corresponds, from (19),
to 7(w,)=238. That is, it takes 38 mapping iterations to
traverse the mesh. Since the island chains occur in multi-
ples of four, we find the next main island chain closer to
the separatrix corresponds to 7(w)=42. Inverting (19)
we find w, ~1.66X 103 with a corresponding K, ~2.4,
from (14). The result is that the next island chain closer
to the separatrix, as seen in Fig. 2(b), exhibits a strong
fourth harmonic resonance, and is well embedded within
the stochastic sea. The process by which island chains
become engulfed within the stochastic sea causes jumps
in the value of w, at discrete values of K,. However, the
strong nonuniformity in neighboring island chains keeps
the last KAM surface relatively constant with respect to
the Chirikov criterion K;=1. The small variations may
explain the wobble in the numerical values of w,(K,) in
Fig. 3.

More important for our diffusion calculation, we see
from Fig. 2(b) that the last KAM surface lies beyond the
island chain whose center approximately satisfies the
Chirikov criterion (15). This somewhat more than com-
pensates for phase-space area excluded from the stochas-
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tic region by the main island chain (and smaller islands).
In the next section our diffusion calculation uses (15),
which we shall see leads to a small systematic underesti-
mate of the asymptotic diffusion rate.

III. DIFFUSION RATE AND SCALING

We now consider the central problem of the diffusion
rate through a stochastic web. If the phase-space density
in the web is macroscopically uniform we expect a ran-
dom process to govern the macroscopic diffusion over the
cells. Assuming that, in each dimension, the probability
of moving r displacements from the origin in N steps has
the standard form'?

2

r
= - 20
P(r,N) v | (20)

77-2N ] Viexp

then the rms  distance  traveled is L
=(L*)'?=L,N'"? where L., is the fixed cell size.
For our mesh we have u =V27 with N /2 steps

each in u and v, giving

Lo =(u?)+(o))2=L  N'?=V2zN"? . Q1

step = Ustep

The diffusive nature of the spreading of initial condi-
tions can be seen numerically from the relation between
L, and the number of iterations of the mapping. This
is plotted for two values of K, in Fig. 4. After an initial
transient during which time the initial conditions ergodi-
cally fill the stochastic region, the basic L, «T'"?
dependence is evident, characteristic of a diffusive pro-
cess.

The important physics is in the determination of the
number of mapping periods that are required, on average,
for a single random-walk step. We make the following
assumptions.

(1) The stochastic region is ergodic. This implies that
the stochastically available canonical phase space out to
the KAM barrier is uniformly occupied in the asymptotic
(long-time) limit.'* This result has been shown numerical-

[IVA—
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FIG. 4. Illustrating the diffusive nature of the spreading of
initial conditions L, « T'/2
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ly to be a good approximation in the regions of phase
space where no islands exist.'’

(2) As a first approximation we ignore the effect of is-
lands on the calculation, assuming that the phase space is
ergodic from the separatrix (w =0) to the value w =w,,
satisfying the Chirikov criterion. As we have discussed,
this a reasonable first-order approximation, despite the
existence of large islands near the border of stochasticity.

(3) In the small-K , limit, appropriate for the derivation
of the fundamental map, the lowest-order motion can be
described by the continuous Hamiltonian (8), and the sto-
chastic layer is sufficiently narrow that the period in the
stochastic separatrix is everywhere governed by (19).
With these assumptions we calculate the rms spreading
from
_ LstepTl/z

(nr )27

(22)

rms

where T is the number of iterations, 7,, is the average ro-
tation period, and n is the average number of rotations
per separatrix crossing. The average period within the
separatrix layer is

1 ™
o= fo fw)r(w)dw , (23)

where w; is the border of stochasticity (15). Since w is
the canonical action, by assumption (1), f(w)=1, and
(23) can be integrated directly, using 7(w) from (19), to
give

Tow=——3—Inw,) . (24)

The logarithmic singularity at w =0 is sufficiently weak
that 7,,~7(w,) as seen by comparing (24) to (19). Substi-
tuting (16) (with ¢=20) in (24) we obtain
o= -2 [3-In(20m)+ 3 InK ] (25)
av K(ZI Ka T a *
For small values of K, the first term dominates and
Tow 1/K2. We compare the prediction of (25) with the
numerically determined 7,, in which 100 initial condi-
tions were integrated over 8000 mapping periods, for
each K, with the results, shown in Fig. 5, indicating ex-
cellent agreement.
To determine the number of rotations per separatrix
crossing we put (15) in the form
ST 26)
Wo KE!
Because of the correlations near KAM boundaries it is
not possible to calculate separatrix crossings directly
from a random walk. However, a simple phase-space ar-
gument can be invoked to calculate the fraction of the
phase space of the stochastic region that crosses the
separatrix on each step of the separatrix map. The ener-
gy steps are given by w;sin6, from (10a), such that the
phase space within wysin€ of the separatrix, with sin 6
negative, crosses the separatrix on each mapping step.
Phase randomization then ensures that the phases are
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FIG. 5. Comparison of theoretical and numerical values of
average mesh period.

equally populated on each time step, such that the phase
space crossing the separatrix on each step is
ffr”wosin9=2wo. Since the available phase space is
27w, a fraction wy /7w, of the total phase space crosses
on each separatrix mapping period. Since there are four
such mapping periods per circulation period, using (26),
an initial phase point takes a random-walk step (separa-
trix crossing) in a number of circulation periods

n=mu/4K, . 27

This result is compared with the numerically determined
n in Fig. 6. In the numerical determinations 50 points
were followed for 10° and 5X 10° iterations for each K ,.
The results indicate that for the longer numerical itera-
tion, the number of iterations per jump is quite close to
that predicted from (27), with the numerically deter-
mined slope somewhat less than the predicted K '
dependence. These differences are qualitatively due to the
correlations near the border of stochasticity and the devi-
ations of the available phase space from the estimate in
(26). The first effect is clearly seen to be of importance
numerically, since lower iteration numbers give shorter
separatrix crossing times, resulting from the difficulty in
penetrating into the phase space close to the KAM bar-
rier. The penetration time into this highly correlated re-
gion is longer at small K, accounting for the decreased
slope. For the second effect, since the actual w, lies
above the value at K, =1, but the large island decreases
the ergodicly available phase space, the deviations from
the simple approximation (26) tend to cancel, resulting in
relatively good agreement.

We substitute (25) and (27) in (22) to obtain the value of
L . for any T. Defining the global diffusion rate as

Dyw=L2/T (28a)

yields
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FIG. 6. Comparison of theoretical and numerical values of
revolutions per separatrix crossing.
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(28b)

web

Without any adjustable parameters, L from Eqgs. (28a)
and (28b) (solid line) is compared to numerical calcula-
tions for 1000 initial conditions and for T= 2'® iterations
per initial condition (crosses), for each K, in Fig. 7. We
also calculate L, using the numerical separatrix cross-
ing times from Fig. 6 (triangles). The difference between
the crosses and triangles from the two numerical pro-
cedures is indicative of the breakdown of ergodicity on
short time scales. That is, phase-space trajectories, from
which the numerical diffusion rate is calculated employ-
ing 65 000 iterations, do not penetrate the phase space
near the border of stochasticity as well as the trajectories
from which the separatrix crossings are calculated, em-
ploying 5 X 10° iterations.

IV. CONCLUSIONS AND DISCUSSION

For a linear oscillator perturbed by a resonant periodic
8 function, some resonant ratios produce a stochastic web
that globally has nearly uniform thickness in the small
perturbation limit. This situation is convenient for study-
ing global diffusion across a stochastic region with locally
nonuniform diffusion. Invoking the theorem that the
phase space of the resultant area-preserving mapping
should become uniformly filled, asymptotically, an ana-
lytic expression was derived for the global diffusion rate,
in good agreement with the numerically observed
diffusion. Remarkably, the long-time correlations near
the stochastic borders, characteristic of a divided phase
space, do not impede the diffusion. Rather the inability
of trajectories, on shorter time scales, to fill the regions of
phase space in which strong correlations exist, tends to
increase the rate of intermediate-time-scale diffusion over
the asymptotic value.

FIG. 7. Comparison of theoretical and numerical values of
L., <DL (for a fixed number of iterations).

Although the linearity of the kicked oscillator leads to
a connected grid in phase space, the diffusion rate is relat-
ed to that in two-dimensional phase space, with the
diffusion coefficient D, =L2, /T scaling as K2, where
K, is a small perturbation parameter. In contrast,
Arnol’d diffusion in a higher-dimensional space has a
diffusion rate along the main resonances which scales
with the web thickness, and therefore as D,
aexp(—const/K ;). Although not directly related to
our present study, we point out that there is also an im-
portant topological difference between the Arnol’d web
and the web studied here. In the Arnol’d web, generated
by a small coupling perturbation, higher-order reso-
nances connect the stochastic web arbitrarily closely to
all parts of the phase space, while leaving the total mea-
sure of the web exponentially small. In contrast, KAM
surfaces disconnect almost the entire center of each mesh
from the stochastic grid that surrounds them. The global
rate of Arnol’d diffusion remains an open question.

The theoretical model that we have used gives a quite
accurate estimate of the diffusion rate in the asymptotic
limit because of two canceling effects in the estimation of
the stochastic phase space available to the diffusing parti-
cles. Improvement in the analytic expressions are possi-
ble by introducing a correction in the ratio of w, /wy, in
(15). This can be accomplished by adding the stochastic
phase space beyond the last island and subtracting the ex-
cluded island phase space. The procedure is, however,
K, dependent in a complicated way.

It is clear that we have been discussing diffusion only
within the stochastic web. For small K, most of the
phase space is bounded within the meshes by KAM
curves and has no global diffusion. If a small additional
extrinsically stochastic perturbation is added to the map-
ping, then the phase space in the mesh will diffuse at the
extrinsic rate into the separatrix region of more rapid
diffusion. Since the surrounding meshes have neither
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sources nor sinks, on an appropriately long time scale the
local density within the meshes and in the bounding web
will be the same. In this limit the overall diffusion rate is
a product of the global separatrix rate and the ratio of
phase-space areas of intrinsic to extrinsic stochasticity;
this latter ratio is proportional to w, in (15). For this
combined extrinsic and intrinsic diffusion, treated in Ref.
6 in a different limit, the diffusion of the entire phase

space is exponentially small in the ratio of driving fre-
quency to mesh frequency.
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