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Liapunov exponents have been determined from a time series of acoustic turbulence. It is found
that a low-dimensional chaotic attractor with one positive largest exponent rules the motions in
phase space in the broadband noise region. The method for calculating the spectrum of Liapunov
exponents is analyzed in detail for its applicability in experimental situations. It is shown, in partic-
ular, that spurious exponents arising from the embedding procedure do not spoil the calculation and
that the calculation of the Liapunov dimension is possible.

INTRODUCTION

The characterization of measured oscillatory time sig-
nals is one of the main tasks of experimental physics.
Spectral analysis and correlation functions, using the ter-
minology of linear modes, are powerful tools for
(multi)periodic time signals. They seem to have certain
limitations, however, when the chaotic states of nonlinear
dynamical systems are considered. The method of
phase-space analysis introduces a variety of possible
classifications, namely, the spectrum of Liapunov ex-
ponents,' the Kolmogorov entropy,’ the (fractal) dimen-
sion,> > and f(a) spectrum.® The important link be-
tween a single time series and the phase-space analysis is
the attractor reconstruction method based on time-
shifted samples.”® It opens this interesting field to exper-
imental measurements. Various experimental applica-
tions of phase-space analysis exist; especially the algo-
rithms for estimating the dimension of attractors as a
measure for the number of degrees of freedom modulat-
ing a physical process. These algorithms have widely
been accepted.® The Liapunov exponents are a basic in-
dicator of chaos. The exponential divergence rate of tra-
jectories in phase space is characterized by at least one
positive exponent. It is responsible for the ‘‘sensitive
dependence on initial conditions” and limits the predicta-
bility of the time evolution of a physical system. Few al-
gorithms exist for the calculation of Liapunov exponents
from a time series.!°”!7 The basic problem with the algo-
rithms approximating the matrix of the linearized flow
(local Jacobian) is the appearance of spurious exponents.
This problem is due to the embedding procedure of the
attractor reconstruction. The attractor is embedded in a
phase space, whose embedding dimension may be larger
than the (yet unknown) dimension of the attractor, caus-
ing exponents that obviously spoil the calculation of the
whole spectrum. We show, that with a suitable choice of
method-inherent parameters it is possible to determine
the ““true” Liapunov exponents including negative ones,
and to avoid the effect of the spurious exponents, which
are more negative than the most negative true exponent.
The true exponents indeed converge to their asymptotic
values with increasing embedding dimension, the spuri-
ous ones staying below. A calculation of the Liapunov
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dimension is thus possible.

Acoustic turbulence or acoustic chaos, which has been
found in water,'® is subjected to phase-space analysis.'’
The experiment consists of focusing ultrasonic waves of a
single frequency and high intensity into water and
measuring the sound output of the liquid. Beyond a cer-
tain threshold intensity of the sound pressure a cloud of
tiny bubbles appears in the liquid. These bubbles are os-
cillating in the driving sound field and thus producing the
acoustic cavitation noise.”® Broadband noise and a
subharmonic route to chaos while increasing the driving
sound pressure amplitude have been found by calculating
spectral bifurcation diagrams from the cavitation noise
data.?! Attractors in phase space have been reconstruct-
ed from experimental time series in the broadband noise
region. Evidence for a low-dimensional strange attractor
has been achieved by measuring a correlation dimension
of about 2.5.2 Numerical calculations of simple bubble
models confirm these findings.?>”2® Measuring the
Liapunov exponents could be a further indication of low-
dimensional chaos. In fact, a time series analyzed shows
that the dynamics in phase space is characterized by one
positive exponent.

CALCULATION OF THE LIAPUNOV EXPONENTS

The dynamics of a physical system may be described
by a differentiable dynamical system

x=v(x), (1)

where x is a vector in the phase space R" and v (x) is the
vector field. The vector field v creates a flow &= {®‘} on
the phase space, where ®' maps

x—®(x), tER, xER". (2)

The observed trajectory, starting at X, is
{PUx)tERTY . (3)

To get information about the time evolution of arbitrarily
small perturbed initial conditions, one considers the time
evolution of tangent vectors in tangent space, given by
the linearization of (1). The Taylor expansion of
v(®'(xy)) for small Ax is
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d'(xy)+ Ax=v(D(xy))+ Dv(P(xy))Ax+ - -+ . 4)

Du(®'(x,4)) is the (local) Jacobian matrix of the vector
field v at ®'(x,)

v
Dv(D!(x0))= |5 5)
v (P(x0)) 0x; |o'(xy) (
For Ax—0 the first-order approximation holds
5x=Duv(P'(x,))0x . (6)

A solution of the linear variational equation [Eq. (6)] is
obtained by

Sx(t)qu)l(XO)SXO N (7)

which represents the time dependence of a vector in
tangent space. D®'(xy) is the n X n matrix of the linear-
ized flow and &x, an initial perturbation, whose time-
evolved value is denoted by 8x(¢). Let E:=(¢/,...,e") be
an n X n matrix, where the column vectors are a basis of

J

Dq)kAt(xO):Dq)At(xk_l)o cee °D‘I>A'(xj Yo - -
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the tangent space and span the eigenspaces of the limit
matrix

Ay = lim [D¢'(x,)* D' (x5)]1" %,
— ©
given by the theorem of Oseledec.! If the limit
A, = lim %1n||D<l>'(xo)e"|| ®)
t— o

exists, then the A,’s are called the characteristic Liapunov
exponents. They are ordered by their magnitudes
A1>Ay>A3> -+ . If the limit is independent of x,, the
system is called ergodic.! Calculation of the Liapunov
exponents using Eq. (8) with an arbitrary set of basis vec-
tors is not possible because, for ¢t — o, all basis vectors
grow in the same direction.?’ To inhibit this, one has to
use a renormalization procedure after some time Az. One
can write D®(xy)) as a product of nXn matrices
D ®AY x;), each representing the linearization of the flow
%, that maps x; =P/4'(xy) to x; ;. :

-0 DDA (x;)o DD (%) , 9)

with kAt =t. After every time step of the evolution time At¢ any renormalization method can be applied. We use
Householder’s QR decomposition method:?® Each invertible n X n matrix can be split uniquely into a product of an
upper triangular matrix R with non-negative diagonal elements and an orthogonal matrix Q, such that

A — —

D®%(x;)E;=Q,R,=E; , |R; , (10)
with Ej:=(e]]- ...,€}). The matrix Q; serves as the new basis E; | and the logarithms of the diagonal elements of R;
are (local) expanding coefficients, whose time-averaged values are the Liapunov exponents. Using

k—1 k—1
DD A (xy)Ey= [ DP*(x;)E;=Q; —; [I R; (11)
j=0 j=0
in (8) gives
LS ey (12)
A= lim —— Inr} ,
P kA E’O i :

where r/ are the diagonal elements of the matrix R i

The matrix of the linearized flow D ®*/(x ;) can be approximated from a single trajectory by using the recurrent struc-
ture of strange attractors. This is done by averaging over the time evolution of difference vectors between x; and points
of the same trajectory on the attractor, that are within a small distance r. The set of N difference vectors in a cube cen-

tered at x; =®/%(x,), with jAt=tis

B(r)=[@(x0)— @' (xp)] |0/ (x) =" Tixp)| <7, ;2 —1, i=1,...,N} (13)

and shall be +dinAoted {y'lli=1,...,N}.
(@ Hax)—d T M) =(Z]i=1,...,N]}.

After

N LA :
inS =min— 3 |lz'— 4,y'||* .
n}}n nzlil,nN,‘:l”z Jy”

This equation can be solved for the matrix A o

the evolution

Now an n Xn matrix 4; is determined, such that the average of the
squared error norm of all possible mappings {y'}{z'} takes a minimum

time of At it is mapped to the set

if

(14)

N . . N . .
A,=CV! with (V)= 3 »ivf, (O)y=~ 3 2y 15)

i=1

i=1

If the cube length r and the evolution time At are short enough to represent a mapping in tangent space [Eq. (7)], 4;
should be a good approximation of the matrix of the linearized flow D ®2/( x;). Note that the evolution times At in the



2148

JOACHIM HOLZFUSS AND WERNER LAUTERBORN 39

renormalization and the approximation process do not necessarily have to be the same, but are chosen equal for con-
venience. This approximation method seems to be the most flexible one in analyzing a data set, because several parame-
ters [i.e., the evolution time At or the time interval T (see below)] can be controlled separately.

The connection between fractal dimensions and the Liapunov exponents is given by the Liapunov dimension

2

=1
|A’m+li '

with m €N such that
m+1

S A;Z0and > A;<0.

i=1 i=1

D, =m+

It should have a value close to the fractal dimension.

29,30

To reconstruct an attractor in phase space from a single time series of an observable, we use the method of time-
shifted samples.”® Let an observable be a function p, that maps any point ®‘(x,) in the phase space to a (measurable)
real value p(®(xy)). It has been shown’ for compact manifolds of dimension m, that the set

{p(D(xp)),p (D *T(xy)), . . .

(DT (x )| TERTN\ {0}, t— o0} an

is diffeomorphic to the positive limit set of ®'(x,) under generic conditions. T is called the time ‘“‘delay.”

NUMERICAL TESTS

The values of the various free parameters of the
method along with the applicability to experimental data
is tested with a time series obtained from a differential
equation. The x (#) variable of the Duffing oscillator as a
model for a simple dissipative periodically driven non-
linear oscillator is used,

X+Dx+x +x3=F cos(wt) ,
D=0.2, F=40, (18)
w=27/Ty=1.

Integrating the differential equation along with Eq. (6)
(Refs. 10, 27, and 31) yields A,=1.0, A,=0.0, and
Ay=—2.8 bits/T, as the values for the Liapunov ex-
ponents, identifying a chaotic attractor in phase space.
The x () coordinate has been sampled with a sampling
time of ¢, ~ T /52.36, with T, =27 being the duration of
one period of the driving force. The sampling time ¢, has
to be incommensurable to the period of the driving force
T,, because otherwise hyperplanes of dimension D —1
are generated in phase space and no information about
the flow direction can be extracted. A,=0.0 would be
shifted to very negative values. The precision of the sam-
ples is 1:2!°=10 bits. The number of data points is
20000. The radius of the cubes needed for the approxi-
mation of the matrix 4; is kept as small as possible and is
enlarged whenever the number of data points inside a
cube is less than n +2 (n =embedding dimension) or a
singularity problem arises in the QR decomposition.
Figure 1 shows Liapunov exponents for different
embedding dimensions. The evolution time equals 1z,
the time delay for the reconstruction T =2t,, where ¢, is
the sampling time. The values for the exponents con-
verge quite well to the correct values with increasing ma-
trix dimension. In Fig. 1 the main difficulty of the
method becomes visible: the existence of ‘“‘spurious ex-

r

ponents.” Because of the embedding procedure and the
QR decomposition of the n Xn matrix A; one gets n ex-
ponents. The determination of the right ones is easy
here: The spurious exponents are the most negative ones.
Calculation of, e.g., the Liapunov dimension (16) is now
possible and gives a measure for the relevant number of
degrees of freedom of an unknown physical system.

The dependence on the choice of the time delay T is
shown in Fig. 2. It shows the result for T =7¢,. The con-
vergence of the two non-negative exponents is good,
whereas the value for the third exponent after being close
to the right value approaches O for higher matrix dimen-
sions. An explanation for this behavior can be that with
a larger embedding time (n —1)T the attractor in the
reconstruction space gets folded more and more, such
that the folded trajectory reenters the noninfinitesimal
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FIG. 1. Liapunov exponents from a time series of the Duffing
attractor as a function of the dimension of the matrix of the
linearized flow. See the text for the parameter settings. The
three largest exponents, indicated by the bigger points, converge
to the correct values.
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FIG. 2. Liapunov exponents of the Duffing attractor. A too
large time delay for the reconstruction has been chosen.

cubes, causing a higher number of calculated non-
negative exponents. The same problem arises in dimen-
sion calculations. We claim that the embedding time
should be less than (np, —1)T,,. T,, is the first minimum
of the mutual information content®? calculated from the
data. It is equal to the first zero crossing of the auto-
correlation function for the test data and approximately
T,/4. np is the minimum embedding dimension required
by the embedding theorem (=~2D,+1, D, the fractal di-
mension, 2.3 in our case). The formula then yields an
embedding time that is slightly larger than T,,. All the
“plateaus” of correct Liapunov exponents have embed-
ding times smaller than T,.

Figure 3 shows the calculation for a lower number of
data points. The effect for the third exponent is the same
as in Fig. 2; it deviates from its correct value with in-
creased matrix dimension, while A; and A, show good
convergence. With just 5000 data points spread on the
whole attractor, the cubes needed for the approximation
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-1 o .« *
-2 P+
e ]
< -3 FT" e A
-‘ - °
—s -
-6 d A
-7 *
-8 1 1 1 1 1
0 2 4 6 8 10

MATRIX DIMENSION

FIG. 3. Liapunov exponents of the Duffing attractor. A too
small number of data points has been used.
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FIG. 4. Liapunov exponents of the Duffing attractor. The
evolution time in the approximation process is too large.

of the A4;’s have to become quite large to contain enough
points, thus violating the local concept of the method
[Egs. (6 and 7)].

In Fig. 4 the value of the evolution time At is con-
sidered. With Ar =5¢; which is approximately one-tenth
of the period of the driving force and a time delay of
T =5t; even another positive exponent arises in the cal-
culation with increasing matrix dimension. Also, all
spurious exponents are shifted to higher values and inter-
fere with the determination of the true exponents. Just
the largest exponent is extractable. A mapping in
tangent space as assumed for calculating the matrices 4;
is no longer valid here. Thus a calculation of the right
exponents is only possible when using a small enough
sampling time ¢,.

To clarify the influence of external noise, Gaussian
noise with a standard deviation of 0.5% of the maximal
attractor extent has been added to the data. Figure 5
shows the result. The parameter settings are the same as

MATRIX DIMENSION

FIG. 5. Liapunov exponents of the Duffing attractor. A
large amount of noise has been added to the data.
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2 in Fig. 1. It is seen that the values for the two non-
"\ p———————— C Ehnk Sank funks Senbe Juies aubes i negative exponents slowly converge. They are close to
ob——mm——— e e e— e their right values only for high embedding dimensions
-1 ° . . (>10), whereas for the negative exponent this is not
-2 L ° . . justified. It is shifted into the very negative. Noise tends
3 ———— e — i — to decrease the values for the exponents, including the
~< i .. spurious ones. This gives the possibility of enlarging the
“r . . " values of the evolution and reconstruction time. In Fig.
e . 6 good convergence of the non-negative exponents is
-6 I . achieved by setting At =3¢, and T =3t,. The informa-
-7 F . tion about the negative exponent is lost, however. Noise
-8 1 L 1 1 might introduce severe problems with flat attractors in
0 2 4 6 8 10 determining a very negative exponent.

MATRIX DIMENSION

FIG. 6. Liapunov exponents of the Duffing attractor. The
effects of the noise have been reduced by enlarging evolution
and reconstruction time.
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EXPERIMENTAL RESULTS

Using the results of the numerical tests, a data set of
acoustic cavitation noise has been analyzed. The fre-
quency of the driving sound field was f;=22.9 kHz, the
sampling frequency t,=1 us=7T,/43.7. The total num-
ber of data points is 10000. In Fig. 7(a) a part of the at-
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FIG. 7. Acoustic cavitation noise: Analysis of the sound pressure vs time series. (a) Projection of a three-dimensional reconstruc-
tion of the trajectory in phase space. (b) Power spectrum. (c) Histogram of 200 pointwise dimensions. (d) Mutual information con-
tent.
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FIG. 8. Liapunov exponents for the acoustic cavitation noise
data.

tractor is shown. A 3-tuple with a time shift of T =4 us
is used for the reconstruction. Figure 7(b) shows its
power spectrum with a large amount of broadband noise
and superimposed broad lines at f, f,/2, f,/4, and
their harmonics. Figure 7(c) is a histogram of 200 point-
wise dimensions,** calculated from the attractor data. It
yields an average value of 2.61+0.2, which is an indication
for a strange attractor. The mutual information content
of the data is plotted in Fig. 7(d). The first minimum is at
T,=Ty,/4=11t,. The “maximal” embedding time
would be around 5/4T . The calculation of the Liapunov
exponents is done with an evolution time of At =1¢, and
a time delay of T =2¢, (Fig. 8). With increasing matrix
dimension the largest exponent converges to an approxi-

mate value of A;=1.9 bits/T,. The second exponent
reaches a large plateau at A,=0 bits/T, while the third
exponent has a small plateau at embedding dimensions
n =3, 4, 5 at A;= —3 bits/T, before going off to higher
values. Calculating the Liapunov dimension yields a
value of D; =2.6, which is equal to the averaged point-
wise dimension and confirms the values of the exponents.

CONCLUSIONS

To summarize the numerical method one can say that
in principle all Liapunov exponents of a low-dimensional
system can be extracted by careful choice of parameters.
The upper bound of a maximal embedding time should be
kept to avoid multiple foldings and increased curvature
of the reconstructed attractor. The overall concept of lo-
cality must be obeyed in taking small enough cubes and a
small evolution time. Also a small amount of noise is
needed (finite precision) to keep spurious exponents below
the most negative one. Shortening the evolution time or
adding noise have the same effect of lowering spurious ex-
ponents. The application of the numerical procedure to
experimental data of acoustic cavitation noise leads to en-
couraging results as fractal dimension estimation and the
Liapunov dimension yield the same values. This gives
further evidence that acoustic cavitation noise is a deter-
ministically chaotic system.
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