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A one-dimensional kinetic Ising model with dynamics characterized by a combination of spins
flips at temperature 7 and spin exchanges at T= o is studied. The two-spin correlations in the
steady state are calculated exactly and the decay times describing the relaxation of both the magne-
tization and the two-spin correlations are also given. We find that neither the steady-state nor the
dynamic quantities show any sign of a phase transition that could exist in this one-dimensional,
nonequilibrium system. Two remarkable features of the solution are that (i) the correlation length
in the steady state with random spin exchanges is larger than the correlation length in the corre-
sponding equilibrium state without spin exchanges, and (ii) a fluctuation-dissipation theorem is

satisfied in the nonequilibrium steady state.

I. INTRODUCTION

The Ising model played an important role in the theory
equilibrium phase transitions and its kinetic generaliza-
tions, such as the one-spin-flip Glauber model' or the
spin-exchange Kawasaki model,>? were equally instru-
mental in sorting out the questions about the dynamics of
fluctuations near critical points. It was thus natural that
the kinetic Ising models were further generalized*> with
the aim of modeling phase transitions in far-from-
equilibrium steady states. The importance of developing
these new models lies in the fact that a general descrip-
tion of far-from-equilibrium steady states is lacking and,
as a consequence, nonequilibrium phase transitions are
usually described by phenomenological rate equations.

Generalizations of the kinetic Ising models followed
two lines in the past few years. One of them* was to con-
sider the Kawasaki model as a model of lattice gas at
temperature T and to switch on a uniform field £ which
biases the spin exchanges in the direction of the field. As
an effect of the field, a current carrying steady state was
produced and, for attractive nearest-neighbor interac-
tions between the particles, an anisotropic segregation
type ordering occurred at low enough temperature. The
transition between the disordered and ordered phases has
been found*®’ to be a mean-field type though there is
some evidence® for the behavior being nonclassical.

Another way of constructing a model which has a
nonequilibrium steady state is to assume that spin-flip
and spin-exchange processes take place independently
and that the spin flips alone bring the system to equilibri-
um with a heath bath at temperature T while the spin ex-
changes try to equilibrate the system with a heath bath at
another temperature usually taken to be 7 = oo (random
exchanges of nearest neighbors).® The distinguishing
feature of this model is that the current in the steady
state is local, it is the current of energy between the two

39

heat baths which are connected to every sites of the lat-
tice. Computer simulations and mean-field-like theories
of this system indicate>*!® that the phase transition
which is of second order without the spin exchange is al-
tered from second to first order as the rate of spin ex-
change is increased beyond a critical value.

Since the analytical results for the above models come
from mean-field-type theories or from considerations of
limits where mean-field-type approximations are valid,
the effects of fluctuations have remained largely unex-
plored. One of the main effects of the fluctuations in
equilibrium systems is the inhibition of ordering in low
dimensions. Landau-Pierls-type arguments'' can be used
for example to exclude the existence of long-range order
in one-dimensional systems with short-range forces.
Since we do not have similar arguments for orderings in
nonequilibrium steady states and since there are exam-
ples'? of nonequilibrium phase transitions in one dimen-
sion, at present one can decide the question of existence
of phase transition in a steady state only by solving the
problem exactly.

An example where ordering in a nonequilbrium system
has been excluded by explicit calculation is the one-
dimensional kinetic Ising model'® in which spin flips at
T=0 compete with random (7 = « ) ‘“‘bond flips” (flips of
all the spins to one side of a randomly chosen site). Iden-
tifying domain walls with particles, this model describes
diffusion-controlled annihilation in the presence of parti-
cle sources and, in the long-time limit, it has a steady
state in which particle production is balanced by the an-
nihilation of pairs of particles. For this system one can
calculate'>!* the relaxation of the one- and two-spin
correlations as well as their steady-state value and the ab-
sence of long-range order can be seen directly.

Below we shall carry out a similar program for the
one-dimensional kinetic Ising model in which the com-
petition is between the spin flips and spin exchanges.’
After introducing the model in Sec. II, we shall show that
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both one- and two-spin correlation functions satisfy a
closed set of linear differential equations (Secs. III and
IV) which can be solved and thus the steady-state and re-
laxational properties can be calculated exactly. For the
absence of any sign of critical slowing down in the dy-
namics and of any sign of nonanalyticity in the steady-
state correlations we then conclude that there is no phase
transition in the system. For the first sight, this result is
not unexpected and a simple reason for it is that ordering
would only occur at T=0 in the spin-flip model and the
random exchanges should just lead to further disorder-
ing. This is, however, a misleading argument. As we
shall see, the long-range correlations in the steady state
are increased by the introduction of the random spin-
exchange process. Finally, in Sec. V we discuss the
fluctuation-dissipation theorem which is shown to be
satisfied in the far-from-equilibrium steady state of this
model.

II. THE MODEL

We consider a one-dimensional kinetic Ising model

whose state {o}={...,0,,0;4,...} at time ¢t is
specified by stochastic Ising variables o ;(¢)==*1 assigned
to lattice sites i =1,2, ..., N. Periodic-boundary condi-

tions are used thus we have o, ,=0,. The dynamics of
the system which consists of spin flips and nearest-
neighbor spin exchanges is assumed to be governed by
the following master equation for the probability distri-
bution P({o},1):
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—w/“({o})P({a},0)] . (1

Here the state {o}! differs from {0} by a flipping of the
ith spin and the flip rate is given by

w,.‘l)(a):% 1—%0,(0i+1+0,-_1) . 2)
1

If no other processes were present (w,*'=0) then Egs. (1)
and (2) would define the exactly solvable Glauber model
which relaxes to the equilibrium state of the Ising model
at temperature 7T provided y is chosen to be
Y =tanh(2J /kT) where J is the strength of the nearest-
neighbor interaction. A nonequilbrium situation is now
created by introducing random exchanges of spins at
nearest-neighbor sites. The process is described by the
a=2 terms in the master equation where the state denot-
ed by {0 }? is different from {o} by the exchange of spins
at sites i and i +1. The exchanges are assumed to take
place independently of the spin flips and the rate of the
process is given by

w(Z)( — 1

0)—*272(1—0,-0,-+1). (3)

Without the spin-flip process (w,!’=0), Egs. (1) and (3)
define the Kawasaki model® at temperature T = co. It is
again an exactly solvable model which may be used to de-
scribe diffusion in lattice gases as well as surface evolu-
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tion in deposition processes.!> When both spin-flip and
exchange processes are present we have a nonequilbrium
model since the system is in contact with two heath baths
which are at temperatures 7 and 7 = c. As we shall see
below, this model is also solvable in the sense that the
time evolution of the one- and two-spin correlations can
be calculated exactly.

In principle, one should proceed now by solving the
master equation for an arbitrary initial distribution
P({o},0) and then calculate the averages of various
physical quantities A4 ({o}) through

(4)=T3 A({oc})P({o},1). 4)

to}

This can be done rarely'® and the usual course of action is
the derivation and solution of the equations for the aver-
ages of physical interest. The quantities we shall be in-
terested in are the one- and two-spin functions, {o;) and
(a,aj >, which can indicate if any homogeneous or
modulated magnetic order occurs in the system. By re-
stricting ourselves to the above quantities we may, in
principle, miss some ordering which can be seen only in
higher order correlations. The simplicity of the system
under consideration makes such ordering, however, rath-
er unlikely.

The derivation of the equations for {o;) and (o,0;)
is of the same order of complexity as the corresponding
calculation for the Glauber model.! It does not contain
any new technical element thus we shall just present and
discuss the results.

III. TIME EVOLUTION OF THE MAGNETIZATION

Multiplying both sides of Eq. (1) by o; and summing
over all configurations {o} we find that the average
values of the magnetization at different sites (o, ) are re-

lated by the following set of differential equations:
T:_T—l (0‘,‘>_:}2i(<0',‘+1)+<0,’71>)

+—Tl—(<o,.+,>—z<o,.>+<a,.,1>>, (5)
2

where the contributions from the spin flips (1/7, term on
the right-hand side) and the spin exchanges (1/7, term)
are clearly separated. This equation can be solved by
Fourier transformation with the results that (a) for y=£1,
we have (o;) =0 in the steady state, (b) all perturbations
of the magnetization decay exponentially, and (c) the re-
laxation times 7, of perturbations of wave number ¢
(g =2mn/N;n=0,1,...,N —1) are given as

“:%[1~7 cosq +k(1—cosq)] , 6)
1

Tq

where we introduced «=27,/7,. Clearly, the relaxation
times show no sign of a finite-temperature phase transi-
tion. They are smooth functions of the temperature and
critical slowing down occurs only for the homogeneous
mode (¢g=0) and only as we approach T=0 (y =1). Note
that the relaxation time of the slowest (¢g=0) mode is
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equal to that of the Glauber model 7o=7,/(1—y). This
is a consequence of the facts that the spin exchanges do
not affect the total magnetization and that the equation
for the time evolution of the total magnetization does not
contain higher-order correlations in the case of the
Glauber model.

A remarkable feature of Eq. (5) is that by collecting the
corresponding terms and introducing a renormalized
time constant

112 1ot (7)

’

T T, T
and a renormalized flip-rate parameter

i y+27,/7; _r*tk
1+2r,/1, 1+« ’

Y (8)

we arrive to the corresponding equation of the single-flip
Glauber model:

o) 1 ,
—, = — — . - . '
ot - <U,> 2(<U,+l>+<01_1>)] . 9)
J
a<Uij> 1 2 Y 1
B R A A P
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Thus, apart from the change of timescale (6), the pertur-
bations of magnetization behave as those in the Glauber
model in equilibrium with a heath bath at temperature 7"
determined from y’=tanh(2J /kT’). The surprise here is
that since ¥’ >y we have T’ < T contrary to the intuition
that if the spin flips and the spin exchanges were in equi-
librium with heath baths at temperatures 7 and 7 = o,
respectively, then the combination of these processes
would only lead to an equivalent spin-flip process in
equilbrium with a heath bath at temperature T < 7T’ < c0.
Before discussing this result, let us examine whether the
above picture of an equivalent spin-flip system at a tem-
perature 7' would be supported by the calculation of the
two-spin correlations.

IV. TWO-SPIN CORRELATIONS

The equations for (o,0;) are derived by multiplying
both sides of (1) by 0,0, and summing over all
configurations {o}. After some algebra one finds that
(0,0 ) satisfy a closed set of differential equations. For

i=j=*1 these equations are of the form

({o,410;)+(0,0; ) +{0,_0;)+(0,0,_)) (10)

which can be reduced to the corresponding equations of the Glauber model («—0) by introducing 7' and y’ defined in
Sec. II. The equation for j =i=*1, however, is slightly different

1.1
T T

a<ai0i+l)_

y .1
at *

27, T,

—2 (o,0;41)+

thus the description of the system in terms of a one-spin-
flip model at an effective temperature 7" discussed in Sec.
IT breaks down at the level of two-spin correlations. The
corrections introduced by Eq. (11), however, are rather
trivial as we shall see now by calculating the steady-state
correlations.

Since there is no process in the system which would
reinforce any inhomogeneous fluctuation, the steady-state
and the longest-living perturbations are expected to be
translationally invariant. Thus we shall simplify our task
of solving Egs. (10) and (11) by assuming that the initial
distribution P({c},0) is translationally invariant. Then
(a,-crj> depends only on i —j at all times. Introducing
r,=(o,0,,.,) we can rewrite Egs. (10) and (11) as fol-
lows:

TF,==2r,+v'(r,_+r,1) (n22), (12)
,. _ 2+«k , ,
Trl——1+Kr1+7/r2+y—1+K . (13)

The stationary solution 7, is now found by setting the
time derivatives to zero and making the following ansatz:
7n :71"7”7l . (14)

All the n =2 equations are satisfied by choosing 7 to be
the nearest-neighbor correlation of the Ising model at

({0,042 oo, N+, (1

T

-
temperature 7~

1
n=_r[1-(1—y)'?] (15)

Y
and the remaining equation (13) is used to determine the

value of 7:

7 o= (1+x)y'—«

(141 =) 2

= 7/ .
1+[1—yp2+2x(1—y)]' "2

It follows from Egs. (14) and (15) that the steady-state
correlations decay with distance exponentially

(16)

7y
¥,=—exp(—n/§), 17)
n
just as it happens in the equilibrium Ising model
7 e =exp(—n /&) and the correlation length

§=—1/Inqy (18)

is equal to that of the Ising model at temperature 7.
Since T’ < T and consequently §(7T")> &(T) we arrive at
the result that the distant spins are correlated more in the
steady state of the system with random spin exchanges
than in the equilibrium system without the exchanges.
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At small distances, of course, the factor in front of the ex-
ponential in (17) takes over and the effect of the random
exchanges is to make the correlations weaker than in the
corresponding equilibrium system (note, for example,
that 7, <F (°9).

The weakening of the correlations at short distances is
easily understood. The spin flips alone align the spins
within domains of size £(7T) and the direction of the mag-
netization of the domains is randomly up or down. As a
result of spin exchanges, the spins of neighboring
domains are mixed. If the magnetizations of the neigh-
boring domains are in the same direction then there is no
effect but if the magnetizations are in the opposite direc-
tion then the process clearly decreases the order.

It is harder to explain the increase of order at larger
distances since it is a consequence of the fact that the
spin exchanges conserve the magnetization. In order to
see the effect of the conservation law let us assume that a
magnetization fluctuation occurs on a scale which is
larger than the domain size £(7T) in equilibrium. If only
the spin flips would be present, this fluctuation would de-
cay locally. The spin exchanges, however, spread this
fluctuation by diffusion and thus create correlations at
distances larger than £(7T). The effect is clearly enhanced
if the rate of exchanges is increased and indeed we can
see from Egs. (8), (15), and (18) that the correlation length
increases with the increase of the ratio k=27,/7,. The
above argument may seem strange if we think in terms
kinetic Ising models which relax to equilibrium since the
equilibrium correlation length in those models is indepen-
dent of the dynamics. We should have in mind, however,
that we are considering a nonequilbrium steady state and
this state may, and indeed does, depend on the details of
the dynamics such as the conservation laws satisfied by
some of the underlying processes.

In closing the discussion of the steady-state properties,
we note that despite the increase in long-distance correla-
tions, the correlation length diverges only at T=0 as can
be seen from Egs. (8), (15), and (18). Thus the two-spin
correlations in the steady state do not indicate the pres-
ence of a finite-temperature ordering in the system.

We turn now to the study of the dynamics of the two-
spin correlations. The decay times of homogeneous per-
turbations are obtained by seeking the solution of Egs.
(12) and (13) in the form

r,=7,+Q,exp(—At/7T') . (19)
The solvability condition of the set of linear equations for
Q, resulting from substituting (19) into (12) and (13)
yields the possible values of A as

A=2—y'A (20)
where A’ is given by the eigenvalues of the following
(N —1)X(N —1) tridiagonal matrix

a 1
1 01
~ 10
0= - ) : 21
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with @ =« /(y +«). Following standard methods of ma-
trix diagonalization!” one finds now that the eigenvalues
of this matrix can be written as

A'=—2cosO (22)

and the possible values of 6 are determined from the fol-
lowing two transcendental equations:

_ sin(3N )
© sin[H(N—2)6] ’ 23
cos(1NO)
- (24)

cos[L(N —2)6]

It can be easily shown that for a <1 [which is the case
since a =« /(y +«)] Egs. (23) and (24) have N —1 distinct
solutions in the interval 0 <0 <. Thus by solving these
equations we find all the eigenvalues of Q. It follows then
from (22) that —2 <A’ <2 and consequently Eq. (20) may
be used to give a lower limit A>2(1—y’) for A. This in-
equality in turn yields an upper limit for the relaxation
times, of two-spin correlations

’

T T

— S0 25
A 20(1—y") 23
Since y’ approaches 1 only as T—0 we arrive to one of
our results, namely that no critical slowing down occurs
in the dynamics of two-spin correlations at finite temper-
ature.

T=

V. FLUCTUATION-DISSIPATION THEOREM

The fluctuation-dissipation theorem relates the correla-
tion function of fluctuations to the corresponding suscep-
tibilities (Green’s functions).!' This theorem can be used
effectively for simplifying the studies of fluctuations by
diagrammatic expansions'® thus it is an important ques-
tion whether the theorem holds or not for a far-from-
equilibrium steady state. There are examples where the
theorem can be shown to be valid'®!° as well as examples
where it seems to break down.?’ Below we shall add the
model considered in this paper to the list of nonequilibri-
um systems where the theorem is valid by showing that
the steady-state fluctuations of the magnetization are re-
lated to the zero-field susceptibility of the system in the
manner required by the fluctuation-dissipation theorem.
More precisely, introducing the average magnetization as

1 1
m = (M) N 2{‘, (a;) (26)
and defining the susceptibility y in the limit of vanishing
external field h =H /kT —0 through
m =xh , (27)

we show that the following relation is valid in the steady
state:

X=~]1\7(<M2>—<M>2). (28)

The calculation of the right-hand side of (28) is rather
simple since {M ) =0 in the steady state and (M?) can
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be expressed through the two-spin correlations
Limy=1+2 3 7 =142 (29)
N =" 1—n
In order to find the susceptibility we need the steady-state
properties in the presence of an infinitesimal magnetic
field H. Thus we have to return to the master equation
and examine the changes made by such a field. The rate
of spin exchanges can be assumed to be unaffected since
the change of energy caused by an exchange is indepen-
dent of the magnetic field. The rate of spin flips, howev-
er, should be modified since it becomes energetically ad-
vantageous for the spins to align with the field. One has
some freedom in choosing the appropriate flip rate which
obeys the detailed balance condition at temperature T
and in the presence of a field H. We shall use a simple
form suggested by Glauber!

wo)== |1-Loo,, ,+0, ) |[(1—ha,). (30)
27, 2
Note that this form is valid only in the limit # —0. For
finite field # must be replaced by tanhh.
Once the rates of the processes are specified in Eq. (1),
it is straightforward to derive an equation for the average
magnetization

Tim=—(1—y)m+(1—yr))h . (31)

The steady-state value of m in the limit of # —0 is then
found by setting 1 =0 and replacing r; with 7, calculated
for the system without the field. As a result, the suscepti-
bility is obtained in the form

_m_1-rn
£ h 1—y
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Using Egs. (8), (15), and (16), this expression can now be
shown to be equal to (M?) /N as given by (29), thus we
have completed the proof of the fluctuation-dissipation
theorem (28). One point, however, remains to be dis-
cussed. The simple form of the theorem (28) is valid since
we defined the susceptibility through Eq. (27) with the re-
duced field » =H /kT which is appropriate for an equilib-
rium system at the “spin-flip”” temperature 7. As we saw
in Secs. III and IV, the steady state of our system is more
like that of an Ising model at an effective temperature 7".
Thus one might say that a more appropriate reduced field
would be h =H /kT’ and then the simple form of the
fluctuation-dissipation theorem would be complicated by
the introduction of an extra factor 7/7’. We do not see
how to resolve this ambiguity. It seems that this type of
lack of uniqueness will always exist in nonequilibrium
systems where the temperature is not well defined.

In summary, we have seen a one-dimensional, analyti-
cally tractable model which exhibits a nonequilibrium
steady state. Although the system is too simple to show
phase transition in one dimension, it nevertheless displays
some remarkable properties. One of them is the increase
of correlations in the steady state due to random ex-
changes and another one is the validity of a fluctuation
dissipation theorem in the steady state. We believe that
this type of model deserves further attention, and hope
that its study will contribute to our understanding of the
physics of far-from-equilibrium systems.
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