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Defect diffusion and closed-time distributions for ionic channels in cell membranes
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The ionic channels associated with proteins embedded in cell membranes often show a fluctuating
behavior between open and closed states. A feature commonly observed is the long-time tail in the
distribution f (t) of closed-state durations. A generalization of a defect-diffusion model recently
proposed to explain this behavior is solved analytically for a one-dimensional geometry. The
analysis involves the solution of a target annihilation problem with a finite annihilation rate for the
target hit by a walker. While at short times f (t) may decay exponentially, at long times the solution
is dominated either by a power law or a stretched exponential, depending on the initial defect
configuration. The predictions of the model are shown to be in agreement with experimental data.

I. INTRODUCTION

In the last few years, biophysicists have devoted a con-
siderable amount of work to the recording and analysis of
ionic currents Aowing through cell membranes. ' These
currents, which are associated with proteins imbedded in
the membrane, frequently show a Auctuating behavior,
characterized by oscillations between open (conducting)
and closed (nonconducting) states.

The introduction by Neher and Sakmann of the patch-
clamp method made possible the detailed analysis of the
conducting properties of single ionic channels. ' At
present a large body of experimental data related to these
channels has been collected. Of particular interest is the
study of the distribution f (t) of closed-state durations.
This distribution often shows a long-time tail, and it has
been customary to fit it with a superposition of exponen-
tials. These exponentials are usually associated with the
existence of a few inner conformational states of the
channel, the transitions among which are assumed to be
Markovian. ' '

It has recently been pointed out, however, that in many
cases a sum of exponentials may not be the most suitable
way of fitting the data. Liebovitch et al. assumed that
the kinetic rate constant associated with the transition
from the closed state to the open state has a power-law
dependence on the time. This assumption, which would
be consistent with a fractal interpretation of the protein
dynamics, implies that f (t) is given by Kohlrausch s
stretched exponential function. The stretched exponen-
tial form permitted a good fit to the data obtained by the
same group for a channel in rabbit corneal endothelium.
Millhauser et al. , on the other hand, assumed that the ki-
netics of the gating is Markovian, but suggested that the
proteins have a large number of states of similar energy.
This permits the interpretation of gating as a diffusion
process, leading to a power-law dependence for f (t).

Lauger s defect-diffusion model, which provides a
specific physical process to account for the channel gat-
ing, is especially appealing. In a previous communica-

tion we gave an analytical solution to a generalization of
its one-dimensional version, showing how it correctly de-
scribes an assortment of experimental data. The objec-
tive of this paper is to present the detailed derivation of
the solution to the extended Laiiger model. The solution
involves the analysis of the properties of a random walk
with an absorbing boundary of arbitrary strength. In our
generalization we also include a background of randomly
distributed defects that compete with Lauger's original
defect to annihilate the target (i.e. , to reopen the chan-
nel). The many-defect aspects of the problem are closely
related to Glarum's model of molecular relaxation in
viscous liquids. '

The Glarum model has been applied to the study of
dielectric relaxation' '" and stress relaxation in viscous
liquids. ' In general terms, it is of interest in the theory
of target annihilation by random walkers. ' ' It is usual-
ly assumed that the relaxation occurs instantaneously
when any of the diffusing defects reaches the target. Un-
der this assumption, the solution to Glarum's model was
given by Bordewijk. " The model was later solved by
Shlesinger and Montroll in the framework of the
continuous-time random walk. ' These authors showed
that, while an exponential waiting-time distribution leads
to Bordewijk's results, a power-law distribution always
leads to the Williams-Watts fractional exponential. '

In order to find the solution to our extended version of
Lauger's model, we must solve a many-walker target-
relaxation (or annihilation) problem. In this problem the
probability of relaxation of the target upon an encounter
with a defect is finite, so that defect and target may sur-
vive one or more encounters. For the sake of clarity in
the presentation, and because we believe that some of the
intermediate results may be of use outside the biophysical
community, we present first the one- and many-walker
aspects of the calculation (in Secs. II and III, respective-
ly); the description of Lauger s model is left to Sec. IV,
where we also give its solution and analyze some of the
available data for ionic channels. These are found to give
strong support to the applicability of the model. '
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II. SINGLE-DEFECT KINETICS Using Eq. (2. lb) we find

A. Solution to the master equation
C)

C2

1+(y —1)e =S(q) .
1+(y —1)e'~

(2.7)

Let us describe the kinetics of a single defect which
starts at t =0 from site s on a semi-infinite one-
dimensional lattice. '(See Fig. 1.) The defect is allowed to
perform a symmetric, one-step random walk on the lat-
tice; upon arriving at the site s=1, it can leave the lattice
("jump into limbo" ) with a probability y. The defect ki-
netics can then be described by a master equation for the
continuous-time random walk:

(2. la)

and

q =(2j+1)a+i ln(y —1), (2.8)

with j being an integer.
If A, )4, Eq. (2.5) has two solutions. However, it is easy

to see using the finiteness requirements that no acceptable
real solution is possible if y &2. Furthermore, for each
y )2, there is a single allowed value of
X=y (y —1) ', and the corresponding mode is given by

Although for 0~ y ~2, S(q) is analytical in the upper
half q plane, for y )2 it has simple poles located at

, (V, t)=p2, —(1+y) (2. lb) (y )e k
( 1 y ) (2.9)

Here we have defined p„,(y, t) as the probability that a
defect at site s at time t =0 is at site n at time t, given the
absorption rate y at the boundary.

The probability that the defect has been absorbed by
time t is given by

Thus the spectrum consists of a continuum of values of
X (or q), to which we must add an isolated point if y ) 2.
The completeness is verified (and the normalization ob-
tained) by proving the closure relation,

P,*(y, r) = 1 P, (y, r), — (2.2) f P„(q)P, (q)dq+ 0(y —2)P„P, =6„, ,
0

(2.10)

where P, (y, t) is the probability that the defect is still on
the lattice at time t, i.e.,

P, (y, t)= g p„,(y, t) .
n = I

(2.3)

P, (y, t) and P,'(y, t) can be referred to as the "survival
probability" and the "limbo occupation probability, " re-
spectively.

Following van Kampen and Oppenheim' ' we next
solve Eqs. (2.1) exactly. The solution p„,(y, t) can be ex-
pressed as a superposition of normal modes having the
form

where 0(x) is the step function. After a simple transfor-
mation, the integral over q can be carried out using the
contour shown in Fig. 2. ' ' The contribution of the
vertical branches cancels due to the periodicity of the in-
tegrand. If y) 2 the contribution of the isolated real
solution cancels with the residue at the enclosed pole.
(Note that the residue vanishes if y=2. ) Finally, the
solution to the master equation is obtained if we use the
initial condition p„,(y, t =0)=5„, to determine the
coefBcients in the normal-mode sum. After some algebra
we find

'P„(k) =e '(c, Z", +c,Z," ),
where Z, and Z2 solve the characteristic equation

Z+Z '+A. —2=0 .

(2.4) p„,(y, r)= f p„(q)p, (q)e ""dq+0(y —2)e

where

(2. 1 1)

We must require that k be non-negative and that the
solution not grow without limits as n~oo. If 0&A, &4,
Z, and Zz are the complex conjugates of each other,

Z 2
=Z, = e '~

( 0 ~ q ~ n), . (2.6)

with A. =2(1—cosq). The coefficients c& and c2 in Eq.
(2.4) are not independent.

-- (n(p-1)

FIG. 1. Random walk on a semi-infinite chain with an ab-
sorbing boundary. The absorbed walker may be visualized as
jumping into a limbo state L.

FIG. 2. Complex q-plane contour used for the evaluation of
the integral in Eq. (2.10). The simple poles appear if y ~ 2.
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2
P„(q)=

7T

sin(qn)+(y —1)sin[q (n —1)]
[1+2(y—1)cosq+(y —1) ]'~

If y =2, Eq. (2.11) reduces to

p„,(2, t)=e "[I„,(2t) —I„+, , (2t)] . (2.17)

A. ( q) = 2( 1 —cosq),

(2.12a)

(2.12b)

In the absence of absorption (i.e., for a reffecting bound-
ary), it follows that

and p„,(O, t) =e "[I„,(2t)+I„+, , (2t)] . (2.18)

(
—1)"[y{y—2)]'"

(y —1)' (2.12c)

We digress for a moment to remark that the problem
of obtaining the solutions P„(q) is equivalent to that of
solving the stationary Schrodinger equation for an exci-
ton in a semi-infinite chain. ' The corresponding solution
for the exciton can be obtained from Eqs. (2.12) through
the transformation

If @=0 or y=1 these results can be immediately ob-
tained using the method of images.

It should be noted that the contribution of the "isolat-
ed" solution. i.e., of the discrete mode, can be expressed
as a series of Bessel functions. Using the generating func-
tion, we find

{2—k) ~(E —a }P ', 1 —
y ~g, g(t)=e " g (1—y) 'Ii, (Zt) .

k= —~
(2.19)

1 2' cosg +M
sin[(k +1)q]

0 slnq
(2.13)

where a is the diagonal matrix element of the exciton
Hamiltonian, /3 the nearest-neighbor interaction, E the
Schrodinger equation eigenvalue, and Q measures the
strength of the surface relaxation. However, the solution
to the time-dependent Schrodinger equation leads to a
complex time-evolution factor, exp( Zit cos—q). As a
consequence, the exciton site-occupation probabilities are
expressed in terms of the Bessel functions J„(2t) instead
of the modified Bessel functions I„(2t) that will be seen to
appear in the solution to the master Eq. (2.1).

The denominator in Eq. (2.11) can be expanded in
terms of Chebyshev functions:

A remarkable property of the solutions (2.14) and
(2.15} is that, notwithstanding the diff'erent forms of the
Chebyshev expansions for y & 2 and y ) 2, the right-hand
side of Eq. (2.15) can be transformed into that of Eq.
(2.14): Because of the addition of the discrete mode a sin-
gle formal expression is valid over the entire y range.
The proof, which makes use of Eq. (2.19) and the re-
currence relation for the Bessel functions, is straightfor-
ward.

In accordance with Eq. (2.3), the survival probability
P, (y, t) for a defect that started its walk from site s at
t=O is obtained by summing p„,(y, t) over all n The.
probability density f, (y, t) that this defect is absorbed at
time t is then given by the derivative

( ~co~ & 1). Using this expansion, p„,(y, t) may be ex-
pressed as a series of modified Bessel functions (cf. Ref.
19),

p„,(y &2, t)=e 2' I„,(2t) —I„+,(2t)

1+ g (k +tl +5 1 )Ip + + i(2t)

BP,.(y, t)
f, (y, t)=-

at

The following alternative expression is also useful:

f, (y, t)=yp„(y, t) .

(2.20a)

(2.20b)

and

X(1—y) (2.14)
In case only the initial distribution function is

specified, the probility p„(y, t) that the defect is at site n

at time t can be written as
p„,(y &2, t)=e " I„,(2t) —I„+, ,(2t)

oo

+—g (k n —s+1)Ik „—, , (2t) p„{y,t)= g a,p„,(y, t),
s=]

(2.21)

with

X(1—y)

+y(y —2)(1—y) " 'g(t), (2.15)

where a, is the probability that the defect started the
walk from site s.

B. A special case: s=l

g (t) =exp[ y t l(y ——1)] . (2.16)

These expansions can be truncated to provide useful
approximate results in the cases ~y

—
l~ &&1 and y &&1.

As an important example, we next analyze the case
s=1: the defect starts its random walk at t=0 from the
first lattice site. The site-occupation probabilities have
the form
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and

p„,(0, t) =e '[I„,(2t)+I„(2t)],

p„,(0&y &2, t)=t 'e ' nI„(2t)+ g (k+n)II, +„(2t)(1—y)
'

k=1

p„,( I, t) = t 'e "nI„(2t),

p„&(2, t)= e '[I„&(2t)—I„(2t)],

(2.22a)

(2.22b)

(2.22c)

(2.22d)

p„,(y &2, t)=t 'e ' g (k —n)Ik „(2t)(1—y) "+(—1}"+'y(y—2)(y —1} '"+"g(t) .
k=1

(2.22e)

Because of the result described in the paragraph fol-
lowing Eq. (2.19), Eq. (2.22b) is actually valid for all
values of y. Nevertheless, since Eq. (2.22b) is not ap-
propriate for a high-y truncation, we also give explicitly
the form (2.22e).

Using Eqs. (2.3) and (2.22) we can calculate the average
displacement of a surviving walker

( (y, t))=P, '(y, t) g np„, (y, t) .
n=1

(2.23)

It can be seen that the usual long-time behavior obtains
(x(t- ~ ) ) -t '".

From Eqs. (2.16) and (2.22e) it is clear that the solu-
tions P„ is important only at short times and close to the
boundary. In that sense we can refer to it (somewhat
loosely) as a "surface" state. In Figs. 3 and 4 we plot the
occupation probabilities for the first few lattices sites in
the cases y = 1 and y =30, respectively. The higher

boundary absorption for y =30 translates into a sharpen-
ing of the maxima, which are also shifted towards shorter
times. In Fig. 4 we can see how crucial is the contribu-
tion of P„at short times, if y &2 and n is small. The
probability density for absorption is plotted in Fig. 5 for
several values of y. Note that, in the curves for y=10
and y =30, the "surface" state accounts for most of the
high absorption occurring at short times.

At the shortest times the site-occupation probabilities
grow as

(2.24)

As it should be expected, the farther a site is from the ori-
gin, the slower the growth of its occupation probability.

It is convenient to have the survival probability ex-
pressed as an integral; from Eqs. (2.11) and (2.12),

0.2

0.0
&0

FICr. 3. Occupation probabilities for the sites 1 to 5 in the case y =1. The defect started its random walk from site s=1 at t=o.
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P»&&
]

P21 )i

p5)f(

0.2—

2 3 4

FIG. 4. Same as in Fig. 3, but for y =30. The dotted lines represent ( —1)" times the contribution of the surface state, essential at
and only at short times.

10, P~(y, t)= f h (q)(1+cosq)e "' '"q'dq
0

+(y —2)(y —1) 'g (t)H(y —2),
where

h (q) = [1+2( y —1 )cosq + ( y
—1 )~]

The probability density for absorption is equal to

f (y t)= h(q)sin q e ' ' "' 'dq=2
7T 0

+y'(y —2)(y —1) 'g(t)0(y —2) .

Alternatively, using Eqs. (2.20b) and (2.22),

(2.25)

(2.26)

(2.27)

f, (y (2, t)=yt 'e ' g kIk(2t)(1 —y)
k=[

and

(2.28a)

f, (y) 2, t)=yt 'e ' g kI&(2t)(1 —y)
I& =1

+y'(y —2)(y —1) 'g(t) . (2.28b)

The forms for y = 1 and y =2 are again very simple,

0.001

FIG. 5. Probability density f, for defect absorption as a
function of time for the indicated values of y. In the y & 2 cases
the dotted line represents the contribution of the continuum
states, the dashed lines that of the surface state.

P, ( l, t) =e '[Io(2t)+I, (2t)],

f, (1,t) = t 'e "I,(2t),

P, (2, t) =e 'Io(2t),

f, (2, t)=2e '[Io(2t) I, (2t)] . —

(2.29a)

(2.29b)

(2.30a)

(2.30b)

Obviously, P, (O, t)=—1 and f, (O, t) =0.
The initial value for the probability density is
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f, (y, O)=y, a special case of Eq. (2.20b). It is also easy
to verify that the "limbo" state is empty at t =0:
P i (y, O) = 1 P,—(y, O) =0.

The integral in Eq. (2.27) may be evaluated by expand-
ing the integrand as a power series in t. The resulting
coeScients are, however, complicated and the general ex-
pression is not very illuminating. Let us only write down
the first terms in the expansion to show the relative sizes
of the continuum and discrete modes at short times. If
y)2,

f (y t)=y(y —1) '{[y(y—2)+1]
—[y (y —2)+(2y —1)]

X(y —1) 't+ (2.31)

Here the first (second) term inside each of the square
brackets represents the contribution of the discrete (con-
tinuum) mode(s). The discrete mode dominates com-
pletely the short-time behavior when y is large. After a
simple rearrangement, Eq. (2.31) can be written as

Equation (2.32) is also obtained by taking the short-time
limit of Eq. (2.28a), which is not surprising, since the
right-hand side of Eq. (2.28b) can be transformed into
that of Eq. (2.28a).

At long times the discrete mode is completely ir-
re1evant, and we obtain a power-law decay for the ab-
sorption probability density

( t) (2 i/2) —it —3/2 (2.33)

(t »y ~y
—1~). As a consequence of the stronger ab-

sorption, the onset of the asymptotic regime occurs ear-
lier for large values of y (for which we must simply re-
quire yt »1). A useful form of the solution for large
values of y is obtained by a truncation of the series in Eq.
(2.28b). The series converges fast: keeping only the first
two terms gives a margin of error already lower than
10% (at any time) if y=3 and lower than 3% if y=5.

The analogy with the problem of the linear harmonic
chain with a lighter isotopic impurity comes immediately
to mind. There we also have a composite eigenvalue
spectrum formed by a continuum and an isolated point,
which correspond, respectively, to the extended states
and the single localized state. The relation between the
random walk and the problem of lattice vibrations was
explored long ago by Teramoto. '

Problems related to those discussed in this section also
appear in the area of chemical kinetics. ' ' Ninham,
Nossal, and Zwanzig solved a system of rate equations,
which was later used in the study of the helix —random-
coil transformation. They showed that, when the value
of a parameter increases beyond a certain threshold, two
discrete eigenvalues occur outside the continuum (one of
them is always present, corresponding to the equilibrium
solution).

fi(y, t)=y[1 —(y+1)t+(y +2y+2)2 t + ' ] .

(2.32)

III. MANY-DEFECT KINETICS

Let us now assume that there is a distribution of nonin-
teracting random walkers in the lattice. When any of
these walkers reaches the site s= 1, it may be absorbed
with a probability y. Once one of the walkers has "gone
into limbo, " we consider the process as terminated. In
this way we can describe molecular relaxation by
diffusing defects, as in the Glarum model. We will be
also able to investigate (in Sec. IV) the distribution of
closed times in ionic channels, assuming that the channel
opening is mediated by diffusing defects.

Since the walkers are independent, the probability that
a walker starting from site s at t=0 is at n at t is still
given by the solution to the master Eq. (2.1). It is rela-
tively simple to compute the probability 4(y, t) that all
the walkers survive at time t. ' ' If the absorption of a
walker is identified with the relaxation (or annihilation) of
a target, then we can evaluate the average target-
relaxation rate as

ae(y, t)
Bt

(3.1)

1V

u(s„. . . , s~)= Q |i, ;i, ,
i =1

(3.3)

N

a(y, t)= Q P„(t) . (3.4)

This result is quite obvious. The probability for a simul-
taneous survival of the N walkers is the product of the
survival probabilities for each of the walkers.

More interesting for us is the ease when the N walkers
are randomly distributed over the lattice, with a density
c =N/V. Then,

u(s, , . . . , s~)=V (3.5)

and

c
N(y, c;t)= 1 ——g P,*(y, t)

N, ,
'

=exp[ —cg (y, t)],

where P,* is given by Eq. (2.2) and

(3.6)

Q(y, t)= g P,*(y, t) .
s=1

(3.7)

We can also think of f (y, t) as the distribution of target
survival times for an ensemble of systems.

Following Tachiya we consider X walkers on a V-site
lattice. Hence

v V X
4(y, t)= g g Q P, ( yt)u(s, , . . . , s~) . (3.2)

s =1
1

Here, u (s i, . . . , sz ) describes the initial distribution of
the walkers. If, for example, we choose the walkers to be
distributed forming a regular array or superlattice with a
uniform separation b, then
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The last line in Eq. (3.6) is obtained if we take the V~ oo

limit.
The meaning of the function Q can be understood if we

consider the following auxiliary problem: Suppose that it
is known that one walker started from each lattice site at
t=0. The walkers are then allowed to jump into the lim-
bo state without interrupting the process when one of
them is absorbed. Under these conditions, Q(y, t) can be
thought of as the total limbo population, and its time
derivative Q (y, t) gives the walker flux into the limbo
state. Using Eq. (3.1), we have for the target relaxation
rate,

2

Q(y, t)= f dq h(q)(1 —e "' '"~')
2m o (1 —cosq)

g(&)&(y —2),
y

(3.14)

and

Q(l, t)=2te '[I 0(2 r) +I, (2t)]—,'+—,'e —'Io(2t),
(3.15)

with g(t)=g(t) —1. In the special cases y= 1 and y=2
we find

f (y, t)=cQ'(y, t)exp[ —cQ(y, t)] . (3.8)
Q(2, t) =2te '[I (02t)+I)(2t)], (3.16)

The distribution (3.5) leads to a form of the target-
annihilation problem in which the target is not necessari-
ly annihilated when reached by a defect. When y =1, we
obtain Bordewijk's form of the Glarum model (except for
a factor of 2 arising from our consideration of a semi-
infinite lattice instead of an infinite one. ) We note that, in
the context of viscous liquids, a natural generalization of
the Glarum model to arbitrary relaxation rates would re-
quire the explicit consideration of an infinite lattice. The
reason for this is that the defects should be allowed to
move through the target without relaxing it. In our for-
rnulation, motivated by the membrane-channel problem,
thd defects may come only from one side of the target.
The solution to the infinite-lattice problem can also be
obtained with the methods used here.

The evaluation of Q(y, t) involves a double summa-
tion, over sites and walkers. However, it is not dificult to
show that

t
Q(y, r)=yr — +

2
(3.17}

Therefore, the distribution of survival times begins as

f(y, c;r «y ')=—cy[1—y(1+c)r] . (3.18)

Of course, we can calculate Q (t) by explicit summation
instead of using Eq. (3.9). In this manner, we can express
Q (t) in terms of Bessel functions in the cases y »1 and
ly —ll «1. This route is also appropriate to obtain a
long-time approximation. The computations are tedious
but straightforward. Aside from the recursion relation,
the following formulas are useful:

respectively. The expression for Q'(I, t) was found by
Helman and Funabashi in their study on electron
scavenging and ion recombination in liquids.

A power expansion of Eq. (3.14) leads to the following
short-time approximation:

Q'(y, t}=yP, (r, t) . (3.9)
e Io(x)+2 g I (x) =1

j=1
(.3.19)

In order to prove Eq. (3.9), note first the relation

p., (r t)=p, .(r r» (3.10)

and

g I, (x)= g jI,(x)
j=l i =j j=1

which expresses the "reversal symmetry" for the proba-
bility along each path connecting any two sites. Equation
(3.10) leads to

v v

g p„(y, t)= g p„,(y, t) .
s =1

(3.11)

Taking into account the remark following Eq. (3.7), we
can write

If y &&1, we get

=(x/ )2[I (0)x +I, ( )x] .

Q(y» i, t) —=Q(l, t)+1
—y

'
I 1+e '[Io(2t)+I, (2t)] ]

—r '(r —2)g(r)

+y 'e "[I,(2t)+I, (2r)] .

(3.20)

(3.21)

Q'(y, r) =yP(y, r),
where

(3.12) In particular,

Q( ~, &) =Q(l, t)+ I, (3.22)

P(y, r)= g p„(y, &)

s=1
(3.13)

gives the total population of site s= l. Using Eq. (3.11),
Eq. (3.9) follows. The derivative Q is then given directly
by the one-walker equation (2.25).

Using the initial condition Q(y, 0) =0, and Eqs. (2.25)
and (3.12), we obtain the following expression for Q (y, t):

which is as it should be, since when y = ~ and t &0 the
flux into limbo is controlled by the rate of the jurnp from
site s=2 to site s= 1. This is also the reason why the "in-
stantaneous relaxation" assumed in the usual formulation
of the Glarum model corresponds to y=1 in this work.
The full expression for f (y, c;t) when y » I is given in
the Appendix.

The long-time behavior of Q ( y, t ) is given by
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2E'/ 1
Q(y, t)=, + 1 1 1 1 1

y 8 y y2 ( t)1/2

100

(3.23)

a, ecause of theTo o tain this result we note that b
exp[ —t 1 —cosq) ] factor in the relevant inte rands
only the "ion -wavelg- ength (small-q) modes contribute at
long times. The approximations y t ))

~

—
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ig. 7; the crossover between both regimes
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f (y, c;t)~c (mt) '~2exp( —2ct ' lm ) . (3.24)

Due to the reasons discussed above, the dependence on
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Fig. . An interesting feature of this figure is the
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IV. CLOSED-TIME DISTRIBUTIONS OF IONIC
CHANNELS IN MEMBRANES

A. The defect-diffusion model

The predictions of the defect-diffusion model conceived
by Lauger are borne out by the experimental data on a
collection of channels. ' Lauger assumed that the chan-
nel is closed by a molecular group moving from the chan-
nel wall into the ionic pathway. This movement leaves
behind a defect, which can be interpreted as a "free
volume" in the channel wall. The defect is then allowed
to perform a random walk inside the close-packed pro-
tein. Upon returning to its original position at the wall,
it can either induce the reopening of the channel or con-
tinue its walk. In more general terms, the idea is that the
molecular group can return from its position in the ionic
pathway to the channel wall only when the channel wall
is exactly in the same state it was when the molecular
group "swung away. " The processes in which the chan-
nel wall makes a transition from the original state to oth-
er states and back are modelled by the diffusion of defects
in the protein molecule.

Lauger made a simulation of the random walk on a
finite 3D lattice, obtaining good agreement with experi-
mental data for the rabbit corneal endothelium channel
and the frog end-plate channel. This good agreement
and the physical appeal of the model motivated us to
search for an analytical solution. This solution is rela-
tively easy to obtain if we constrain the defect motion to
a semi-infinite chain. Before giving the mathematical for-
mulation, let us make some comments on the nature and
scope of the model we are considering.

(1) An argument in support of the one-dimensional
model is that the chain structure of the protein molecule
may render the defect diffusion very anisotropic, favoring
one-dimensional motion along the main chain.

(2) Since the protein is a finite structure, only a limited
(although probably large) number of sites is available for
the walk. For an M-site lattice, finite-size effects become
important at times of the order of M . In Ref. 9 we es-
timated that the number of sites that effectively partici-
pated in the diffusion process in the corneal endothelium
and rat colonic channels was of the order of 10. The es-
timate for the end-plate channel indicated that about 50
sites must have participated. Hence, it appears that in
the time scales probed by the experiments only a very
small fraction of the protein sites is involved; we may
then assume that the finiteness of the protein is not really
relevant to the process discussed here.

(3) In its original version, Lauger's model is a single-
defect model. As such, its solution in the one-
dimensional configuration is given by the formulas of Sec.
II B. Here we consider the possibility that there are other
defects (besides the one that originates at the channel
wall) in the protein at the time the channel closes. Each
of these defects can reopen the channel upon arrival to
the "original" wall site from which the blocking group
swung. The evaluation of this contribution is related to
the many-defect model discussed in Sec. III.

(4) All the defects are considered to be identical and

noninteracting. This last assumption, which is crucial if
we want analytical solutions, may also be the most
reasonable one if the defects are indeed free volumes.

(5) The distribution of open times is usually simpler
than that of closed times. In Lauger's picture, the chan-
nel closing is described by a rate y' associated with the
displacement of the blocking group into the channel. We
will not consider explicitly the closing process in what
follows.

(6) We assume the temporal boundary between closed
and open states to be punctual. This agrees with the ob-
servation that the current is not seen to increase or de-
crease smoothly between conducting and nonconducting
states. The displacement of the blocking defect is too fast
to be detected on the experimental time scales.

B. Model formulation

The defect motion takes place on the lattice shown in
Fig. 1. The site s=1 corresponds to the location at the
pore wall where a defect, the "Lauger" defect, is created
at t=0 by the channel-blocking displacement; the chan-
nel is assumed to close instantaneously at t=0. In the
rest of the lattice (s) 1) we add a random distribution of
defects (the "Glarum" defects) with a specified concentra-
tion c. Any of the defects can reopen the channel upon
arrival at site s=1.

Inside the protein the defects are assumed to diffuse
with a constant hopping rate I . It is convenient to for-
mulate the model using a time scale for which this rate is

unity. The relation between the usual, "experimental, "
time t,„, (measured in seconds) and the dimensionless
scaled time t is then

f,„,(y, c;t,„,)=I f(y, c;t) . (4.2)

The distribution f,„~,(t,„~, ) of closed times is the magni-
tude directly observed in the experiments.

The infinite one-dimensional and the finite three-
dimensional models have an important feature in com-
mon: In both cases the Lauger defect must return to the
origin. Hence, the channel will be reopened at t ( ~ for
any y )0, even in the absence of Glarum defects. This is

(4.1)

The scaled rate at which a closed channel is reopened by
a defect s= 1 will be denoted by y. (This corresponds to
the walker absorption rate at the boundary in Secs. II and
III.) A defect that reopens the channel can be thought of
as jumping into the limbo state L. When one of the de-
fects goes into L, the channel reopens instantaneously
and the process is considered terminated. With our
definitions, the single-defect kinetics is described by the
master Eq. (2. 1) for the continuous-time random walk.

The probability N(y, c;t) of simultaneous survival of
all the walkers can now be identified with the probability
that the channel is still closed at time t. The function

f (y, c;t) is then the probability density that the "waiting
time" for the reopening of the channel has a length t. It
should be noted that on the usual time scale of t,„, the
probability density is obtained by multiplying f by the
defect hopping rate, i.e.,
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expressed through the equation

y, c;t dt =1 . (4.3)
0

Note that in an infinite three-dimensional lattice the
Lauger defect can migrate to infinity, and thus Eq. (4.3)
can be valid only for c)0.

Since the site s= 1 is known to be occupied by a defect
at t=O, then the initial value off is given by

t=O is still closed at time t can be calculated as in Sec.
III. We find

&P(y, c;t)=P, (y, t)exp —c g P,*(y, t)
5 =2

(4.5)

This yields the following form for the distribution of
closed times:

or

f(y, c;o)=y, (4.4a)
f (y, c;t)= [cP, (t)[P', (t)+yP, (t)] P', (—t) )

Xexp[c [1 P, (t) —Q(—t)] ) . (4.6)

f...t(y, c;O)=y r =y,.— (4.4b)

C. Solution

The probability 4(y, c;t) that a channel that closed at

t

It is clear that y,„, is the rate for channel deblocking
measured in units of t pt.

Here P, gives the survival probability of Lauger s defect
(i.e., the probability that it has not reopened the channel),
P', is its time derivative, and Q is defined by Eq. (3.7).
These functions depend on y but not on c.

In Secs. II and III we have obtained all the functions
needed to evaluate Eq. (4.6). Let us now summarize some
of the results that can be expressed in terms of Bessel
functions. The argument of I0 and I, is always 2t,

f(l, c;r)=e "[& 'Ii+« "[(I +I ) —~ 'I, (I +I, )]Iexp(cI3 —e '[(=,'+2t)I +(1+2t)I,]j),

f (2, c;t)=2e '(Io I, +ce— 'IDI, )expIc [1—e '(Io+2tID+2tI, )]),

(4.7)

(4.8)

—2tf(y»1, 0;r)= 2 2 1——Io(2t)+ 1+—1+—
r '

y
I, (2t) ~ + y ———1

y
exp[ —y r/(y —1)] .y'. (4.9)
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FIG. 9. Closed-time distribution as a function of time for
several values of the parameters y (rate constant for channel
reopening) and c (density of Glarum defects). Note the well-
defined short-time exponential decay in the y =10 and y =30
curves.

FIG. 10. Closed-time distribution on a log-log scale. The
difT'erent regimes can be observed. The long-time behavior is
given either by a power law (c=0) or by a stretched exponential
(c)Oj.
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The solution f (y » l, c;t) for arbitrary values of c is

given in the Appendix.
The appearance of the factor exp( —2t) multiplying

each of the Bessel functions is characteristic of the solu-
tions to the model under consideration. The Glarum de-
fects contribute the elements containing the factor c in
Eqs. (4.7) and (4.8). Setting c=O we are left with the con-
tribution of Lauger s defect. The isolated solution P does
not contribute to Eqs. (4.7) and (4.8). In the y »1 case,
however, its contribution at t &y ' is much larger than
that of all the continuum states taken together, being of
the order of y at t=0. This "surface-state" contribution

is expressed through the last term in Eq. (4.9). Therefore,
if y ))1, we have initially a well-defined exponential de-
cay. This behavior is clearly seen in the curves for y =10
and y=30 in Fig. 9, where we have plotted the closed-
time distribution for several values of y and c. In the
y=30 case, the closed-time distribution is seen to decay
by three orders of magnitude as essentially a pure ex-
ponential.

The long-time form of f (y, c;t) is obtained using the
same approximations (y t » ~y

—1 ~, t &&1) that led to
Eq. (3.23). We find

f (y, c;t)= c 1+ exp .c — + +
y t 2y ~1/2t 3/2 ~& /2 2 y

1 1 1—+
y' (art)' ' (4.10)

The discussion following Eq. (3.23) also applies to the ex-
ponent in Eq. (4.10). The t ~ term in the prefactor is
the contribution of Lauger's defect, and corresponds to
the single-walker result, Eq. (2.33). The proportionality
with y

' is reasonable, since for large y there is an
enhanced probability of early channel opening. Due to
the normalization condition, Eq. (4.3), this reduces the
chance of having long closed periods. On the other hand,
the c-dependent term in the prefactor is proportional to
t ', not to t ' as in the "uniform background" model
[cf. Eq. (3.24)]. This is due to the exclusion of site s= 1

from the domain where the Glarum defects are distribut-
ed at t=0.

In Fig. 10 we show f (y, c;t) on a log-log scale, which
allows us to follow its behavior over several time decades.
In the large-y curves a shoulder appears beyond the ex-
ponential region; this shoulder, whose origin was dis-
cussed at the end of Sec. III, becomes more marked with
increasing y. The Lauger-dominated, f (y, O;t) —t
and Glarum-dominated, f ( y, c&0;t) —exp( —ct '

),
asymptotic regimes become evident at long times.

V. DISCUSSION

rat colonic channels. In the three cases we find y ~ 2.
The second group (group II) is characterized by a

power-law dependence of f (t): f (t) —t ', with x —1.5.
This seems to indicate that the experimentalist has
recorded data corresponding to the long-time tail of the
distribution for a Lauger defect. Because only the long-
time tail has been observed, it is not possible to evaluate
separately the different parameters. But we can certainly
conclude that the hopping rate I is higher thar. for the
proteins in group I. The gramicidin A, rat skeletal mus-
cle, ' and NG108-15 neuroblastoma x glioma' channels
belong in this class of channels with fast hopping rates.

In Figs. 11 and 12 we show two typical sets of data,
one belonging in each group. The data of Liebovitch
et al. for the rabbit corneal endothelium channel (group
I) are displayed in Fig. 11, together with the results of

100

10

A. The experimental data

There are some details that must be borne in mind
when fitting theoretical predictions to a set of data. Ow-
ing to the finite experimental resolution, the briefest
closed events will in general go undetected. Therefore,
the total number of closed events n must be taken as an
adjustable parameter; this permits a vertical shift of the
predicted curve without changing its shape.

The data for six channels were analyzed in some detail
in Ref. 9. These six sets of data may be divided into two
groups. In the fact group (group I) it appears that the ex-
periments were performed over a time range correspond-
ing to an intermediate stage in the evolution of f (t); con-
sequently, it is possible to estimate the magnitude of the
various parameters involved. This group includes the
rabbit corneal endothelium, the frog end-plate, and the

0.1

0.01
0 200

I I I

400 600
t p g p t ( foal 5j

I

800

FIG. 11. Closed-time distribution for a channel in the rabbit
corneal endothelium. 5n =n1 f (t) X 10 ' s. The experimental
data (squares) of Liebovitch et al. (Ref. 6) are plotted together
with the results of Lauger's simulation (Ref. 8) ( . ) and our
own results for y =2, c=0.5 ( ) and y =2, c=0 ( ———).
We took I =32 s ' and n=1560.
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di6'usion still plays the main role, the enrichment seems
to be responsible for the onset of a second, much weaker,
process that generates the observed fluctuations.

B. Other formulations

10
oo

10

10-'
10

I I

'!0 10
t,„P,(mS)

I

10 104

FIG. 12. Closed-time distribution for the K+ channel in
NG108-15 cells. The experimental data (circles) of McGee
et al. (Ref. 32) are plotted for the "control" (a) and "enriched"
(b) patches. The enrichment was due to the addition of arachi-
donic acid. The straight lines have a slope of ——'. The con-
stant 6 is proportional to the product n yI .

Lauger s simulation and of our calculation. Lauger al-
lowed the defect to perform a random walk on a cube
containing 125 sites; he took y =33 and I =

—,", s '. We
choose y=2 and I =32 s '. The value we estimate for
the total number of closed events (detected and undetect-
ed) is n= 1560, not much higher than the number of
events actually recorded (1465). There is a certain flexi-
bility in the determination of y and c. In the figure we
have taken two extreme values, c=0 and c=0.5, for the
concentration of Glarum defects. We can see that the
agreement is excellent for @=2 and c=0.5. If we de-
crease c, a good fit is still obtained by increasing the value
of y. However, c cannot be too small if we want to repro-
duce the "downward slant" apparent at the longest times.

The K+ channel in NG108-15 cells studied by McGee
and coworkers is a good example of the second group of
channels. In Fig. 12 we show the data for "control" and
"enriched" (with arachidonic acid) patches. Although
the data were originally fit using a superposition of six ex-
ponentials, we can see from Fig. 12(a) that f ( t ) —t
gives a nearly perfect fit to the data from the "control"
patches over almost four orders of magnitude in the time.
At the longest times (t,„,) ls) the data points lie below
the t line. This would be consistent with the pres-
ence of a low concentration of Glarum defects, which be-
come asymptotically dominant.

For the enriched patches there is a gentle oscillation
superimposed on the t line. While the Lauger defect

I 1/2f "P ~ "P' ' I/2 3/2
Xexptt expt

(5.1)

As mentioned in the Introduction, Liebovitch et al.
obtained a good fit to their data on the corneal endotheli-
um channel using the stretched exponential form for
f(t). A discrimination between their description and
ours would be possible if accurate data at shorter times
were available. The reason for this is that, while our f
remains finite at t=0, in the fractal-related description f
increases without limit as t~0. For example, while we
estimate that about 10 brief events went undetected in
the corneal endothelium experiment, the formulation of
Liebovitch et al. leads to the conclusion that about 10
brief events were missed.

When the fractal dimension D is close to 2, then the
stretched exponential behaves approximately as a power
law of the form f-t' ", where 2 gives the strength
of an eff'ective kinetic rate constant (k = At' ). In
Ref. 6 it was suggested that Ring's experiment could be-
long in this class. Recently, Liebovitch and Sullivan
have analyzed the data of a voltage-dependent K+ chan-
nel from cultured mouse hippocampal neurons using the
fractal description. They found that f is approximately
given by a power law, with D -2.07 and 3 a function of
the applied potential ( A decreases with an increment in
the magnitude of the applied potential). It is possible
that this channel belongs in group II discussed above and
that the applied potential distorts the behavior of the de-
fect. However, more analysis is required before arriving
at a definitive conclusion.

Although they do not give a random-walk interpreta-
tion to their formulation, the assumptions of Millhauser
et al. about the Markovian nature of the kinetics and
the existence of a large number of states of similar energy
in the protein led them to a master equation identical to
our Eq. (2.1). Their formulation is then entirely
equivalent to that of the one-dimensional Lauger model
without the Glarum defects. They also found the asymp-
totic t dependence off (t) and noted that it could de-
scribe approximately the data for the gramicidin A and
rat skeletal muscle ' channels. They included the corneal
endothelium channel in this group, but we believe it is
better described if we include it in our group I as indicat-
ed above. On the other hand, these authors made a com-
puter simulation for an M-site linear system, showing
that at time t -M the t behavior of f (t) is cut off,
as it should be expected.

C. Some further comments

It is reasonable to think that the hopping rate I and
the dimensional deblocking rate y, pI yt will depend
on the temperature T. Let us see how a change in the
temperature would aAect the asymptotic form of the
closed-time distribution functions for a Lauger defect.
From Eqs. (2.33) and (4.2),
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If we assume that these rates represent a thermal ac-
tivation process and write 1 —exp( —W, /T) and

y,„,—exp( —Wz /T), we obtain

f,„,( y,„„O;t) = t,„( exp[ T '( Wz —
W& /2) ] . (5.2)

In the asymptotic regime and at a given time t,„~„f,„~,
will increase or decrease with an increment in T depend-
ing on the relative sizes of the activation energies for the
hopping and deblocking processes. The bigger the
difference between 8'2 and 8', /2, the more sensitive the
result to changes in the temperature.

One of the motivations behind our work —and also, we
believe, that of Refs. 6, 7, and 8—has been the desire to
get rid of the parameter proliferation that is often needed
if one insists in fitting the data with a superposition of ex-
ponentials. Without abandoning this simplifying philoso-
phy, we note that reality may be more complicated than
our ideal random walk would suggest; additional parame-
ters may be necessary to describe the behavior of some
channels. In particular, it would be interesting to consid-
er the effect of adding internal states to some of the sites
visited by the defect. These internal states may be spe-
cially useful if we try to describe the effects of structural
inhomogeneities in the chain. They might account for
"anomalously" high values of f (t) at long times. A pos-
sible case in point could be the suberyldicholine-activated
frog end-plate channel whose longest-time data give an
f (t) much higher than what is predicted by the one-
dimensional defect-diffusion model. (Alternative ex-
planations are possible: ' The system may not be truly
one dimensional, or there may be a second, much slower
channel present. )

also grateful to J. Jackie for reading the manuscript and
making useful suggestions. This research was supported
by the Sonderforschungbereich 306 of the Deutsche
Forschungsgemeinsch aft.

APPENDIX: LARGE-y RESULTS

Explicit expressions for the probability density f (t) in
terms of the Bessel functions Io(2t) and I, (2t) can be ob-
tained when y)&1. We give now the formulas corre-
sponding to the different cases considered in Secs. II—IV.
Terms of order y or higher are neglected.

Single defect. Truncation of the series in Eq. (2.28b)
yields

2 2 1——I + 1+—1+— I
y

'
y t

(Al)

where g ( t) =exp[ —y t /(y —1 ) ].
Many defects; uniform background case. Equation (3.8)

leads to

f (y » l, c;t)=c[3, +y(y —2)(y —1) 'g (t)]

D. Concluding remarks

In this paper we have presented the solution to a
defect-diffusion model for the gating of ionic channels in
cell membranes. Along the way, we have also solved ex-
actly a model related to that of Glarum for molecular re-
laxation. Our so1ution is valid for arbitrary values of the
relaxation rate and the time.

The diversity of the ionic channels existing in nature is
huge. We expect that the model presented here will be
he1pful to our understanding of the processes occurring
in a large subset of the channels. The analyzed evidence
seems to support this expectation.

Many external factors, like the temperature, agonist
nature and concentration, applied potential, etc. , may
affect the channel kinetics. In the model discussed here,
these factors can influence the measured closed-time dis-
tribution only through their effect on the parameters y, c,
and I . The sensitivity of the distribution to changes in y
was explored in Ref. 9, where we also estimated the
dependence of y on the nature of the agonist for the frog
end-plate channel studied by Colquhoun and Sakmann.

XexpI —c [Q(l, t)+1+B,

—(y —2)y 'g (t)]I, (A2)

a+ 1+ + 1+—
2 (A3)

and

B& = ——[1+e '(Io+I, )]

+ e Io+ 1 ———2r 1
(A4)

with g ( l, t) being given by Eq. (3.15),

ACKNOWLEDGMENTS Many defects; ionic channel case The eval. uation of Eq.
(4.6) yields
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where

(A5)
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2IO 2 1+ 1+—1+—
y'

I, +y'y", g(t),
(y —1)' (A6)

and

—4fe I) —2l

(Io+I, ) ID+I, + + y y
(y —1)

Io

2 2Io+y. '
y

2 y(y —2)
2 I& g (t) — g (t), (A7)

y t (y —1)

The g (t) terms have their origin in the surface state. These large-y results work well down to values of y not very far
from 2.
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