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Nearest-neighbor effects in hot and dense plasmas: Thermodynamic properties
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A model for describing the influence of the nearest-neighbor interaction on the thermodynamic
properties of plasmas is presented. This model is a generalization of the Thomas-Fermi model to
cylindrical symmetry. The model was applied to the calculation of the electric potential of a pair of
identical ions. An iron plasma at an ion density of 10' cm ' at a range of temperatures of practical
interest was used to illustrate the predictions of the model. The ionization-potential reduction, the
ion-pair free energy, and the average distance to the nearest neighbor were calculated. Our results
indicate that the inclusion of the nearest-neighbor interaction predicts a plasma which is slightly
more compressible than predicted by the spherically symmetric Thomas-Fermi model.

I. INTRODUCTION

The effort concentrated in recent years on the research
into hot and dense plasmas, particularly astrophysical
and laser-produced plasmas, has stimulated extensive
theoretical investigation on the behavior of atoms in
these plasmas and the influence of the plasma environ-
ment on atomic properties. ' In particular, it was
found that the screening of the nuclear potential by the
free electrons shifts the energy levels, modifies the
bound-electron wave functions, and changes the cross
sections of the atomic processes with the plasma densi-

7 —10

The models used to describe the behavior of ions in hot
and dense plasmas generally assume a single-particle
spherically symmetric ionic potential. The assumption of
a spherically symmetric potential seems to be plausible
for some temperature and density domains. It is equally
plausible that at other domains of temperature and densi-
ty the interaction between neighboring ions makes the
spherical potential inadequate for the description of the
atomic electrons. This particularly holds true when the
p)asma conditions are such that considering a certain ion,
the probability of finding one of the neighboring ions
significantly closer than the others is quite large. We ex-
pect these conditions to hold when the ion coupling pa-
rameter I is not very large. In that case, the average ion-
ic field has an appreciable cylindrical component, which
may affect the atomic and thermodynamic properties of
the plasma. Also, for very small values of I the eA'ect of
this cylindrical component becomes negligible because of
the low particle density in the regions where the cylindri-
cal component is appreciable. For very high values of I
a lattice-type structure builds up in the plasma, and the
symmetry around each ion is of cubic type. This case is
out of the scope of this paper. Therefore, the density and
temperature domain in which the presence of the nearest
neighbor can be important is restricted to intermediate
values of I, somewhere between 0.1 and 10. The boun-

daries of this domain depend, however, on the specific
plasma property under consideration.

It is the aim of this paper to study the distortion of the
average ionic potential from a spherical to cylindrical
symmetry, and to investigate the consequences of this dis-
tortion on the various thermodynamic properties of the
plasma.

II. CYLINDRICAL THOMAS-FERMI MODEL

A. Basic assumptions

In our model we consider explicitly only the interac-
tion of an ion with its nearest neighbor. The effect of the
other ions is taken into account through a confined-
molecule model which assumes zero potential outside the
volume of the two ions, similar to the spherically sym-
metric models. The Born-Oppenheimer approximation is
assumed to hold true, namely, that the electron cloud ad-
justs itself rapidly to the local electric field of the ions,
i.e., the state of the electron cloud is determined uniquely
by the instantaneous distance between the two ions.
While the innermost electrons are perturbed only slightly
by the neighboring ion, the highly excited states may be
deformed so strongly that they overlap both ions, thereby
generating a quasimolecule. Any slight perturbation
moves such an electron farther away from this quasi-
molecule so that it should be better regarded as bound to
the plasma as a whole rather than to any ion separately.
Eventually, such an electron will collide with a free elec-
tron and will be absorbed into the thermal statistical
free-electron distribution.

For simplicity, we used the Thomas-Fermi model to
study the properties of such a quasimolecule and its
influence on the plasma parameters. Other models, such
as self-consistent-field or more realistic models, could be
used as well.

One more assumption is incorporated in our model: it
was shown" that for constant electron density the elec-
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tric field of such a quasimolecule vanishes on the boun-
daries if these boundaries have a peanutlike shape. More-
over, for such a peanut-shaped molecule the potential en-
ergy of a quasimolecule is minimum for variations of the
boundaries which keep the volume constant. " A similar
shape is expected for more realistic electron distributions,
such as those obtained from the Thomas-Fermi model.
In the present model the shape of this molecular volume
is approximated by two adjacent truncated spheres (see
Fig. 1), each having volume ~. It turns out that when the
requirements of charge neutrality and zero potential on
the boundaries of such a volume are imposed, the electric
field on the outer surface is small (compared to the aver-
age plasma microfield), except on the circle connecting
the two spheres; see Fig. 2. Therefore, although the elec-
tric field does not completely vanish outside the molecu-
lar volume, such quasimolecules can be regarded as elec-
trically isolated to a high degree of accuracy. This point
is further discussed in Sec. III.

The volume of one of the truncated spheres is
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FIG. 2. Normal component of the electric field on the bound-
ary of the truncated sphere, for iron plasma at a density of 10
cm, temperature of 300 eV, and interionic distance 8 =3.80
a.u. Points on the interionic boundary S& correspond to
0 ~ 0 (00 and points on the outer boundary S2 correspond to

0

7-=77( R + 'R R —' R ),
where R, is the radius of the spherical portion and R is
the distance between the centers of the two spheres.

Contrary to the spherically symmetric case, the volume
of the quasimolecule, 2~, is not uniquely determined by
the average density of the plasma. In our case, the
volume w for a given Fermi energy depends on the in-
terionic distance R, as can be seen from the following ex-
treme cases: (i) when R =2R„we have two spheres each
having the same volume, denoted by rt', (ii) when R =0
the two spheres merge to a single spherical ion having
nuclear charge 2Z and volume denoted by 2~2.

Spherically symmetric Thomas-Fermi calculations
show that for the same temperature and quasimolecular
volume (i.e., r2= r, ), the Fermi energy of case (i) is higher
than that of case (ii). Therefore, to obtain equal Fermi
energies for the two cases, &2 should diA'er from ~i. Since
the Fermi energy is constant in the plasma, this means
that the volume ~ of a particular quasimolecule depends
on the interionic distance R. The method used here to
determine the function r(R) is described in Sec. III. The
average quasimolecular volume is 2', where

7
n,-

4m

3 1
(2)

Here n, - is the ion density and R, is the ion sphere radius.

B. Mathematical procedure

b. V(r) =4rreCTFI, q~

eF+eV(r)
kT

(3)

where cF is the Fermi energy,

(4)

is the Fermi-Dirac integral of order j, and
3/2

2mkT
g2

(5)

As the potential is symmetric with respect to a reflection
through the interface S, between the two spheres (see
Fig. I), we may confine ourselves to the solution of Eq. (3)
in a single truncated sphere. The potential V(r) has to
satisfy three boundary conditions.

(i) Near the nucleus,

Our starting point is the basic three-dimensional
Thomas-Fermi equation, for a given quasimolecule of
volume 2~ and interionic distance R,

lim r V(r) =Ze,
r~O

where Z is the nuclear charge.
(ii) On the surface S, the normal electric field, i.e., the

normal derivative of the potential should vanish,

BV(r)
Bn s,

BV(r)

z =R/2

FIG. 1. Approximate shape of the quasimolecule.
where z is the coordinate along the symmetry axis.

(iii) One would like that the electric field would vanish
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also on the spherical portion, S2, of the truncated sphere.
This condition means that there is no electric field out-
side the volume of the quasimolecule so it is electrically
isolated and the electronic free energy is at a minimum
with respect to shape variations. ' This condition, how-
ever, cannot be satisfied rigorously, because the shape of
the molecule is already determined. Instead, two weaker
conditions are imposed: (a) the molecule is electrically
neutral, and (b) the boundary of the molecule is the equi-
potential surface of V =0,

(8a)

V(rsS, ) =0 . (8b)

Equation (3) with the boundary conditions (6), (7), (8a),
and (8b) has a unique solution. If our choice of the shape
of the molecular boundaries is sufficiently close to the ac-
curate ones, the electric field on the boundary S2 is ex-
pected to be small.

To solve Eq. (3) with the above boundary conditions
the potential is expanded into its multipole components,

6I ~i~( xo+6) I ~i~( x)o+ I i~~(xo)
2

(10)

the following second-order diAerential equation is ob-
tained for the multipole coefficients:

2, k(k+1)
r r2

V(r) = V, (r)+ g vk(r)Pk(p. ) .
t- =0

Here Vo(r) is chosen to be the spherically symmetric
Thomas-Fermi potential for ionic volume ~0 and nuclear
charge Z, and Pk(p) are the Legendre polynomials of the
argument p =cosO.

The sum in Eq. (9) represents the cylindrical com-
ponent of the potential. In the following we assume that
for the phenomena investigated in this paper, the
inhuence of the cylindrical distortion, as well as the
change in the Fermi energy c~ —c~ caused by the forma-
tion of quasimolecules in the plasma, are small relative to
the spherically symmetric solutions and can be treated in
first-order perturbation theory. Substituting Eq. (9) in
Eq. (3) and using the first-order expansion of the Fermi-
Dirac integral,

only a finite number of terms (generally k .„~30) were
taken into account in the expansion Eq. (9), and the
boundary conditions can be satisfied only in a least-
squares sense. The details of such a least-squares pro-
cedure are explained in the Appendix.

III. RESULTS AND DISCUSSION

Figure 3 shows equipotential lines of an iron quasi-
molecule in a plasma of ion density 10 cm and tem-
perature 300 eV. The interionic distance is R =1.5R,
(R, —2. 53 a.u. ), and 30 multipole terms are used in the
expansion of the potential. It can be seen that near the
nuclei the equipotential lines are almost circular, which
means that the deeply lying ionic states are almost
unaftected by the formation of the quasimolecule. On the
other hand, near the outer boundary of the quasimolecule
the equipotential lines surround both nuclei and thus the
higher electronic states of the ions are significantly al-
tered and become molecular states.

The transition from discrete ionic to quasimolecular
states occurs when the energy of the bound electron ap-
proaches the energy associated with the saddle point of
the potential positioned halfway between the two ions.
The lowest quasimolecular states are bound to, at least, a
pair of ions. For the higher states the spatial range of the
electronic wave function increases with the energy, and
overlaps more and more ions, thus creating a smooth
transition from quasimolecular to continuum states. Fig-
ure 4 shows the saddle-point energy at a constant density
of n, =10 ' cm ' and a range of temperatures when the
two ions are separated by the average interionic distance
(see below) corresponding to the given plasma conditions.

The ionization energy reduction in the quasimolecule is
somewhat smaller than the one predicted by the spherical
model, '' and depends strongly on the temperature and
interionic distance. This deviation can be approximated
by (Z/Z)vo(0)~z- (Z is the average ionic charge) for a
given interionic distance R. For the average interionic
distance this deviation is less than 22% of the value pre-
dicted by the spherical model. The ionization energy
reduction is shown in Fig. 4 both for the quasimolecular
model and the ion sphere model.

2&e
CTFI—1 /2kT

EF + e Vo(r)
( Vk + 16k, O)

where

g=(E.+ —c.&)/e .

The boundary condition, Eq. (6), implies

lim rvI, (r) =0 ~

r —~0

(12)

(13)

The other boundary conditions, Eqs. (7) and (8), couple
the various UI,

's and thus determine the particular solu-
tion of the homogeneous part of Eq. (11). In practice,

FIG. 3. Equipotential contours in the quasimolecule of Fig.
2. The central circle around the nucleus corresponds to elec-
tron potential of 1 keV. The potential energy is changed by a
factor of 2 between two adjacent contours.
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FIG. 4. Ionization energy reduction as a function of the tem-
perature in the present paper (QM) and in the ion-sphere model
(IS). The ion separation equals the average interionic distance
(see Fig. 9). Also shown is the absolute value of the potential
energy of an electron located at the saddle point (SP).

The electric field outside the quasimolecule is not ex-
actly zero (as can be seen from Fig. 2), and therefore the
quasimolecule is not completely isolated electrically. In-
creasing the number of the multipole terms in Eq. (9) will
reduce the normal electric field on the interface S& be-
tween the two ions. We do not expect, however, that the
electric field on S2 will vanish as k~ ~. The reason for
this is the deviation of the shape of the boundary of the
quasimolecule from the ideal shape which would ensure
zero field outside the boundary, and we assume that only
the average field vanishes on S2, Eq. (8a). The root mean
square of the electric field on the boundary S2 is defined

by
1/2

AE= E dS
S2 S2

(14)

The quantity eh ER, /kT is a measure of the energy asso-
ciated with the nonvanishing electric field outside the
quasimolecule compared to the thermal energy of a free
electron. This quantity is shown in Fig. 5, which shows
that this quantity is relatively small, thereby confirming
the basic assumptions of our model. It also shows that
the higher the temperature and the farther the separation
between the ions, the smaller the inaccuracies in the free
energy due to neglect of the electric field outside the
quasimolecule.

Figure 6 shows the Fermi energy at constant quasi-
molecule volume as a function of the interionic distance
R for the same plasma conditions as in Fig. 3. The two
extreme points, R =0 and R =2R;, were calculated with
the spherically symmetric Thomas-Fermi model. The
Fermi energy is seen to be a monotonically increasing
function of the interionic distance. Our calculations
show that this feature holds true for a wide range of tem-
peratures and densities.

Figure 7 shows the ratio r(R)/r(2R;) at constant Fer-
mi energy as a function of the interionic distance R. As
we shall see later, the average interionic distance is con-
siderably smaller than 2R, (-R, for the above ion plas-

FIG. 5. Average normal electric field, AE in units of
kT/eR„on the outer boundary S, of the quasimolecule as a
function of the temperature for two interionic distances. The
plasma conditions are the same as in Fig. 2 and R; is the ion
sphere radius.
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FIG. 7. Volume ~(R) of the truncated sphere of an iron plas-
ma at T=300 eV as a function of the interionic distance for
constant Fermi energy. The Fermi energy is the value obtained
for a plasma density of 10 cm ' in a spherically symmetric
Thomas-Fermi model.

FIG. 6. Fermi energy cF of an iron plasma at T=300 eV, as
a function of the interionic distance, for constant volume 27p of
the quasimolecule. The two extreme points were calculated by
the spherically symmetric Thomas-Fermi model. The dashed
portion of the line is a free-hand interpolation.
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ma conditions). It follows that the present model pre-
dicts a plasma which is more compressible than predicted
by the spherical TF model. Figure 7 illustrates our con-
jecture, mentioned in Sec. II, that for constant Fermi en-

ergy and plasma temperature, the volume of the quasi-
molecule varies with the interionic distance. One should
note that this volume exhibits a monotonic smooth be-
havior which enables an easy interpolation toward R ~0,
which is again a spherically symmetric case.

Figure 8 shows the Gibbs free energy F of the quasi-
molecule at rest at constant pressure P, as a function of
the interionic distance. This function, which is the cen-
tral result of this paper, is the basis from which the ther-
modynamic properties were derived. The free energy is
computed from its definition,

F =E+PV —TS,
where E is the internal energy incorporating the
electron-electron, electron-ion, and ion-ion potential en-
ergies and the electron kinetic energy,

E0-e+ E e-I +E l-I +P e (16)

W(D)
(17)

where R ',„' is the distance between a given ion (located at
the origin) and its nearest neighbor in the distribution D,
and W ' is a weight function given by

W( '=exp — g F(R,. ;, )IkT
pairs ln D

(18)

Figure 9 shows the average nearest-neighbor distance
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FIG. 8. Free energy of a quasimolecule as a function of the
interionic distance for plasma conditions and Fermi energy as in

Fig. 7.

V=2~ is the volume of the quasimolecule, and S is the
entropy. The various quantities were calculated using the
standard TF expressions taking into account the shape of
the quasimolecule.

The average nearest-neighbor distance R was calculat-
ed by the Monte Carlo method using the quasimolecule
free energy F(R) as an interionic potential. Let D denote
a random instantaneous spatial distribution of the ions in
the plasma, then,

y gr(D)R (D)
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FIG. 9. Average nearest-neighbor distance as a function of
the temperature for ion plasma at density equal to 102' crn
The dashed line corresponds to the average interionic distance
of an ideal gas.

R as a function of temperature for an iron plasma at den-
sity of n = 10 cm . It can be seen that R ( T) does not
decrease monotonically as the temperature is increased.
In fact, there is a local minimum around T=200 eV.
This structure arises from a competition between two
effects: (i) as the temperature increases, so does the ionic
kinetic energy, thus increasing the probability of interion-
ic penetration; (ii) on the other hand, increasing the tem-
perature increases the ionization, thereby reducing the
screening of the nuclear charge and increasing the repul-
sive potential. At the two extremes of very low and very
high temperatures the average interionic distance R ( T) is
a monotonically decreasing function. As the temperature
approaches zero, the probability for the two ions to be
closer than 2R, becomes smaller, as can be seen from Fig.
8. At T =0 we get the ion-sphere distance R =2R,-.
However, at very low temperatures one would expect our
model to break down as a cubic symmetry will build up
in the plasma.

At very high temperatures the ions behave like un-
correlated ideal gas, and in this case,

R (T) —,
' I ( —', )R,. =0.893R, (19)

A model for nearest-neighbor interactions in plasmas
within the framework of the Thomas-Fermi approxima-
tion was recently developed by Laughlin. ' In his model
he assumes a spherical cell for the electric charge of each
ion and the variation of the interionic distance is simulat-
ed by the displacement of the nucleus from the center of
the sphere. The main differences between his model and
the present one is the shape of the boundary of the ionic
cell and the boundary conditions of the potential. For
purposes of comparison, we repeated our calculation for
an aluminum plasma of ionic radius of 4 a.u. , which is the
case study of Ref. 14, and found differences between the
results of the two models. The main differences are the
following. (i) The pressure in our model increases mono-
tonically with the interionic distance, while the results in
Ref. 14 show opposite tendency. This difference can be
accounted for by the large contribution to the pressure in
Ref. 14 from the interface between the two ions. In our
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TABLE I. Changes of the electronic free energy of Al ions in

plasma of ionic radius R; =4 a.u. and temperature equal to 1

a.u. for various interionic distances.

V(r)= Vp(r)+r/co(r)+ g pkuk(r)Pk(p, ) .
k=0

(A6)

R/R;

1.875
1.75
1.68

Present paper

0.01
0.024
0.033

Ref. 14

0.015
0.06
0.10

The coefficients /3k and rI are computed from the bound-
ary conditions. This is carried out in two steps.

(i) Substituting V(r) in Eq. (7), one gets

A(p)+r/~'(r*)lu+ g PkBk(p)=0 for pp~p~ 1,
k=0

work this interface is an internal part of the quasi-
molecule and does not contribute to the pressure. (ii) The
Fermi energy in Ref. 14 is not monotonic with respect to
the temperature and the interionic distance, while our re-
sults show a monotonic behavior. (iii) The electronic free
energy of the ions, relative to the case of separate ions, is
significantly higher in Ref. 14 than in the present paper;
see Table I. Since both papers solve the Thomas-Fermi
equation, the model which gives the lower free energy for
the same volume and temperature seems to be more reli-
able.
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APPENDIX

In this appendix we describe the procedure to solve Eq.
(11) with the boundary conditions given by Eqs. (6), (7),
(8a), and (8b). If we denote

' 3/2
2mkT

—1/2
EF+eVp(r)

kT (A 1)

then Eq. (11)can be rewritten as

2, k(k+1)
Uk + Uk p Uk F(r)(Uk + 7~k, P)r r

(A2)

Uk(r) Pkuk(r) (A3)

where uk(r) is a particular solution of Eq. (A2).
For k =0 the general solution of Eq. (A2) is given by

For k &0, Eq. (A2) is homogeneous, therefore its solu-
tions, which are regular at the origin, are determined up
to a multiplicative factor pk,

(ii) From Eq. (8b) we get

where

C = Vp(R, ),
Dk(/ ) =uk(R, )pk(/ ) .

(A12)

(A13)

The coefficients pk and g are obtained by truncating
the expansion of V(r) in Eq. (9) at some multipole k
Equations (A7) and (A 1 1) are replaced by a least-
squares minimalization procedure of the function
Q(Pp, . . . ,Pk, g) given by

k 2
max

Q= J A (p)+geo'(r*))u+ g PkBk(p) dS
1 k=0

k 2
max

+ WPO C+gco R, + kak P dS
2 k=0

tR.
2 pp

k 2
max dp"(&)+~~'(r*)/ + X pkBk(/ )

k=0 P

C+g~(R, )+ g PkDk(p) =0 for —1 ~ p ~ pp, (Al 1)
k=0

Up( r):ppu p( r) +&cd( r ) (A4)
2

(A5)

The total potential now becomes

where up(r) is a particular regular solution of the homo-
geneous part of Eq. (A2), pp is a constant, and co(r) is a
particular solution of the inhomogeneous equation (A2),

X E$0 X I' X dX
co(r)=up(r) "

~ dy .
yu0 y

+wf
max

C + geo(R, )+ g PkDk(P ) dP
k=0

(A14)

Here W is an arbitrary weight function chosen so that the
two sums in Eq. (A14) have the same dimensions,
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(A15)

(A16)

Substituting V(r) in Eq. (Sa) and truncating the sum at
k,„gives

f (t)Vo/t)z) dS f A (p, )dp/p
1"n

f V,'dS f V', (8 /2p )d p, /p,
'

1 Po

The final equations for the computation of the /3

coeScients are

k
)"0 max

Vo Rs +&~ Rs + kuk R Pk P dP, =O .
—1 k=0

(A17)

Equations (A 16) and (A 17) constitute k,„+2 linear
equations with k,„+2unknowns. The solutions Pk and
iJ are inserted into Eqs. (A3) and (A4) to obtain the ex-
pansion of V(r) and the change 71 in the Fermi energy
caused by the nearest-neighbor interaction in the plasma.
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