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Evolution of the coupled Benard-Marangoni convection
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A weakly nonlinear theory that describes the onset of the combined Benard-Marangoni convec-
tion is presented. All relevant transport coefficients are taken to be temperature dependent. When
the boundaries are, thermally, nearly insulating, the instability is weak and the perturbed fluid-air
interface is found to be proportional to the temperature field F(j,r) which evolves according to
F,—rt, (F;)-—rt, (F.-),'-, +rr3F;-;& +~~-F;;+sr, (F;) +n, (F )«vr7(F );+(P,+$2)F =0 where P,
are the Biot numbers, and m, , i = 1, . . . , 7, are constants.

I. INTRODUCTION

The effects of the buoyancy-driven (Benard-Rayleigh)
convection and the surface-tension-driven (Marangoni)
convection are well known and have been extensively de-
scribed in the literature. ' However, the coupled effect
is less understood.

A fluid layer with an upper boundary open to the at-
mosphere and heated from below exhibits an unstable be-
havior when a certain critical threshold is crossed. Using
the linear approach, Nield showed that this threshold is
given by a linear combination of Rayleigh and Maran-
goni numbers. Therefore both of the mechanisms con-
tribute to the onset of instability. It was shown that the
main mechanism of the convection is dependent upon the
thickness of the layer.

An asymptotic approach to nonlinear analysis of cellu-
lar convection in the case of nearly insulating boundaries
was presented in Refs. 9 and 10. It is based on the obser-
vation that the characteristic dimensions of the convec-
tive cells near the stability limit, are much larger than the
thickness of the fluid layer. Thus it is possible to simplify
the analysis by separating the spatial variables of the
problem and then to reduce its dimension. Using this ap-
proach one can develop an evolution equation for the
Auid layer temperature and the Auid flow pattern. In Ref.
10 this approach was applied to study the Benard-
Rayleigh convection, including the effects of tempera-
ture-dependent thermal conductivity. In Ref. 11 the
effect of a deformable free surface was added, however,
the Auid properties were taken to be constant. Inertial
effects in three-dimensional Benard-Rayleigh convection
were studied in Ref. 12. The same tools were employed
in Ref. 9 to study the Marangoni instability.

It is the purpose of this article to unify and generalize
previous results. To this end we study the coupled
phenomenon of Benard-Marangoni instability, establish
the governing equation for the temperature field and the
Aow velocities near the onset of instability and elucidate
the role of different effects on the convection. Thus pre-
vious results should be recovered from ours as particular
cases. We consider a fluid layer of thickness d and

II. FUNDAMENTAL EQUATIONS

We start with the governing equations written in terms
of velocity and temperature disturbances u, v and T, re-
spectively. The momentum conservation equations are
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(2.2)

The heat equation in the Boussinesq approximation is

aT aT aT a aT a aT
at +"ax+'aY '+ ax ax +

aY aY

(2.3)

where t', X, Y are the time and spatial coordinates, p is
the pressure disturbance, a the volume expansion

bounded below by a Aat plane while the upper boundary
is free and is allowed to deform. This Auid layer is as-
sumed to be heated from below; the kinematic viscosity,
the thermal diffusivity, and the surface tension on the in-
terface of the Auid are assumed to be dependent upon its
temperature. The boundaries are supposed to be nearly
insulating which ensures an onset of a weak instability.

The plan of this paper is as follows; in Sec. II we state
the problem. In Sec. III we present an asymptotic
analysis that leads to our key result, Eq. (3.24). It de-
scribes the spatiotemporal evolution of the temperature
and, within a multiplicative constant, see Eq. (3.23b), the
evolution of the perturbed interface as well. In Sec. IV
we present a brief discussion of our results and future
perspectives.
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coefficient, g the gravitational acceleration, y the temper-
ature gradient across the fluid layer, and v and K are the
kinematic viscosity and the thermal diffusivity of the
fluid, respectively, both temperature dependent. The im-
pact of viscous heating will be considered in Sec. IV.

The appropriate boundary conditions are taken as fol-
lows. For Y=O,

asymptotic form. To a first order we have

A'~, 9„+eA'~,(g,„e +2g„e, )+ (4 —qj, )
B

+e[g, (% —5+„)—4g,„+, ]=0, (2. 1 1)

u =0, v =0, KTy+h&T=O .

At the deformed free surface Y=z(X, t'),

zt +uz~=v

p —p, =2p[zxux —zx(u r+ vx)+ vr](1+zx)
—ozxx(1+zx)

(2.4)

(2.5b)

y =Q(x, t)=1+kg(x, t)

and A'M, is the Marangoni number defined via

(2.12)

BCT

where it was assumed that the free surface is weakly de-
formed. Explicitly, its equation is

Ir(n. V)T+hzT=O, (2.5c) ~Ma
PVpKp

(2. 13)

p, being the ambient pressure and o. the temperature-
dependent surface tension. An additional boundary con-
dition, expressing the balance for the shear stress on the
free surface, is developed in the Appendix in an asymp-
totic form and will be stated shortly [Eq. (2.11)].

Using the dimensionless variables

x =L/d, y = Y/d, t =t'Kp/d, 0= T/yd,

It should be pointed out that Eq. (2.11), being restricted
to the zero-order approximation, is identical with the
boundary condition given by Pearson for an undeformed
free surface and was widely used in recent works. ' '

III. ASYMPTOTIC ANALYSIS

and introducing dimensionless stream function +, kine-
matic viscosity v=v/vp, and thermal diffusivity K —K/Kp,
we rewrite Eqs. (2.1)—(2.5) in the form

Let both the Marangoni and Rayleigh numbers be
close to their critical values corresponding to the onset of
the instability

v'e, + e, (~'q )
—e„(v'+)

By

=(vO, )„+(v%' ) +2(v+ )
—JVa.,e

9, +e,e.—+„9,+e.=(~e. ).+(~e, ), ,

in the domain —oo &x & ~, 0&y & Q(x, t) and

4=0, +, =0, O, =b, O, y =0

q =0, 9, = b, (1+Q.')'"—9+Q„e„,

(2.6)

(2.7)

(2.8a)

(2.8b)

A~, =M(1+a), Ãa, =R ( I+e), (3.1)

and use the following scaling of the time and space vari-
ables

wherein M and R are the aforementioned critical values.
We assume a weak temperature dependence of the fluid

properties, explicitly,

K= 1+E'K]
(3.2)

v=1+evan,

p —p, =2%'p„[Q'u —Q„(u +U )+v ](1+Q, )

Q ( 1+Q2)—3/2

at y =Q(x, t). Here Q(x, t) is the location of the fluid-air
interface, Ir=a(9), v=v(9), b& and bz are the Biot num-
bers referring to the heat transfer on the lower and upper
boundaries, respectively,

gcxpd
Ra

VpKp

g=xv'e, q=y, r=e't .

Then, from Eq. (2.11) we have

0=v'ee .

Using new dependent variables

1t (g, q, r; E) = v eV(x, y, t, e),

e(g, g, r;e) =9(x,y, t, e),

(3.3)

(3.4)

(3.5)

b;=e P, , i =1,2. (2.10)

In terms of this small quantity, e, one can rewrite the
missing boundary condition on the free surface in an

is the Rayleigh number, JVp, is the Prandtl number, and
Kp are vp are reference values of K and v, resPectively. As-
surning the rigid bottom and the top free surface of the
fluid layer to be nearly insulated, we introduce the small
perturbation parameter e such that

and substituting Eqs. (3.1)—(3.5) into Eqs. (2.6)—(2.11),
one obtains

e'e, + eq„e,- ~qp„+~/;—
[(I+«)e,.]+ [(I+«)e ]B a

Bg

(3.6a)
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/=0, rI=O

$„=0, g=0
6„=«'p,e, z=o=«[( 1+«v) )Q«]«+ [( 1+«v) )1t „„]„„

+ 2«[( 1+«v, )g&„]&„—R ( 1+«)6&, (3.6b) and

«'8 (V'0)+ [qn(«e«+e9q)~ 0-~(«W«+WRY)nla7. Pr

(3.7a)

(3.7b)

(3.7c)

p —p, =2JVp, [«g(g(„—«g~ —«g~(P„„—«P«) —«g(„](1+«g~) ' —6«g«(1+«g()
«M(1+«)6&&+«M(1+«)(«g&&6„+2«g&B&„)+«(g&„„—«g«&)+«[g&(1t„„„—5«g«„) —4«'g«1(&„]=0,

6„+«'p,e—«'g, e,=o, ~=1+«g(g, ~) .

(3.8a)

(3.8b)

(3.8c)

(3.8d)

0=So+«0i+
e =eo+Ee&+

p =po+&p&+ '

(3.9)

where p' is the deviation of the pressure from its static
value p„

We seek an asymptotic solution to Eqs. (3.6)—(3.8) in the
form

q,„e„—1(„e,„+1t„=e,«+(~,e,„),+e,„„,
1

( Ooqeog„] eoreog
Pr

(3.16)

=(,Q „„)„„+Q, „„„„+2' «„„—R (6 ~+ 6,(),

Note that for pure Benard-Rayleigh convection Eq. (3.15)
leads to R =320 (Ref. 10) and to M =48 in the pure
Marangoni convection case. To determine F(g, r) we
use the first-order approximation, written as follows:

P'=P —P, =P —GA'p, (1—y)+ —,'JVp~a, (1—y) (3.10) (3.17)

eo„„=o
t('o„„„=R eog

with the following boundary conditions:

1(,=0, q,„=o, e,„=o, q=o

(3.1 1)

(3.12)

1to (+Meo«:0 t(o:0 eo =0 tl= 1+«g(g r)

and G is the Galileo number G =gd /v .
Substituting Eqs. (3.9) into Eqs. (3.6)—(3.8) yields the

problem for the zero-order terms

with

e,„=o,
at q=o, and

o+ «tt'& 0

+Meo«+Me]«+gogo Qo«~:0

e,„=o,

(3.18a)

(3.18b)

(3.18c)

(3.19a)

(3.19b)

(3.19c)

The solution of Eqs. (3.11)—(3.13) is

e,=F(g, r),

(3.13)

(3.14)

ri —
—,'(M+ —,', R)t) + ,'(M+ —,'R)rI —Fr,

where F(g, r) is, so far, an undetermined function. Note
that the condition go=0 at t) =1+«g(g, r) is equivalent
to the conservation of mass within the quid layer. In-
tegrating Eq. (3.6a) over the 0 ~ g ~ 1 domain, as in Refs.
9 and 11, one obtains a solvability condition which will
be used shortly to derive an equation which governs the
evolution of the temperature field F (g, r)

The zeroth-order terms of this solvability equation
yields the condition that

at g= 1+«g(g, r). Again, condition (3.19a) implies con-
servation of mass and therefore a net zero Aux through
arbitrary contour connecting any two points on the upper
and the lower boundaries.

Before proceeding further we shall explicitly assume
that

v, =p(F + A —tl), p, , A constants

and

a. , =Ko(F+B —
vg), Ko, B constants .

Substituting Eqs. (3.14) into Eqs. (3.16)—(3.19) one ob-
tains

0]=F( —5Lg +4m'

M R
48 320

(3.15) +F Lg +m g — +0(g, r—), (3.20)
720
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+ (gF~)((g' —3g )+ g;F,-(r/ —
2) )

H,-;(2)' —2)'),

where H(g, r) is an arbitrary function and

L = —„'„(M+—,', R), m =
—,'„(M + ~ R ),

g, ,=f, (g)F(~~~+f2(2) )(F~F,.c);+f3(21 )F;r

+ [pRF((F + 3 ) R—F( —RH; ],.f4(r/)

(3.21)
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24m
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R
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RLq' Rmq'
3024 1680 240

—2m g + —,
'

( co, —co, )2)
' —

—,
'

( 3~,—~, )21',

R '2) RL2)" Rm 2)

181 440 168 10S

1 R g 5RLg~ Rm +1200L 7

JVp„72 576 336 210

—8Lmg + 24m 2

5

R
co =——60L7 2

R
co =——60L+24m8 4

We recall that the deformed free surface is still un-
determined. In order to find its form, the zero-order ap-
proximation of the pressure disturbance p has to be eval-
uated and the boundary condition for the normal stress
should be applied. Noting the fact that the Galileo num-
ber G is usually very large, we assume it to be of the or-
der of e ' (cf. Ref. 11), i.e. ,

G=G'e ', G'=O(1) .

Then we obtain

+ —,( Ci)4 Ci)2 )7J
&

( 3674 Ci)2 )7j

Rf ( 3))2=p —10L g + 8m q

P0 =JVP„(R 2)
—120L)F(g, ~),

2' 7
g(g, r)=, F(g, r) .

~Vp„G'

(3.23a)

(3.23b)

1 M+—pro 6
—p~8—

M+ pc08 3pc06+

Turning back to the solvability condition and keeping
only terms to the order of e we obtain an evolution equa-
tion for the temperature-disturbance amplitude,

F, n, (F() - v—r2(F-)-(+n—3F((.-+ n4F((

f4(2))= —
—,', g + —,q —

—,', q',
+vrq(Fr) +n6(F )c(+n7(F ).+/3F=O,

where /3—:/3, +/32,

(3.24)
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~4= 1+p 5 —123
3840

3M
320

RM+
12

2607

JV G' 2

3 R——60L +24m
16 6

pR &o

640 2
(3.25)

Once the function F(g, r) is determined via Eq. (3.24), the
temperature field of the fluid layer is given as

T(x,y, t)= T +o(T~ —To)[F(x&e,E t) —y],
and the flow field is determined from

(3.26)

(3.27)

Equation (3.24) is our main result. Equation (3.24) can be
reduced to the corresponding equation in Ref. 9 when the
following eff'ects are neglected: the buoyancy-driven con-
vection, the deformation of the free surface, the
temperature-dependence of the fluid transport, and when
only the reduced version of the boundary condition for
the shear stress is used.

A comparison with the second limiting case, discussed
in Ref. 11, shows that apart the new terms ~~F& and
m7(F )& in Eq. (3.24), there is also a difference in the nu-
merical value of several coefficients. The reason for this
discrepancy is not completely clear and probably has to
do with some misprints and computational errors.

IV. DISCUSSION

Using a weakly nonlinear analysis, we have derived an
equation describing the nonlinear evolution of a weak in-
stability. Since previous works covered some of the
relevant effects but left out others, we expected, and pos-
teriori verified it to be true, that inclusion of all the afor-
mentioned effects will lead to a generalized evolution
equation which incorporates previous results as particu-
lar cases. Indeed, transport coefficients ~, (i =1, . . . , 7)
of Eq. (3.24) refiect in a lumped manner the various
effects. Whether they are stabilizing or destabilizing de-
pends on numerical values of often competing factors.
The complexity of the problem makes it clear that a com-
plete catalog of the problem as predicted by Eq. (3.24) is
possible, at least at this stage, only via numerically aided
study of Eq. (3.24). This is now underway. Nevertheless,
we can derive some conclusions from Eq. (3.24). First we
rewrite it as

F,+ [ [—m, ( Ft ) + m4+ m6F]F~ ](+rt3F ~. (t(
. +PF

+[m7(F )&+a~(F&) —n&(F&)&&]=0 .

A direct calculation shows that

(4. 1)

~, &0, ~, &0,
for the whole range of critical values of Marangoni and

Rayleigh numbers. Since p is, in the case of liquids, neg-
ative m4&0 as well. Though Ko&0 the temperature
dependence of thermal diffusivity is not expected to be
large to the extent as to overcome the other two factors
entering into the definition of sr& [see Eq. (3.25)]. With
the sign of ni, m3, and m4 at hand we can make the follow-
ing observations; the main source of instability is due to
the backward part of the diffusion coefficient: ~4+w6F.
This part is always destabilizing independent of the sign
of ~6. Indeed, since F describes a perturbed temperature
it may be both positive or negative. Thus vr6F & 0 ensures
backward diffusion. Note, that for ~6F &0 is destabiliz-
ing only if ~F~ ) vr, /~vr6~. Stabilizing competition is pro-
vided by the third term (remember, m3 )0) and the
pseudo-diffusive-component —~,F&. In fact if ~6 is ab-
sent the instability fed by m.

& ()0) will be ultimately
counterbalanced by —~,F& to generate a bounded ampli-
tude pattern. However, with ~6F intact, it is a priori un-
clear whether the gradients of F will grow fast enough to
counterbalance the backward diffusion enhanced by n6F.
It is here that the last two terms in Eq. (4.1), which main-
ly affect the behavior of gradients of F, are expected to
play an important role; they provide the necessary mech-
anism to generate high wave numbers and thus to in-
crease the role of the pseudodiffusive part; ~, (F&) . But
whether this term is always sufFicient to stop the growth
of the instability remains to be seen.

In this context it is of interest to note that for
vr& =m&=0 Eq. (3.24) was derived in Refs. 14 and 15 to
describe the evolution of solidification front of dilute
binary alloy. However, in Ref. 16 it was shown that such
an equation describes either perturbations that quench or
explode in finite time. No bounded pattern is possible.
The remedy in the solidification context was to introduce
a new asymptotic expansion which resulted with F&&&& be-

ing replaced by (F&&IC)&&, where C =(1+F&) ~ de-
scribes the stabilizing effect of the curvature.

Now a methodological remark is in order. While the
Newell-Segal-Whitehead method' ' expands in a wave-
length band around a finite wavelength k, the present one
depends very much on the long-wavelength instability or,
more precisely, it expands around k =0. This distinction
has consequences extending beyond the technical
differences of the two methods, namely, their structural
stability. While the expansion around finite k appears to
be robust to small changes in the physical setting of the
problem, ' our experience with the presented problem re-
veals that it is very sensitive to structural changes. It
necessitates a quite tight scaling condition of dimension-
less quantities; a change of scale modifies the resulting
amplitude equation. Admittingly, it is a troublesome
feature of the method. Whether it is an inherent penalty
that one has to pay for the benefit of the method's simpli-
city, or only a removable, technical difficulty, is still to be
seen.

A case in point is the scaling of G. In our work G was
assumed to be large. This was done to assure consistence
with the scaling of the other quantities. In a recent
work a similar problem was addressed. There, howev-
er, G was assumed to be small or, at most, of order 1.
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This condition enforced a different scaling of the stream
function and the temperature. Their work resulted with
a different amplitude equation. There is no direct transi-
tion from our amplitude equation to theirs or vice versa.
We of course can, in principle, compare the resulting
motion, but the tightness of the scaling involved in the
asymptotic expansion, precludes the possibility of embed-
ding one equation within the other.

Finally, we consider the effect of viscous heating on the
evolution of the interface. Its sole effect is to modify the
numerical value of parameter ~5 as follows:

R +48ppL 2 +576 2
1 5RI5 5 9 20

the traction F on the interface can be written as

—F= —pn+pn [Vv+(Vv) ], (A2)

where p is the pressure and p is the fluid viscosity.
Equating the surface divergences of Eqs. (A 1) and (A2)

we obtain

y =1 +eg( xz, t) +o(e) . (A4)

V, (V, o )
—V, (o.nV, .n)

= —V, .(pn)+@V, In. [Vv+(Vv) ]j . (A3)

We apply this equation for a perturbed free surface given
by the equation

+4R m —1440Lm To first order the surface gradient and surface divergence
terms were shown to be

where

PpKp
C09-

cp fd
Consistent with the scaling used in this work it is as-
sumed that cv9=0 (e).

and

V,a= Ba Ba Ba Ba+ &gx '+ &Rx +&gz 3Bx By Bz Bx
T

Ba Ba+ +eg, k+o(e)
Bz '

By
(A5)
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APPENDIX: DERIVATION
OF THE BOUNDARY CONDITION

FOR THE TANGENTIAL COMPONENT
OF THE STRESS ON A FREE SURFACE

We start with Eq. (29) of Ref. 21 which, in the case of
an interface of negligible mass and surface dilatational
and shear viscosities, is written as

respectively. Here a is an arbitrary function and b is an
arbitrary vector whose components in the fixed vector
base i, j,k are b', b, b . Using Eqs. (A5) and (A6) for the
calculation for the terms in Eq. (A3), and exploiting the
two dimensionality (co=0, c), —=0) leads to the following
equation:

AM, H +eJVM, (g 0 +2g 8„)+ (u +v, )
B

Bx

+e g„(u +v„)—4 (g u, ) =0, (A7)
B

where we have used the linear dependence of the surface
tension upon the perturbed temperature. Equation (A7)
can be rewritten in terms of the stream function 4,

—F=V, cr —o(V n)n (A 1) JVM, O„+e'JVM, (g„„6 + 2g„O„y )+ (4 —4 )
B

where F is the traction on the interface, o. is the surface
tension, and V, is a surface gradient operator given by +e g(% —4„„)—4 (g+ ) =0.B

B
(A8)

V, =e=-- B

BQ

e being the reciprocal base vectors of the surface coordi-
nates and n is the normal unit vector. On the other hand,

This equation in the zeroth-order approximation is iden-
tical to the well-known boundary condition deduced in
Ref. 6 and widely used in other works. The first-order
terms in e account for the deformable free surface.
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