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Solvability conditions are derived for the asymmetric Saffman-Taylor finger. In the absence of
surface tension the solution contains two free parameters A and y,, where A is the dimensionless
finger width and y, is the degree of asymmetry. In the presence of surface tension, it is shown that
solvability conditions are not satisfied, signaling the appearance of a cusp on the finger boundary.
The mismatch angle, A8, due to this cusp is shown to be concave. An earlier postulate made in con-
nection with the wire experiment is clarified here, which states that A6 mainly depends on the
tangential slope of the finger profile. The remaining portion of this paper is devoted to understand-
ing recent experiments by G. Zocchi and co-workers and M. Rabaud and co-workers [Phys. Rev. A
35, 1894 (1987); 37, 935 (1988)], where fingers were perturbed by wires. Assuming the contact angle
created by the wire to be concave, we first show within linear approximation that, for y, <<1, the
absolute magnitudes of the mismatch angles created by the wire and the bubble at the center are the
same, establishing that all the results obtained by the bubble perturbations can be carried over to a
wire experiment. We then present a theoretical prediction for §, the distance between the tip of the
asymmetric finger and the wire at the center, as a function of external parameters. In the limit of
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small surface tension, the results are in fair agreement with the available data.

I. INTRODUCTION

In a previous paper' the author proposed a model for
the recent experiment performed by Zocchi, Shaw, Lib-
chaber, and Kadanoff.? They placed two wires symmetri-
cally along the center of a Hele-Shaw cell and observed a
transition from a symmetric to an asymmetric finger
shape as the pushing velocity was increased. The model
assumed that the wire creates a negative opening angle at
the contact point, and the analysis was carried out for the
symmetric finger. This analysis, together with an earlier
investigation on Couder’s finger’ with a bubble at the
tip,* has advanced our understanding of two fundamental
static external perturbations on the Saffman-Taylor
finger:> bubble perturbation* and wire perturbation,'
creating positive and negative opening angles at the con-
tact point, respectively. The dynamics® and stability of
the fingers’ with wire and bubble perturbations, however,
are still open questions. The selection mechanism for the
steady-state asymmetric Saffman-Taylor finger® has not
yet been fully investigated, either.

For the symmetric finger, the selection mechanism is
now completely understood.® ! In the absence of surface
tension, the experimentally measurable quantity A,
defined as the dimensionless width of the finger, enters
the problem as an undetermined variable® and thus a con-
tinuous family of solutions exists. The surface tension
breaks this continuous family into a discrete set and only
one of them is dynamically stable and selected.

For the asymmetric finger, however, there is an addi-
tional parameter y, which measures the degree of asym-
metry of the finger. Now the natural question to ask is
whether surface tension is enough to break the continu-
ous family of solutions and select a unique asymmetric-
finger state. Does a two-parameter continuous family of
solutions break into the discrete set? Or does the family
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of solutions simply cease to exist with surface tension?
To date, a steady-state asymmetric finger has not been
observed without an external perturbation such as a wire.
It appears that the zero-surface-tension solutions cease to
exist in the presence of surface tension. Recently,
Tanveer!! has shown that the two-parameter family of
solutions disappears when surface tension is turned on.
By assuming that the finger boundary is smooth, he has
written down the solvability condition and has shown
that it is satisfied only when the asymmetry parameter
yo=0. His solvability condition correctly yields the pre-
dicted % power law’® for the symmetric finger between A
and the small parameter v, which will be defined later.
The mathematical analysis, however, does not seem to
give a clear physical picture of what is actually happen-
ing to the zero-surface-tension solution when surface ten-
sion is turned on. The present analysis is based on
Tanveer’s linearized equation of motion for the finger
profile but several new results will be presented in this pa-
per. First, the solvability conditions derived in this paper
have a direct physical meaning and are different from
those obtained by Tanveer: surface tension creates a con-
cave cusp for the asymmetric finger at the center of the
cell. Second, the result can be directly applied to the wire
experiments of Zocchi et al. and Rabaud, Couder, and
Gerard.?

The outline of this paper is as follows. In Sec. II it will
be shown that for an asymmetric finger, two solvability
conditions should be simultaneously satisfied for a given
surface tension. The surface tension alone is not enough
to satisfy these two solvability conditions. Since the sol-
vability conditions are not satisfied, a cusp will appear at
the finger boundary in the presence of surface tension.
We will show in Sec. III that the cusp is concave (or by
an earlier definition has a negative mismatch angle) and
propose a model for the wire experiments performed by
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Zocchi et al. and Rabaud et al. by assuming that the
wire creates a concave cusp at the contact point. The
previously obtained results for the Saffman-Taylor finger!
are confirmed by a new derivation and new theoretical
predictions are presented and compared with experimen-
tal results.

II. SOLVABILITY CONDITIONS
FOR AN ASYMMETRIC SAFFMAN-TAYLOR FINGER
IN THE PRESENCE OF SURFACE TENSION

Consider the two-fluid motion in a two-dimensional
Hele-Shaw cell. The Hele-Shaw cell is made of two
infinitely long glass plates of width W, which are vertical-
ly a distance b << W apart. The side walls of the cell are
blocked and the motion of the fluid is confined along the
x direction (Fig. 1). Instability sets in when a less viscous
fluid pushes a more viscous one. This instability grows
and after a transient period, one single steady finger with
a well-defined finger width develops inside the cell. The
governing equations of motion for the finger in the cell
are very simple. The velocity v satisfies Darcy’s law
everywhere inside the cell:

b2
v 12 VP=V¢, 2.1)
where P is the pressure, u is the fluid viscosity, and ¢ is
the velocity potential. The fluid is incompressible and the
pressure P and ¢ will satisfy the Laplace equation:

V2$=0 . (2.2)

Two boundary conditions must be satisfied at the finger
boundary:

v, =g¢— s (2.3)
on

where v, is the normal velocity of the finger surface and
the derivative is taken along the normal direction, and

2

¢ =rbx 2.4)

12u

where ¢, is the value of ¢ at the surface and « is the cur-
vature. The viscosity of the pushing fluid is simply set to
zero. At the side walls, the normal velocity of the fluid
vanishes. In the absence of surface tension y, the above
equation was solved by Saffman and Tayor:® they ob-
tained a two-parameter family of asymmetric solutions.

A — .
’ ¢
V b

!

FIG. 1. Schematic picture of the Hele-Shaw cell.

For later purposes, we will write down their solution:

2 m(y —yo)
Eoly)= ﬂ_(l Mln |cos o
2y T T
+ —ﬂ—ln tan % + zx(y —Yo) , (2.5)

where §,(y) is the zero surface tension finger profile, A is
the dimensionless width of the finger, and y is the degree
of asymmetry ranging from O to 1.

What happens to this zero-surface-tension solution
when surface tension is turned on? In order to answer
this question, we now follow the standard procedures of
solvability theory established recently for pattern selec-
tion in nonequilibrium dissipative systems: Write down
the linear integro-differential equation for the shape
correction and look for a solvability condition by con-
structing the adjoint operator. After straightforward
algebra, we now obtain the following equation for shape
correction from Tanveer’s equation of motion [Eq. (20) in
Ref. 11]:

d’¢, d’g dé,

dgz
=4 —22 4 yP ()= + VP, (n)—=
Vd’fI2 vPo(n)dT'2 v l(n)dn vP,(7)

dn
+Q(n)é(n)=R (), (2.6

where
— Yo 2,211/2
Po(n)——n—-f(l“F/}n )e, (2.7a)
2 Py(m)
Pn)==h(n—=5—, (2.7b)
g T P
1 1—Pi(n)
Pyn)=——=h(n)——, (2.7¢)
27 B T+ P2y
h(n)=(1+52n2)+y7°/32n(1+B2n2)”2 , (2.7d)
[1+P2() P2
(n)=4p"———————, (2.7e)
Q(n 34 (1+an2)2 e
— vB? 2 2
=————[(1-A)(1+ )
(1+B2n2)2[ B )]
o 2, 21172
+kn(1+/3n) ) (2.7
1 p+=dn&i(n)  2q
(n)=—— —_— , (2.7g)
&(n Wf_w a—n 7 g
and the small parameters v and B are defined as
_ A
B—“ 1—A ’ (2.8a)
2,2
v=——b7;ﬂ—2 , (2.8b)
1R2uUW(1—A)
cot | =—(y —po) |=—B 2.9
oY Y = Yo n. .

The next step is to construct the null eigenvectors Z .
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to the adjoint operators of the homogeneous part of Eq.
(2.6). This is easily constructed by changing the signs in
front of Py(7n) and the P,(7n). Following the arguments
discussed in Ref. 12 and subsequently used in recent work
on Saffman-Taylor problems,l'4 we can construct an
equation of motion for the two null eigenvectors Z , :

d’z . dz ,
v Ao —vP_ () dn +Q.(n)Z,.=0, (2.10)
where
P ([ 1+iPy(n)]
2 [ 1+iPo(n)]?
=20 ipyy - e L
1+ B4 (1+8)[ 14 P2(9)]
(2.11)
__ 9
Q=T p (2.12)

WKB solutions to Eq. (2.10) can be easily constructed,
having the form

[1+iPy(n) )"

Zi(”):(lj/g;nz) [1+iP3) 8P iw‘igv) ’
(2.13)
where
szfndn'[liLPO(n)]”“[l¢iPo<v7>]3"4
\/V (1+B2) '

(2.14)

Note that Z . (n)=2Z _(7)*. In order for the solvabili-
ty conditions to be satisfied, Z, (17) must be orthogonal to
the inhomogeneous function R (7). Since Z, (7)) as well
as R(7n) are neither symmetric nor antisymmetric, the
solvability function II, defined as the inner product be-
tween Z () and R (%), will be complex and thus the
two solvability conditions must be satisfied. We find

M=(Z, ()R (n))=(Z_(9)R(n))*
= [ dnFnexp iﬂ’_ﬂ]
— Vi
=I1,—iIl, , (2.15)
where
2(1—2) Yo 1
Fm=— [¥YBU=A)
() 1+ A=A (1+8292) 2 J
(1+/32772)1/2 i
Vit Q () ( :

Note that if y,=0, I1, would be zero, and we need to
satisfy only one solvability condition II;=0. Nonzero y,
produces an additional term II,. We now use the
steepest-descent methods to evaluate the integrals I, and
IT,. In the presence of finite y,, the stationary phases
gain additional terms which are proportional to y,. By
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setting the denominator of W(7) to zero, we find that the
new stationary points 7. are given by

n,=+i Fim> . (B—1"2 if A>1 (2.17a)
_+._y0 20172 - i
__,+7(1—[3) if A<t (2.17b)

Note that for A> 1, the new stationary points move to-
ward the origin along the imaginary axis, while for A <1
they shift to the left, producing a real part. We now con-
sider two distinct limits: A <+ and A > 1.

(a) A < 1. In this case the branch cuts run from n==i
to *iw. Moreover, additional branch cuts run from
=14+ to 7+%ioo because the new stationary point 74
moves to the left. The steepest-descent path runs from
— oo to the branch point 1., cutting the imaginary axis
between *i and 0, and then runs away to T . The in-
tegration can be performed by expanding W(7) near
n=n, for [n—m | <<y, <<1:

1/4
— 2 _ 812 A2 _ 7/4
Y(n)=—B°G(A) 717 [1_2)L (p—mn )",
(2.18a)
where
Y(n,)
G )= ——0t
B
L, =)+ | Yo
2[ dx e S ASRICALL
with
1 1/2+x 1
(A= .
g fO x(1+x)3/4(1_x)1/4 (1_ﬁ2x2)l/2
(2.18¢)

The solvability condition (2.15) now can be evaluated
by the steepest-descent method. We find

_— 2y,B°g (1) 2y,B°g (A
=~ cos | ———=—— | — —_— ,
0 AVv AVv
(2.19)
where I is the solvability function for y,=0:
M= — NvA(2h— 1)1/143 = 1/7,,1/28
23%1,(1)
X exp —‘/—% 5 (2.20)
. 1 (1+x)3/4(1_ )1/4
Iy0)= [ dx g , (2.21)

and N =2.73 is a constant obtained by the linear theory.
Note that II, and II, oscillate rapidly as v—0 but out
of phase. We thus establish that the solvability condi-
tions are not satisfied for A < 1.
(b) A>1. In this limit the branch cuts run from
n==x(i/B) to iw. Therefore the stationary phase 7,
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which is above (or below for n_) the branch point,
should now be regarded as complex-conjugate pairs and
the steepest-descent path runs from 7n=—owo to
n=m=, —& with 6 << 1, running through the branch point
n=i/p back up to n=n,+9, and runs away to + .
The dominant contribution will come from integrating
around the new stationary point 77, but due to the cut
running from 7, to i /f3, one should also include the con-
tribution coming from integrating along this cut. The in-
tegration around m, produces the exponential factor
S (yg,A,v) with an imaginary term:

2

i2[32 (A)
L2 ) ]exp 12Bpog (1)

S(yg,A,v)=exp Ver
v

Vi

(2.22)

where g(A) is given by Eq. (2.21). The integration for
|W(n)| along the cut from the stationary point n=17, to
the branch point n=i/f3 consists of two parts. First, the
discontinuity in W(7) along the cut will be approximately
of the order of (2A—1)3/* by Eq. (2.18a). Second, the
contribution from the pole at =i/ can be estimated
easily by integrating W(7) around the pole, and the result
is
(2A—1)3

Gy . (2.23)
Combining all these contributions together, in the limit
A—1 and v—O0, the complex solvability function
IT=II,—iIl, can be approximately written as

2 2
I, =exp —T/TVIO(M
X cos iﬁéy{ (M+CO(”‘;_1’3/4}, (2.242)
IT,~exp —--2\;[3%10()»)]
X sin iﬁ‘z/}%’g(cho@%ﬁ . (2.24b)

where C is some constant whose precise value is not im-
portant. Note that both II; and II, oscillate rapidly as
v—0 but out of phase. Thus the two solvability condi-
tions cannot be satisfied simultaneously and zero-
surface-tension solutions disappear in the presence of sur-
face tension. We now turn to the wire perturbation.

III. WIRE PERTURBATION

In Sec. I, it was shown that solvability conditions are
not satisfied for asymmetric fingers, which implies, in the
language of solvability theory, that a cusp appears at the
finger boundary in the presence of surface tension. If one
is able to sustain this cusp by the external perturbation,
then one should observe asymmetric fingers. In recent
experiments performed by Zocchi et al. and Rabaud
et al., asymmetric fingers were indeed produced when
the finger boundaries were perturbed by wires. Four re-
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sults were reported in their experiments. First, when one
wire is placed at the center of the cell, an asymmetric
finger with A <1 develops. Second, when two wires are
placed symmetrically along the center of the cell, initially
symmetric fingers with A <1 develop but as the pushing
velocity increases A decreases and then suddenly under-
goes a transition to the asymmetric-finger state at the
critical finger width A,. Third, for given external condi-
tions, the finger width A appears to be the same as the
one obtained by perturbing the tip with a bubble.
Fourth, the distance & between the tip of the asymmetric
finger and the wire is a strong function of external param-
eters, whose functional dependence is unclear though
some attempt was made’ to predict 8 as a function of
external parameters. In a previous report,’ a model was
proposed to answer the first two questions. It was as-
sumed that the wire creates a negative opening angle at
the contact point and the contact angle mainly depends
on the tangential slope of the finger profile. This assump-
tion was made by the observation that the contact point
is pushed slightly backwards and creates a sharp cusp at
the point. In what follows we will briefly describe the
main result of Ref. 1. This section is devoted to under-
standing the remaining two questions in the framework
of the solvability theory of pattern selection. We will
rederive and thus confirm the previous results and then
present new predictions and compare them with the
available experimental data.

The starting point of the present analysis is to add to a
term on the right-hand side of Eq. (2.6) to represent a
cusp produced by external perturbations:

d’¢,  d’, dg, dé,
o +v - +VP1(TI)E+VP2(77)W+Q(T,)€I(U)

v

=R(n)+v3/737—’“Ae(n0>5(n-no). (3.1)

Here 7 is the tangential slope of the zero-surface-tension
solution and a cusp appears at =1, The mismatch an-
gle A6(7,) is the discontinuity in the tangential slope
which is defined as

a8 as
dx | _ dx |,
AB(ny) = 5 , (3.2)
%
dx

where {(x) and {y(x) are equations for the finger surface
with and without surface tension and + and — refer to
the limit approaching from left and right, respectively.
In Fig. 2 a schematic picture of positive and negative
mismatch angle is shown. The additional term on the
right-hand side of Eq. (3.1) represents an amount of
mismatch angle at =7, Regarding the whole right-
hand side as an inhomogeneous term and taking the real
and imaginary part of the null eigenvectors, £,(n) and
&,(m), to the adjoint operator, one can write down the
two solvability conditions IT, and IT,. For A < 1, we have
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(a) (b)

FIG. 2. Schematic pictures of fingers with positive and nega-
tive mismatch angles on the finger surface. (a) Positive
mismatch angle created by Couder’s bubble at the tip. (b) Ra-
baud et al. and Zocchi et al.’s negative mismatch angle created
by the wire.

21172
_ vpr (14 mp)
H1—71+—WA9(770)§1(770)
2yoB’%g ()
~ — Il cos % , (3.3a)
vBx (145"
I,=——————A0(19)5,(1,)
2 o 1+3277(2) M0)82(Mo
.| 2B ()
%+IIOSln T N (3.3b)
where I1; is given by (2.20) and §,§, are given by
1+ 1 28 _3
SO = (g2 < vy VMo~ 3¢
2
X exp —A@:\Pz(n) (3.4a)
Viy
2
Gam=¢i(mitan | 2w (n— 24 |, (3.4b)
v 4
where
tang=17 , (3.5a)
_— ’7 )1/4 1/291/72
W, (1) ‘/zf —7'_1"‘/32 1+ (14272,
(3.5b)
= 4 ) )2 17172
W,(n)= sz o [1+(1+p)'2—17172
(3.5¢)

We now consider two cases.

(a) Symmetric finger. y,=0. It is important to repro-
duce the earlier results of symmetric fingers obtained in
Ref. 1. In this case, §,(7) is purely antisymmetric and
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&,(n) and R (7)) are purely symmetric. Therefore IT, will
vanish automatically and §,(7,)=0. Therefore the fol-
lowing condition must be satisfied:

2%, __¢
\/; 770

sin =0. (3.6)

In the limit of v— 0 and for the most stable finger with
the smallest A, the solution of the above equation is
23

T Mo=T .

v 3.7

Upon performing the integral for II;, and using the above
relation, we obtain

_ B no
AB(n,) exp RV, A6(0) , (3.8)
where
—ary —1/7 1/14,,1/28 2p?
AB(0O)=NA (1=21)""*v""*®exp | —==1Ix(A) | .
Vv
(3.9)

Here Iy(A) is given by (2.21), the multiplicative constant
N=2.22, and A6(0)>0 is the mismatch angle at the tip
which opens up when the correct boundary is imposed at
the tail of the finger and the tip is relaxed. Using (3.7),
one can easily verify that A8(7),) is given by

] T
— ——1I,(A)
4 o 0

AB(7y) = —exp exp (3.10)

Note that AO(7,) cannot be greater than 27. There-
fore we expect that our analysis breaks down for large 7.
Since I(A) is insensitive to A except at A near 1 (see Fig.
3),!3 we thus establish that the mismatch angle A8(7,)
mainly depends on the slope 7, which was postulated in
Ref. 1 as an attempt to explain the experimental observa-
tion made by Zocchi et al. They placed two wires
symmetrically along the center of the cell and pushed the
fluid from the left. Initially, narrow fingers of A <1, de-
velop and A decreases as the pushing velocity increases.
Then the finger undergoes a sudden transition to an
asymmetric finger at a critical finger width. The model

,0.),

2.0 —

1.0 H—

0.0 1 | | | 1 >
0.0 0.3 0.5 }"

FIG. 3. Values of Io(k ) defined in Eq. (2.10) as a function of
A. Apart from A close to 3 L Iy(Q) is insensitive to A.
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proposed in Ref. 1 assumes that as the fluid is pushed, the
contact angle made by the wire increases, and that there
exists a critical contact angle at the finger surface above
which the finger is no longer stable. Even though the as-
sumption about the stability of the finger is debatable and
requires a detailed stability analysis, the existence of the
maximum contact angle is a quite reasonable assumption.
Once this assumption is made the rest of the analysis is
straightforward. Since A8(7,) mainly depends on 7, by
Eq. (3.11) there should exist 7, in 1 space where the
mismatch angle hits the maximum. 7 is the tangential
slope at the finger boundary. By differentiating Eq. (2.5)
for the symmetric finger, one finds that

1—A (D)

= t
= "% "

D
4A.(D)

) (3.1

where D is the distance between two wires, and A.(D) is
the critical finger width. We set 77, as a free parameter in
this paper and fix it by the experimental data of Zocchi
et al. Zocchi et al. placed two wires the distance
D=0.1328 and observed a transition at A, ~0.41. Thus
we find 7.=0.374. Once 7, is determined, (3.12) gives
the desired relation between A, and D. For example,
when D=0.0944, Zocchi et al. observed a transition at
A,.=0.35, while (3.2) with 7, =0.374 predicts A, =0.357.
At present, however, there are not sufficient data to
check (3.11). We now turn our attention to the asym-
metric case.

(b) Asymmetric case. We consider the case y,5£0 with
the mismatch angle opening up at the center of the cell.
This case will describe the experimental situation where
one wire is placed at the center of the cell: y=0. One
can easily find the tangential slope at y=0 by Eq. (2.5),

= (1—2) tan
No }\'

mYo
2A

(3.12)

Substituting Eq. (3.12) into Eq. (3.3) and using (2.19) for
I1, and II,, one obtains the following two solvability con-
ditions for A <1, the central result of this paper:

Vo 2B%08 (L)
t —_— |~ —t —_— .
an Ve—1 ] v R (3.13a)
AB(y =0,y,)cos -\/—_‘%%)\—)
28,8 (X)
=~AB(y =0,y,=0)cos —ﬁ—{j—_g—*— S (3.13b)

(3.13a) was obtained by dividing both sides of (3.3a) and
(3.3b), and (3.13b) was obtained from (3.3a) by using
(2.19) and (3.9). As we will see, the above two solvability
conditions contain all the relevant information for the
wire experiments. From (3.13a) and (3.12), we find

Vo Yo ___ 2pBg)
Vv(l—A) ~ VB AWy
=q—-22gA) o (3.14)

m(1—A) VB’
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where we define B, the new experimentally measurable
variables, as

(1—1)?
—— %V
m

Note that when (3.14) is satisfied, the angle
AB(y,,y=0) becomes negative. This explains why one
never observes a symmetric finger with wire at the center
because the mismatch angle for the symmetric finger at
the tip is always positive. Moreover, (3.13b) says the abso-
lute magnitude of the mismatch angle created by the wire
for nonzero y, is precisely the same as the one which opens
at the tip for the symmetric finger. In what follows we
show how this explains the experimental observation
made by Rabaud et al. that the finger width with one
wire at the center appears to be the same as those ob-
tained by the bubble. Since AO(y,=0,y =0) is a function
of both A and B, for fixed mismatch angle, the above
equation and (3.14) produce relations between B, y,, and
A. The mismatch angle is determined by the experimen-
tal conditions at the contact point and in general we do
not know the precise value. However, in comparison to
the experiment, the precise knowledge of A@ is not im-
portant. First, the mismatch angle A6 is not the same as
the contact angle and is unobservable. Second, A and y,
logarithmically depend on Af(y,=0,y =0) for a given B,
by (3.9); thus one can safely assume Af8(y, =0,y =0) as a
constant if it does not change dramatically. The precise
prediction of (3.13b) becomes clear when we display A8
in terms of external parameters. We find the same result
as was obtained in Ref. 4. [See Eqgs. (3.4) and (3.5) of Ref.
4.] The present linear theory predicts that the finger
width obtained by the wire perturbation should be pre-
cisely the same as the one obtained by the bubble pertur-
bation for the symmetric finger at the tip. The correction
is at least second order in y, and is negligible in the linear
approximation.'* This explains the experimental obser-
vation of Rabaud et al. They perturbed the finger by the
wire and found that for given B, the finger thickness is the
same as the one obtained by the bubble perturbation.

Here we are establishing that all the experimental re-
sults obtained by the bubble perturbation can be carried
over to the one wire experiment in the limit y, <<1. Ex-
amples are: (1) if the external parameters are kept con-
stant and only the wall size is allowed to change, we
would expect the same result as the one obtained by the
bubble perturbations. (2) Dependence of the tip radius as
well as the finger width on the external parameters for

B =- (3.15)

R 2
* w

f
T

FIG. 4. Distance 8 from the tip of the finger to the wire at
the center.
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TABLE 1. Comparison between the theoretical prediction
(3.16) and the experiments of Rabaud et al. and Zocchi et al.

A g(A)
0.1 1.0496
0.2 1.0629
0.3 1.0983
0.4 1.1987
0.45 1.3371

the asymmetric finger is also the same. (3) With one wire
in a radial Hele-Shaw cell, we will obtain the same pre-
diction as in the bubble experiment: The dimensionless

group

75
120U

is selected, in the limit U —0, at
0*~0.379/[In(A0)]?

[Eq. (3.9) of Ref. 4]. What is not clear at present, howev-
er, is whether the above results apply equally well to the
experiment with one wire at any point. Rabaud informed
us that the lateral wall does not seem to have any effect
on his result, indicating that the position of the wire is
not important.

We now compare another prediction, Eq. (3.14), with
the experimental results of Zocchi et al. and Rabaud
et al. They measured the distance between the tip of the
asymmetric finger and the wire. Note that this distance
is not y,. Let this distance be 8. (See Fig. 4.) Then & will
be the distance between the tip of the asymmetric finger
and the center of the cell y=0. By differentiating Eq.
(2.5) one can locate the tip and find

2
o~ |1+ o
1 2A —~ 1 2A
~m 14 L2 |y _12x ,
+ s B/ I+ e |, 616

where g (1) is given by Eq. (2.18¢c) and Eq. (3.14) is used
to obtain the final relation. The value for g (1) is given in
Table I. Note that in the above equation, there are no ad-
Jjustable parameters. All the parameters that enter (3.16)
are the experimentally measurable quantities. In Table II
are shown theoretical predictions and the experimental
results of Zocchi et al. and Rabaud et al. The agree-
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TABLE II. Values of g (A) for different values of A.

1/B 1/ 5 (expt.) 8 (predicted)
2500 0.4 0.09-0.13 0.097
6110 0.345 0.067-0.042 0.0388

17 280 0.3 0.040 0.0234

ment with the experiment seems to be fairly good, given
the fact that the error bars in the data are quite big.
More precise experimental data are needed to check
(3.16).

In summary, we have considered the selection mecha-
nism of asymmetric Saffman-Taylor fingers and derived
not one but two solvability conditions. Surface tension is
not enough to break the two-parameter continuous fami-
ly of solutions, characterized by the dimensionless width
of the finger A and y, the degree of asymmetry. A con-
cave cusp appears on the finger boundary in the presence
of surface tension. For y,<<1, the magnitude of this
concave cusp is, within linear approximation, precisely
the same as the one which opens at the tip of the sym-
metric fingers. Therefore all the results obtained in the
bubble experiment should be carried over to one wire ex-
periment at the center. We then showed how the recent
wire experiments of Zocchi et al. and Rabaud et al. may
be understood from the viewpoint of the solvability
theory of pattern selection by assuming that the perturba-
tion caused by the wire is effectively equivalent to open-
ing a concave cusp at the contact point. We found fair
agreement with the theoretical predictions and the avail-
able data.

Note added in proof. The author has recently learned
that Shaw'® obtained a similar result for the asymmetry
parameter y, in the presence of wire perturbation. If we
set g (A)=1in (3.14), it reduces to his result.
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