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Semiclassical description of harmonic quantal Brownian motion

E. S. Herna. ndez and H. M. Cataldo

(Received 27 June 1988)

By means of the Wigner transformation procedure, we extract a generalized Fokker-Planck equa-
tion that represents the semiclassical version of the quantal master equation for Brownian harmonic
motion. The Fokker-Planck equation and its solutions are investigated both in the Markovian and
in the non-Markovian regimes. The relations between semiclassical and classical Brownian motion
of harmonic oscillators are analyzed with special emphasis on the high-friction limit.

I. INTRODUCTION

The theory of classical Brownian motion (CBM) was
first investigated by Einstein' at the beginning of the cen-
tury. From those early studies up to the present time, a
lot of work has been published exploring the various
features of CBM (see, for example, the review of Risken ).
On the other hand, quantal motion in the presence of a
heat bath, i.e., quantum Brownian motion (QBM) was
first studied in the sixties, introducing the so-called
quantum Langevin equation. Subsequently, many papers
extending those early approaches were published,
dealing mainly with QBM of oscillators. Treatments of
the damped harmonic oscillator have been also common
in the context of quantum optics. ' ' In addition, the
harmonic QBM can be regarded as an approach to the
description of damped collective motion in finite quantal
systems such as nuclei. ' ' In such a framework, the
analysis of the relations between hydrodynamical and mi-
croscopic models is an interesting problem which may be
explored through the extraction of semiclassical equa-
tions of motion from the quantum microscopic ones.
Then, these semiclassical equations have to be analyzed
focusing upon its classical or quasiclassical features in or-
der to investigate a possible hydrodynamical descrip-
tion. '

In the present work, we have developed an investiga-
tion of the preceding type, specifically, we have explored
the classical features of harmonic QBM. To this aim, we
found it useful to consider an exact semiclassical version
of the quantal equations which is obtained by means of
the Wigner distribution function. - We prefer this
quasiprobability representation to the Glauber-Sudarshan
P function or other related representations, which
have been successfully applied to these kind of problems
in quantum optics, "' ' since Wigner's distribution
function has been shown to be a powerful tool in clarify-
ing the connections between classical and quantum statis-
tics. ' ' Actually, we show that Glauber's P function
fulfills the same formal equation as Wigner's distribution.
However, the former presents certain drawbacks related
to its well-known singularities appearing in the descrip-
tion of nonclassical states. Particularly, it is remarkable
that the P solutions for harmonic QBM at zero tempera-
ture are singular.

This paper is organized as follows. In Sec. II we ex-
tract, in the Markovian approximation, the semiclassical
equation of motion which has, as expected, " a Fokker-
Planck structure. This equation is exactly solved and, in
Sec. III we study the relation between the Markovian
QBM and the high-friction CBM. In Sec. IV we consider
the semiclassical version of the non-Markovian QBM
finding the forrnal solution whose explicit form depends
on the characteristics of the unspecified heat reservoir;
however, an explicit solution which generalizes previous
treatments " can be obtained in a weak non-
Markovian regime. In Sec. V we make a comparison be-
tween the non-Markovian QBM and the general CBM.
Finally, the main results of this paper are discussed and
summarized in Sec. VI.

II. SEMICLASSICAL VERSION
OF THE QBM MASTER EQUATION

In this section we will consider the master equation
that rules the motion of the phonon population p„(t), ac-
cording to'

p„(t)= W+[(n +1)p„+,(t) —np„(t)]

+ W [np„,(t) —(n +1)p„(t)],
where 8', are constant transition rates whose detailed
expression depends on the characteristics of the heat bath
and its coupling to the oscillator. Equation (2. 1) is the
Markovian version of a more general non-Markovian
one' ' ' ' which will be considered in Sec. IV. The
loss-of-memory-process undergone by an initial oscillator
density p„(0) that moves according to (2.1) and the possi-
bility of occurrence of non-Gibbsian equilibrium solu-
tions have been discussed in Ref. 31.

Our current purpose is to derive the semiclassical
counterpart of Eq. (2.1) according to Wigner. Let us
first consider the density operator p=g, ", op„n )(n,
where

~
n ) is a ket in the Fock basis. It is well known"'

that the Wigner transform of the corresponding projector
1s

W( n ) (n ) =( —I )"2L„(4HlfiII )exp( —2H/fif), ), (2.2)

where L„(x) is the nth Laguerre polynomial and

39 2034 1989 The American Physical Society



39 SEMICLASSICAL DESCRIPTION OF HARMONIC QUANTAL. . . 2035

W( f') = I (q,p) = q+
&2m fin

(2.3)

With this in mind, it is easy to compute the Wigner
transform of the canonical distribution, actually the
strongly stable fixed point of Eq. (2.1),

pa = (1 P) —g P"
I
n ) & n I,

n)0

with

(2.4)

P=W /W+ . (2.5)

Notice that the ratio p coincides with the Boltzmann fac-
tor e ",with T the equilibrium temperature of the
heat bath, only if the coupling device is strictly energy-
conserving; ' ' otherwise, the probabilistic parameter
(2.5) depends on an extra microscopic energy coefficient
related to the inelasticity width. In such a case one is en-
titled to speak of a non-Gibbsian behavior; ' ' ' however,
this detail does not interfere with the foregoing analysis.
Using expression (2.2) we find

po= W(po) =2(1—p)e " g ( p)"L„(4H—/fin) .
n)0

(2.6)

Now the summation in (2.6) is just the generating func-
tion of the Laguerre polynomials, provided that p( 1, a
condition generally fulfilled on physical grounds. ' Con-
sequently, we may write,

1 —P 1 —P H
po(H) =2 exp —21+ 1+ irin

(2.7)

This result has been previously obtained ' ' using
diFerent methods. A look at Eq. (2.7) makes the follow-
ing points apparent: (i) the semiclassical canonical distri-
bution is isotropic in the (q, p) phase space; (ii) it is nor-
malized, i.e., in angle-action variables,

(2.8)

(iii) the form (2.7) corresponds to a classical canonical
distribution for an oscillator in equilibrium at an effective
temperature T,ff given by

kT, ff
= an 1+P rn w++w-

2 1 —P 2 W+ —W
(2.9)

The actual temperature T of the heat reservoir, as well as
the typical energy parameters of the coupling mecha-
nism, enter the structure of this effective temperature
through the microscopic transition probabilities W+. In
particular realizations of these rates, one could analyze
whether the actual temperature T coincides or not with
the effective temperature, namely, with the equilibrium
parameter of the semiclassical counterpart of the quantal

H =p /2m+(m/2)n q is the classical oscillator Ham-
iltonian. In turn, the c variables p and q are related to the
Wigner transforms of the phonon creation and annihila-
tion operators I,I, since

' 1/2

canonical density regarded as canonical in classical phase
space. One may visualize expression (2.9) as preserving,
through the "Wignerization" procedure, the basic quan-
tal nature of the system.

We are now ready to analyze the Wigner transform of
Eq. (2.1). If we take into account that (2.1) is the diago-
nal matrix element of the operator equation'

p=-,'w (2f'Pf'" —Pr'r —r'rP)
+-,'w (2r'pr —rr'p —pI I ) (2.10)

where

(2.12)

and with kT, tt given in Eq. (2.9). We note that the miss-

ing angle in Eq. (2.11) is thoroughly related to the miss-

ing oF-diagonal matrix elements in Eq. (2. 1).
An equation of similar form rules the motion of the

Glauber-Sudarshan quasiprobability distribution
function P(a). In fact, this equation can be obtained
from (2.11) by means of the formal replacements

p —+P, (2.13a)

(2.13b)

kT, ft~nTH =(p ' —1) (2.13c)

The correspondence (2.13b) is not surprising if we recall
that the complex variable n is associated to the coherent
state ~a ) which fulfills

& a/H„„/a) —/ai'. (2.14)

in the classical limit ~a~ &&1.
Notice in (2.13c) that kT, tt must be replaced by the

number of thermal phonons which vanishes for P~O,
i.e., for a configuration of vanishing equilibrium tempera-
ture. On the other hand, kT, tt [Eq. (2.9)] tends in that
case to the zero-point energy AA/2. This different behav-
ior of both parameters have important consequences as
will be shown in what follows. In fact, (2.11) has the
form of a one-dimensional Fokker-Planck equation (FPE)
with variable drift and diffusion coeKcients. One can
straightforwardly verify that it can be written in the stan-
dard manner,

ap(H, t)
at [D ' ' '(H)p(H, t) ]aH

a2+ [D' (H)p(H, t)],aH' (2. 15)

and examine the form of the Wigner transform of any
threefold product in (2.10), employing standard product
rules, ' ' we readily conclude that an expansion up to
order A yields the exact result for the required trans-
form. This is a consequence of the fact that the semiclas-
sical phonon operator I (q, p) in Eq. (2.3) possesses van-

ishing second derivatives in phase space. After some
algebra, the final result is easily expressed in action vari-
able representation as

a ==v p+(H +kT ~) P +kT ttH P, (2 11)a a2

at aH
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with the rates

D I ' '( H ) = v( k T,tt H—),
D'~'(H)=vkT„~H .

(2.16a)

(2.16b)

Bp D vy Bp(y, t ) 8'p(y, t )
(y, t)=vp y, t)+ —+

dt y 2 t}y Qy

(3.3)

Then, in Glauber s picture, the diffusion coefficient
(2.16b) becomes proportional to the number of thermal
phonons (2.13c) which may vanish leading to a singular
diffusionless FPE. On the other hand, the diffusion
coefficient in Wigner s representation remains definite
positive for any temperature. We may conclude that this
behavior is showing the well-known drawbacks of the
P function for describing nonclassical configura-
tions. 3 ~6 2' ' The general solution of (2.11) can be spec-
trally decomposed as

vkT, ff
R (y, t) = yp(y, t)

2D
permits us to write Eq. (3.3) in the form

aR(y, t) a [„„I()R( )]+Da'R(y, t)
Bt 9y By

with the new drift parameter

(3.4)

(3.5)

A FPE is not immediately recognized in (3.3); however,
one more transformation to a deformed distribution

p(H, t)= g A, e "'e "LI(H/kT, tr),
1~0

(2.17) d (1)(y )
D v

2
(3.6)

This normalization condition persists during the evolu-
tion; indeed, (2.17) allows us to write

f dx p(kT, ttx, t)= g Aie "'f dx e 'L((x)L0(x)
0 l~0 0

=+Ac ''5 =A
100

(2.20)

It is also important to notice that, as expected, the
spectrum of eigenvalues of the semiclassical QBM is iden-
tical to the spectrum of the Markovian master equation, '

being both of them,

A. , = —Iv= —I( IV+ —JY ); I =0, 1,2, . . . . (2.21)

III. RELATION OF THE SEMICLASSICAL
QBM TO THE HIGH-FRICTION CBM

The general one-dimensional FPE (2.15), with drift and
diffusion rates given in (2.16), admits a further transfor-
mation. Indeed, the semiclassical Brownian motion de-
scribed by this equation is related to a classical,
constant-diffusion process undergone by a variable y (H)
defined as

y(H)= f dz[D/D' I(z)]'
0

with D an arbitrary positive scaling constant, i.e.,

(3.1)

with the amplitudes related to the initial condition
p(H, O) in the usual way,

dx Ll x p kTeffxy0
0

The validity of decomposition (2.17) is asserted in Ap-
pendix A. Since LD(x) = 1, we have

kT, ff kT, ff
dx p kT,ffx, 0 = O' Trp 0 =1 .

AA AA o

(2.19)

It is interesting to notice that, since this coefficient van-
ishes for y =2D /v, corresponding to H =k T,ff /2, the
FPE (3.5) is locally a pure diffusion equation with a con-
stant diffusion rate D.

Expression (3.5) is a Smoluchowski equation that de-
scribes the classical Brownian motion (CBM) of a one-
dimensional oscillator in the high-friction limit. The
variable y is the oscillator coordinate, in such a case, and
the drift parameter (3.6) is proportional to the ratio of a
conservative force to a dissipative one with friction
strength g

d ' (y)=F(y)/Mrt, (3.7)

S(y)=D —d ' (y)R(y) .
BR (y) I~I

By

For vanishing S(y), one finds,

(3.9)

y d" '(z)
Ra(y) —exp f dz =exp[ —V (y) /MgD],

o D

(3.10)

from where we obtain

where M is the oscillator mass. The conservative force
may be derived from the potential

V(y) = —f F(z)dz =(Mgv/4)y MrID lny .— (3.8)
0

We can then appreciate that, in view of the origin of Eq.
(3.5), which arises, after a series of transformations, from
the semiclassical counterpart of the QBM master equa-
tion, we are left with a family of classical oscillators of
frequency tv =(gv/2)'~ and mass M (the parameters of
the family being g and M) placed in the field of a linear
source with strength MDg. This strength is arbitrary,
however nonvanishing; its actual value is unimportant, as
one realizes after examination of the equilibrium solution
of (3.5). This solution corresponds to zero current S(y),
with

vkT, ffyH=
4D

(3.2)

One can then extract, out of (2.11) or (2.15), the equation
RD(y)-y exp vy

4D
(3.1 1)
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After normalization of (3.11), using (3.2) and (3.4) we
recover the classical equilibrium distribution (2.7), 2

(3.15)

po( H ) = exp( H—/k T,~ ) .
AB

ff

(3 1 2) This equation is

Bp co co Bp k~ IT' t) (y, t)
(y, t) = p(y, t) + y (y, t) +

Bt
'

g
'

g By
'

Mg By
2

(3.16)

and is identical to the FPE in velocity space for a particle
of mass M(g/co) undergoing CBM with a friction pa-
rameter t)'=co /g (cf. Ref. 2). It is straightforward to
find stationary solutions of (3.16) of the form

]/2
M co

2kT, ff

~2 Mc02y 2

p, (y, t) =exp —I t — H,
2kT, ff

D =kT,ff/Mg, (3.13)

From the preceding discussion, we see that the value of
the constant D itself is unimportant, since it plays the
role of a scaling factor in a change of variables when go-
ing from the FPE (2.15) to the Smoluchowski one (3.5).
However, if we recall that in the description of CBM of
an oscillator, the fluctuation-dissipation theorem relates
the diffusion parameter to the friction coeKcient. by
means of the equilibrium temperature as

it becomes apparent from the expression of the effective
conservative potential (3.8) that the logarithmic deforma-
tion with respect to the harmonic potential occurs with
intensity kT, ff. In fact, this singularity arises from the
Jacobian of the nonlinear change of variables (3.2); we
further recognize that, if we adopt the fluctuation-
dissipation rule (3.13), the preceding change of variables
reads,

H=Mg —y4
(3.14)

The latter expression and (3.8) show once again that the
variable y is the position coordinate of an oscillator with
mass M and frequency co=(gv/2)'~ that performs CBM
while stimulated by a logarithmic singularity —kT, fflny.
Indeed, in the high-friction limit, the kinetic energy of an
oscillator adds a negligible contribution to the potential
energy (3.14).

Let us now briefly consider the spectrum of the Smolu-
chowski equation for a free harmonic oscillator, i.e., with
a drift coefficient [cf. (3.6)]

(3.17)

with H, (x) the lth Hermite polynomial. 3'

We realize that the eigenvalues KI= —leo /g are just
one half of the eigenvalues A, l [cf. Eqs. (2.21) and (3.15)]
of the Smoluchowski equation (3.5), since the latter is
equivalent to the FPE that represents the semiclassical
version of the QBM. This difference should thus be as-
cribed to the logarithmic singularity, that is missing in
the CBM problem (3.16). One could then speculate that
such a singularity is deeply connected to the basic quan-
tal nature of the system undergoing the semiclassical
motion (3.5).

IV. SENIICI.ASSICAI, VERSION OF THE
NON-MARKOVIAN QBM MASTER EQUATION

The generalization of the master equation (2.1) to non-
Markovian situations ' ' leads to the integro-
differential operator equation [cf. Eq. (2.10)]

p(t) = f dr[ —,
' W (r)[2I p(t —r)l —p(t —r)r" 'r —r 'rp(t —r)]

+,' W (~)[2r'pt —~)r —rr'pt r) pt ——~)r—f'']I, (4.1)

where W+(r) are the instantaneous transition rates, similar to the constant ones in Eq. (2.1), whose explicit form de-
pends on the characteristics of the heat bath and its coupling to the oscillator. The Wigner transform of Eq. (4.1) is
easily obtained by the same method which led from Eq. (2.10) to Eq. (2.11) yielding a non-Markovian FPE,

di ( W+ —W ),p(H, t —~)+ (W+ —W ),H+ ( W++ W ),
t o 2 ' H

+ ~II H(W + W )
r) p(H, t —w)

2
(4.2)

Taking into account the convolution form of the right-hand side of Eq. (4.2) it is convenient, in order to solve this equa-
tion, to perform a Laplace transformation, introducing the complex density

p(H, A. ) = f d~e 'p(H, r)
0

(4.3)

The transformed equation from (4.2) reads



2038 E. S. HERNANDEZ AND H. M. CATALDO 39

Ap(HA) p(—H t =0)=( W+ —W )p(HX)+ H( W+ —W )+ ( W+ + W ) (HA)an ap

a2+ H(W++ W ) (H, A),
2 BH

(4.4)

where 8'+ are here the Laplace transforms of the time-
dependent W+(r) and represent transition ratelike func-
tions W+(A, ). Equation (4.4) for the transformed density
p(H, A, ) can be written as follows:

lim p(H, t)=0 .
&~ oo

(4.12)

Actually, from Eq. (4.6) it is easy to see that (4.7) is
equivalent to the condition

BH BH
~P(A. )~ & 1,

where

(4.13)

p(H A)+ ' =0
8+ —8 /3(k) = W (A. )/W+(k) . (4.14)

(4.5)

where kT, ff- now represents a complex temperaturelike
function [cf. Eq. (2.9)]

W+(A, )+ W (k)
kT ir:kT tr(A. )=

2 W+A, —W (X
(4.6)

In Appendix 8 we show that the general solution of Eq.
(4.5) can be obtained under the restriction

Re[kT, tr(A, )] & 0;
this solution reads

p(H, X) =exp( H/kT, ft. )—

(4.7)

X g A„(k)L„(H/kT, tr),
1

0 ( W'+ —W n+ A.

(4.8)

with the amplitudes A„(A. ) related to the initial condition
p(H, t =0),

A„(A, ) = f p(H, t =0)L„(H/kT, ft )dH .
kT~ o

(4.9)

[wn(A. )
—W+(k)] (4.10)

for n =0, 1,2, . . . . Finally, antitransformation of Eq.
(4.8) yields the desired expression for the time evolution

1
p(H, t)= g e ' Res

n. «0
I

X exp[ H/kT, s(A„)]- ,

XL„[H/kT, s(k„)]A„(X„), (4.1 1)

where A.„denotes the ith root of Eq. (4.10). From ex-
I

pression- (4.11) we may realize that the property (4.7)
preserves the boundary condition of the Wigner distribu-
tion function '

Taking into account Eqs. (4.7), (4.8), and (4.9) we realize
that the only poles of p(H, A. ) are the roots of the equa-
tion [cf. Eq. (2.21)]

In Ref. 31 it has been shown that condition (4.13) ensures
the convergence of the solutions of the non-Markovian
QBM master equation.

The equation (4. 10) which gives the non-Markovian
frequencies has been specially studied considering a fer-
mionic reservoir whose particles interact with the pho-
nons of the oscillator through inelastic collisions. ' In
this case, the functions W+(k) take the explicit form

W+(X)=2g'/r'y ~X. ~'
(@+A.) +(co „—II)

p„( I —
p )

p (1 —p„)
(4.15)

where g is a spin-isospin degeneracy factor, y is the
inelasticity width whose inverse y =~„„,represents a
correlation time or lifetime of a microscopic particle-
phonon collision, co „=( c —s„)/fi with c.„a single-
particle energy, p~ is a Fermi equilibrium distribution at
a temperature T as a function of c.~, and A, „are interac-
tion matrix elements.

In Eq. (4.15) we can recognize a generic structure
which does not depend on the fermionic nature of the
heat bath,

(4. 15')

where the summation involves only phonon creation (an-
nihilation) processes for W (W+ ). The energy
difference hap measures the inelasticity of the process p,
which has, as well as all of them, a characteristic inelasti-
city width given by the parameter Ay. Each process p is
weighted in Eq. (4.15') by a coefficient W which general-
ly depends on the density matrix of the heat bath and on
the interaction Hamiltonian.

The inelasticity parameter Ay accounts for energy
losses in general. For instance, inelasticity could arise
from unspecified heat baths which are coupled to the sys-

tem. In this case, y
' should represent the fastest dissi-

pative relaxation time introduced by these reservoirs.
Another physical realization of the inelasticity involves
certain hidden degrees of freedom or unobserved interac-
tion channels which, however, are participating in the
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overall relaxation process.
Now we will focus upon the most common situation

where one has a phonon frequency 0, much smaller than
the inelasticity width y, however, we must point out that
this assumption does not lead to the Markovian limit.
In fact, one may realize that expression (4.15') can be ap-
proximated by

p(H, t)= g A„e "~'" cosh —a„t

+ sinh —o. t
1 . y

n
An

Xe ' L„(H/kT, tt), (4.23)
(4.16)

since

(4.17)

(A —A+)=
y+Z + y+X ' (4.18)

where we have A+ —A = A &0 according to (4.13).
The roots of (4.18) can be easily obtained giving

2

A, „—= —y/2+ —n 3
4

1/2

(4.19)

The validity of Eq. (4.16) for k not very close to —
y has

been tested in Ref. 30. Assumption (4.16) causes Eq.
(4.14) to become independent of A and equal to the gen-
eralized Boltzmann factor (2.5). Therefore if the total
weight (gt Wi ) of phonon-annihilation processes is
larger than the corresponding quantity for phonon-
creation processes (this condition could establish certain
selection rules on the interaction matrix elements '), then
condition (4.13) is fulfilled. Equation (4.10) can be writ-
ten, using (4.16), as

where one may verify that the reality of the Wigner dis-
tribution function is preserved, since, according to
(4.22), the coefficients a„can only assume real or imagi-
nary values. We must remark that the result (4.23),
which generalizes the Markovian one given in Eq. (2.17),
was derived under the hypothesis (4.17) (II «y) and is
therefore valid in a weak non-Markovian regime.

A non-Markovian approach to harmonic QBM was in-
vestigated earlier by Haake. ' In that work, he con-
sidered a harmonic oscillator coupled to a bath of har-
monic oscillators and, since this problem is exactly solv-
able, he could test the validity of the Born approxima-
tion. He extracted (in a weak non-Markovian regime)
analytical expressions for the relaxation frequencies cor-
responding to the energy (mean number of phonons)
which, in our approach, correspond to n = 1 in Eq.
(4.19). ' ' It is not possible to perform an explicit com-
parison between these results and those of the present pa-
per, since the non-Markovian analysis is strongly depen-
dent on the assumptions regarding the reservoirs and the
interactions. However, it is worthwhile noticing that in
both works one finds that the non-Markovian regime
presents damped oscillations which otherwise remain
unobserved in the Markovian approximation (see Sec. V).

The Markovian limit arises from Eq. (4. 19) in the over-
damped case with high inelasticity, ' i.e., 4n 3 /y ((1,
then we must neglect one of the roots, namely, that near—y and the other one yields the Markovian spectrum [cf.
Eq. (2.21)]

V. RELATION OF THE SEMICLASSICAL
NON-MARKOVIAN QBM TO THE GENERAL CBM

The motion of a classical harmonic oscillator in a heat
bath subjected to friction-plus-Gaussian random forces is
described by the Kramers equation-

k,+, = —nA/y . (4.20)
Bp(x, u t) 8 0 kT c) pvp+ (tv+co x)p+g

Now, taking into account the approximation
(4.16)—(4.19) it is easy to calculate the residues in Eq.
(4.11),

(5.1)

Here p(x, u, t) is the probability density in phase space
(x,p/M). The spectral problem of this equation is also
known and we recall the eigenvalues

Res(A„-) =
2An

(4.21) k, „=—
—,'i)(n, +n, )

—
—,'(il —4'')' (n, —n, ) (5.2)

where

for non-negative integers n
&

and n2. We may recognize
the high-friction limit 4~'/g' «1, namely, a special lim-
it of the overdamped case,

a, =(1—4n 3 /y )' (4.22) = —gn, (1 —cu /g )
—n m / (5.3)

We can see from (4.21) that, in the Markovian limit
(4nA/y «1), the residue of the Markovian pole (4.20)
tends to unity while the residue of the spurious pole k„ is
negligible. Finally, using the preceding results, we can
get an explicit expression for (4.11),

and observe that the spectrum of the Smoluchowski equa-
tion (3.16) is precisely the highest-lying branch (lowest
absolute value of the eigenvalues), n, =0. We recall the
existing isomorphism between the latter spectrum and
that of the Markovian QBM which was discussed at
length in Sec. III. Although in the high-friction CBM as
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well as in the Markovian QBM two very different time
scales arise, we must remark that Kramers equation for
general CBM does not involve any non-Markovian hy-
pothesis. In fact, it arises from a Langevin equation
driven by Gaussian white noise and it is well known
that such processes imply Markovianity.

We find also similarities between the spectra (4.19) and
(5.2); they possess damping parameters, namely, 4A /y
and 4' /g, respectively, which if larger than unity lead
to an underdamped regime, i.e., only complex frequen-
cies. However, we must point out the different structure
of both damping parameters; in the classical case, 4' /q
is proportional to the square of the oscillator frequency,
on the other hand, in the QBM, 3 is proportional to the
square of the interaction matrix elements [cf. Eqs. (4.15)
and (4.15')]. Another difference between CBM and QBM
arises from the fact that the latter does not possess a
properly overdamped regime, since Eq. (4. 19) always can
give complex frequencies for large enough n.

VI. SUMMARY

We have extracted the semiclassical (Wigner) descrip-
tion of the QBM master equation in both the Markovian
approximation and the full non-Markovian version. In
the Markovian regime, the equation of motion for the
Wigner distribution function of the quantal oscillator is a
general FPE with variable diffusion and drift parameters,
whose spectrum of eigenvalues coincides with that of the
QBM master equation and whose equilibrium solution is
the Wigner transform of the quantal equilibrium density
operator. The semiclassical equilibrium distribution is
the canonical one for an oscillator in phase space, howev-
er, the temperature parameter is different from the actual
temperature of the heat bath. More specifically, the
effective equilibrium temperature T,ft- of the oscillator in

phase space contains the microscopic transition rates that
govern the original master equation.

Furthermore, one can find, after some simple analytical
transformations, that the preceding FPE can be carried
into the form of a Smoluchowski equation describing the
CBM of an oscillation in the high-friction limit. One
realizes that there exists a family of classical oscillators,
parameterized by the mass and friction strengths, to
which the given Smoluchowski equation applies. Each
member of this family could be regarded as a semiclassi-
cal image of the original quantal system; however, the po-
sition coordinate of the image is nonlinearly related to
the energy of the source oscillator, rather than to its
coordinate. As a consequence of such a change of vari-
ables, an extra singular potential appears where the im-
age is placed, namely, a logarithmic singularity. It is
shown that the effect of this singularity is to double the
eigenvalues of this Smoluchowski equation with respect
to those of the free harmonic oscillator, a fact that can be
regarded as a signal of the underlying quantal nature of
the system.

The full non-Markovian QBM master equation trans-
forms, under the same procedure, in a non-Markovian
general FPE which, after a Laplace transformation,
adopts the same form of the eigenvalue equation related

to the Markovian FPE. The only difference resides in the
fact that this eigenvaluelike equation is nonlinear, its
roots being the resolvent poles. When the non-
Markovianity is weak, i.e., when the macroscopic period
exceeds the typical correlation time (however not to an
extent sufficient to consider a Markovian limit) the resol-
vent poles can be analytically written down. One then
realizes that the non-Markovian spectrum of decay rates
shows diff'erent damping regimes, in close analogy to the
classical spectrum of the Kramers equation.
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APPENDIX A: SOLUTION OF THE SPECTRAL
PROBLEM OF THE MARKOVIAN

FOKKER-PLANCK EQUATION

In this appendix we compute the eigenfunctions of the
FPE (2.11). Changing variables to x = H /k T,~, the
latter reads

ap(x, vt)
( )

ap a p
a(t) =p "a a

(A 1)

xpq'+( I+x)pI +( ]+A, )pq=O . (A2)

Under the substitution pz(x)=e rz(x), one arrives to
the Laguerre equation for non-negative integer k = l,

xr/" +( I —x)ri'+Iri =0, (A3)

with solutions r&(x) =Lt(x) (the lth Laguerre polynomi-
al). Consequently, the eigenfunctions of the FPE (Al) are

p((x) =e "L((x) (A4)

and any initial distribution p(x, O) that admits an expan-
sion in terms of these eigenfunctions evolves in time, ac-
cording to (Al), as stated by the superposition principle,

p(x, t)= g e "'e "LI(x)J dy p(y, O)L&(y) . (A5)
1~0 0

APPENDIX B: SOLUTION OF THE EQUATION
FOR THE LAPLACE-TRANSFORMED DENSITY

In this appendix we will show the steps leading to the
general solution of Eq. (4.5). First we propose the substi-
tution

p(H, X)=e ' R (H, A. ), (B1)

which transforms Eq. (4.5) into

Looking now for stationary solutions of the form
p(x, vt) =exp( —Avt)p&(x), ,one finds the secular equation
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exp(H/kj, tt)p(H, t =0)0=
W+ —W

AR (H, A, )

BR+(kj,tt
H—) +kj,qHaa " aa'

Now, if we use the ansatz

(82)

Now, the orthogonality relation

f exp( H—Ik T,tt )L, (H Ik T,~)L„(H/k T,~)dHkT~ o

(85)

holds if and only if
R (H, A. )= g C„L„(H/kj,q),

n ~0
(83) Re[kj,tr(A, )])0 . (86)

where L„(x) is the nth Laguerre polynomial, the Eq. (82)
yields

Hence, the assumption (86) allows us to extract the
coefficients C„ofthe ansatz (83) from Eq. (84) as

W+ —W „o W+ —W
C,

C„=[(W —W )n +A. ] '(kT, )

X f p(H, t =0)L„(HIkj,tt)dH
0

(87)

X L„(H /k T,tt ) . (84) which leads to the general solution (4.8).
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