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Novel electromagnetic directed-energy pulse train (EDEPT) solutions of Maxwell's equations
have been obtained. One particular solution, the modified-power-spectrum (MPS) pulse, will be de-

scribed in detail. EDEPT's such as the MPS pulses, can be tailored to give localized energy
transmission along a specified direction in space that is significantly improved over conventional
diffraction-limited beams. Moreover, they represent fields that recover their initial amplitudes

along the direction of propagation at extremely large distances from their initial location. These
EDEPT solutions are not physically pathological and can be reconstructed from causal Green's
functions. In fact, these fields appear to be launchable from finite-aperture antennas.

I. INTRODUCTION

The pioneering work Brittingham' first suggested the
possibility of solutions of Maxwell's equations that de-
scribe efficient, localized transfer of electromagnetic ener-

gy in space. It has been recently discovered that these
original "focus wave modes" (FWM's) represent Gauss-
ian beams that translate through space with only local de-
formations. Unfortunately, the FWM is not focused
in the sense originally intended, i.e., it is not a purely lo-
calized, translationally invariant solution of the wave
equation. The latter is, in fact, impossible to obtain. A
boost solution of the form 4(x,y, z ct) requires-
(b, —B„)@(r~,z ct)=b, ~& =—0 and, hence, that N be a
harmonic function. This precludes N from having a com-
pact spatial support. Moreover, despite having a finite
energy density the FWM's have infinite total energy. An
attempt at constructing a finite-energy FWM was made
by Brittingham in Ref. 1, but his three-region extension
was shown to be incorrect by Wu and King. Nonethe-
less, as explained in Ref. 2 and in Sec. II below, these fun-
damental Gaussian beams can be used to synthesize other
interesting, novel, exact solutions of the wave and
Maxwell's equations. These superpositions will be called
"electromagnetic directed-energy pulse trains, "EDEPT's
for short. In contrast to the original FWM's, these
EDEPT solutions have finite-energy density and finite to-
tal energy. It will be shown in Secs. II and III that the
EDEPT solutions can be tailored to give localized
transmission of electromagnetic energy in space-time.

As a result of Brittingham's work, a number of papers
have appeared over the past several years which discuss
the possibility of transmitting electromagnetic energy in
space in a nonstandard fashion. Besides the EDEPT solu-
tions, ' these have included efforts on "splash
modes, ""' "EM missiles, "' ' "Bessel beams, "'
"EM bullets, " 4' and "transient beams. " '

The splash mode was originally introduced in Ref. 2 as
the first example of the class of solutions constructed
from superpositions of the original FWM's. Hillion has
extended the FWM and the splash-mode concepts to the

realm of spinors. "' With this approach he is readily
able to derive interesting fields and to examine their prop-
agation characteristics. The term splash mode is applied
by him in the same manner as the term EDEPT is used
here. The latter is preferred in the present context be-
cause the pulses developed below achieve directed, local-
ized transmission of energy.

The EM missile concept, recently reported by Wu'
and others, ' ' exploits a loophole in the classical 1/r
energy-decay behavior of a field originating from a finite
aperture. By increasing the rise time of the excitation
pulse in an aperture (hence, the importance of its highest
frequencies), one can achieve an energy decay of llr ',
where EE [O, l] is related to the rise time of the pulse.
The "missile" thus achieves slower than classical decay
over large distances by pushing the classical
Fresnel —far-field boundary farther away from the aper-
ture. Recent experiments have actually confirmed this
effect. ' Nonetheless, we may have a practical limitation
in realizing the effect over large distances because of our
inability to field sources that achieve the necessary pulse
rise times. '

The Bessel beams are simply eigenmodes of the wave
operator and had been described on numerous oc-
casions' prior to their development in Ref. 21.
There, Durnin notes that the Bessel beams are
"nondiffracting" in a particular sense and shows via nu-

merical simulations that a finite-aperture approximation
to the lowest order field —the Jo beam —can possess a re-
markable depth of field. This effect was realized experi-
mentally, ' at least in the near field of the aperture.
This experiment corroborates the fact that one can close-
ly approximate the behavior of a homogeneous-wave-
equation solution from a finite aperture. These Bessel
beams, like the FWM's, have finite-energy density but
infinite energy. It will be shown below that the EDEPT
representation can be rewritten in terms of a superposi-
tion of these Bessel beams.

Similarly, EM bullets are constructed asymptotically
from a representation of solutions of Maxwell's equations
based on eigenmodes of the associated curl operators.
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II. SUPERPOSITIONS OF THE FUNDAMENTAL
GAUSSIAN PULSES

The fundamental Gaussian pulses can be described as a
class of exact solutions of the wave equation that origi-
nate from moving complex sources. In particular, if one
assumes a solution

+(,. (r, t)=e'"' "'G(x,y, z ct)—
of the scalar wave equation in real space,

(5—B„)+k(r,t) =0,

(2. 1)

(2.2)

the latter reduces to a Schrodinger equation in the pulse

A field that decays as 1/r and that becomes localized
near a specified direction is obtained.

Transient beams, on the other hand, are the projections
onto real space of the fields originating from pulsed
sources at stationary complex locations. These fields are
constructed from analytic continuations of the Green's
function of the wave operator to complex space-time. In
contrast to the moving complex source description of the
fundamental Gaussian pulse given in Ref. 2, these tran-
sient beams are constructed by fixing the location of a
source at a complex location and by allowing time to be
complex as well. ' However, as mentioned below,
these solutions should be connected directly to the
EDEPT solutions through a complex Lorentz transfor-
mation.

In this paper it will be shown that EDEPT's can be
tailored to give directed transmission of electromagnetic
energy in space-time. In particular, pulses will be de-
scribed that can be designed to give localized energy
transmission that is significantly improved over conven-
tional diffraction-limited beams and to recover their ini-
tial amplitude along a sp=cified direction of propagation
at very large distances from their initial location. In par-
ticular, a number of calculations for one of these solu-
tions, the modified-power-spectrum (MPS) pulse, will be
presented to support these claims. It will be shown that
these MPS pulses exist, that they are not physically
pathological, and that a Huygens reconstruction based on
a finite planar array of point sources reproduces close ap-
proximations to them at large distances away from that
array. This reconstruction will be described in detail in
Sec. IV; it appears to be insensitive to spatial windowing
or frequency filtering and even to adding random Gauss-
ian noise to the array source functions. A summary of
the results in this paper and a discussion of what is left
for further examination will be given in Sec. V.

The pulses to be described below have very desirable
localized wave transmission characteristics which suggest
a number of potential applications. These include micro-
scopes with infinite depths of field, low-loss power
transmission, secure communications, remote sensing,
and directed-energy weapons. On the other hand, even if
it transpires that these pulses or their practical applica-
tions are not completely realizable, the following solution
techniques and the resulting clumplike wave solutions or
"macrophotons" have a number of important theoretical
applications.

center or light cone variable ~=z —ct:

(b i+4ikB, )G (r, , r) =5(r~)5(r —izo ) . (2.3)

G(ri, ~)=
4~i (zo+i r)

(2.4)

Thus the original wave equation (2) has the moving,
modified Gaussian pulse

—kp /V
(P ( r) —1/c(z+c()

4~i V
(2.5)

as an exact solution. The complex variance 1/V=1/
3 —i /R yields the beam spread A =zo +~ /zo, the
phase front curvature R =~+zo/~, and beam waist
w =(2/k)'~ . Higher-order pulses can be constructed
simply by applying the Hermite or Laguerre polynomial
operators to the basic pulse (2.5).

If one restricts oneself to real space only, the source
term in (2.3) disappears. Its presence simply corroborates
our intuition that a field should originate from some
source. Physically, we realize the projection of the
"moving-complex-center" field (2.5) onto real space-time.
It is a solution of the homogeneous equation (2.2) there.
This "moving-complex-center wave" represents a gen-
eralization of earlier work by Deschamps ' and Felsen
describing "stationary-complex-center waves, " i.e.,

Gaussian beams as fields radiated from stationary
complex-source points. Although the concept of a source
at a complex location is nonintuitive, it has led to several
successful analyses of the propagation and scattering of
Gaussian beams in complicated environments. As
with Gaussian beams, it is a convenient but not always
necessary description. In fact, as shown briefly in Appen-
dix A, Eq. (2.5) can be derived from a modified Hermite-
Gaussian laser-field analysis without any recourse to the
concept of a source at a complex location.

As illustrated in Ref. 2 and in Fig. 1, this fundamental
pulse describes a Gaussian beam that translates through
space-time with only local variations. Figure 1 shows
surface plots and the corresponding contour plots of
Re[4iri@k(p, z, t)] with zo=1.0 cm and k =0.333 cm
These plots depict this quantity relative to the pulse-
center locations z =0.0 km and z =9.42 X 10 km. Those
distances correspond to the times t =0 and t =aX10
sec. Throughout this paper, unless noted otherwise, all
field quantities plotted in figures of this type will be nor-
malized to their maximum value at t =0 and the direc-
tion of propagation will be taken along the positive z axis.
These choices do no affect the generality of the results to
be discussed below. The transverse space coordinate p is
measured in centimeters; the longitudinal space coordi-
nate z —ct is the distance in centimeters along the direc-
tion of propagation away from the pulse center z =ct.

The fundamental Gaussian pulses have several interest-
ing characteristics. First, it is easily seen that (2.5) recov-
ers its initial amplitude at very large distances from its in-

The source term is located at the moving-complex loca-
tion (0,0, z =ct+izo) .Let the transverse distance dis-
tance p=(r~ r~)'~ =(x +y )' . This equation has the
solution

—kp /(zo+i~)
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where

2

s(p, z, t)= —i (z+ct}
zp+i (z —ct)

(2.7)

is an exact source-free solution of the wave equation. As
reported in Ref. 2, the superposition with "complex-
traveling-center-wave" basis functions, Eq. (2.6), has an
inverse. The functions

—( T/4kzo }
0'1, (p, r, o )=8m' e '

C&k(p, r, o ),
where o. =z +et are biorthogonal to the 4I, . This means
these basis functions satisfy the completeness relation

f do f dr f dpp(IIk(p, r, a)%„,(p, r, o )

=5(k —k'),
where +k is the complex conjugate of 4k.

The representation (2.6), in contrast to plane-wave
decompositions, utilizes basis functions that are more lo-
calized in space and hence, by their very nature, are
better suited to described the directed transmission of
electromagnetic energy in space. As shown in Appendix
B, the EDEPT representation (2.6) yields finite energy
solutions of the wave equation (2.2) if F(k) satisfies

U,o,
= f dk ~F(k)~ e E((2kzp)

0

f dk ~F(k)l' —& ~,
2z0 0 k

(2.8)

where E„(x) is the exponential integral function of order
n. This occurs, for example, if k 'r F(k) is square in-
tegrable. As will be discussed below, the MPS pulse
satisfies this requirement. As shown in Appendix 8, the
original splash pulse discussed in Ref. 2 also has finite en-
ergy.

Thus the EDEPT solutions are composed of Gaussian
pulses that resemble plane waves as well as localized
packets. In interactions with scattering objects they can
exhibit either behavior, depending on what portion of the
spectrum is affected by the scattering event. Consequent-
ly, the EDEPT's are at least a step closer to the unreal-
ized intentions of Brittingham in Ref. 1 of a classical

energy results because the variation of the magnitude of
(2.5) with respect to the transverse coordinate yields a
constant for each partial energy integral over a transverse
cross section. However, as with plane waves, this is not
to be considered as a drawback per se. The ansatz (2.1)
has introduced an added degree of freedom into the solu-
tion through the variable k that can be exploited. As
shown in Ref. 2, these fundamental Gaussian pulses can
be used as basis functions to represent new transient solu-
tions of Eq. (2.2).

In particular, the general EDEPT solution

f (r, t)= f +k(r, t)F(k)dk
0

—ks(p, z, t)

4ni[(zp+.i (z ct)] p—

(2.6)

description of a photon, a finite energy solution of
Maxwell s equations that exhibits a wave-particle duality.

Notice that a sum over the independent parameter k
was chosen rather than one, for example, over the com-
plex source displacement parameter z0. The choice to su-
perimpose over k was originally a practical one. Even for
simple choices of spectra over z0 the resulting integrals
are extremely difficult to calculate. The integrals over k
are much less complicated and richer in quantity than the
ones over z0. Many interesting solutions of the wave
equation are obtained simply by referring to a Laplace
transform table. Combinations of these superpositions
are also available in principle. Recently it has also been
recognized that the choice of superimposing over k is
more fundamental because it is associated with the extra
degree of freedom introduced by the ansatz (2.1) and be-
cause, as it will be described below, it allows one to miti-
gate the presence of the backward-propagating plane-
wave component.

Also note that the existence of the localized basis func-
tions (2.5) could have been anticipated from earlier stud-
ies on complex Lorentz transformations of the wave and
Maxwell's equations. ' Trautman's work appears to
be the most relevant. He actually mentions (albeit
briefiy) one Lorentz transformation that, taken in the
present context, would lead to the FWM solution. This
concept of a complex Lorentz transformation actually
connects the present work on moving-complex-source
fields with the related work on pulsed, stationary com-
plex sources. '

III. EDEPT SOLUTIONS OF MAXWELL's EQUATIONS

In this section the derivation of the electromagnetic
(EM) fields from the localized scalar wave equation solu-
tions will be described. The modified-power-spectrum
pulse is introduced and the corresponding EM fields are
derived. A number of numerical results are presented to
demonstrate that these EDEPT solutions can be tailored
to give directed EM energy transfer in space.

E= Z0& X~ct+h

H =V ( 7 II h ) —()„II~,
TM polarization,

E=7 ( V.II, ) —8„II, ,

H=+ Y0VXB„H, ,

(3.1a)

(3.lb)

where Zp +pp/ep and I'p=Qep/(L(p are, respectively,
the free-space impedance and admittance. For instance,
if n =z, then the TE field components are given by the
expressions

A. KM Aelds from Hertz potentials

Solutions to Maxwell's equations follow naturally from
the scalar wave equation solutions. Defining the electric,
II, =fn, or magnetic, II& =fn, Hertz potential along the
arbitrary direction n, one readily obtains fields that are
TE or TM with respect to n. In particular, TE polariza-
tion,
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F.„= Z—o ae—a„f,1

I

z, =+z,a„a„f,
E, =O,

H„=+a„a,f, (3.1c) f (r, t)= 1 1 —bs /P

zo+i (z ct)—(s/P+a)~
(3.4)

F[yb)tt(t)h (t —b/p)]=e ' ~H(sip) .

The choice of spectrum (3.3) produces the modified-
power-spectrum pulse

H, =+—a,a,f,1

dk F k kz0+ kz0
4z,4

(3.2)

Thus an EDEPT will have finite energy, for example, if
the spectrum kF ( k) is square integrable. A similar
finite-energy analysis of a related class of EDEPT's was
given by Hillion in Ref. 12.

B. Modified-power-spectrum pulse

Clearly, different spectra F (k) in Eq. (2.6) lead to
different wave equation solutions, and hence, to different
solutions of Maxwell's equations. As noted above, many
interesting solutions of the wave equation are created
simply by referring to a Laplace transform table. One
particularly interesting spectrum selection is the modified
power spectrum:

(Pk b)a —i —a(Pk —b)

4rri P I(a)
F(k)= '

0, 0&k&—

(3.3a)

(3.3b)

It is so named because it is derived from the power spec-
trum F(k) =k 'e '" by a scaling and a truncation. In
particular, if the Laplace transform is defined as

H(s)=F[h(t)]= J e "h(t)dt,
0

the scaling and truncated translation rules

F [h (Pt) ]= H(s //3) for /3
—& 0,1

F [gb(t)h (t —b)] =e 'H (s) for b & 0

lead to the expression

H =(a, —a„)f .

As shown in Appendix B, the total energy of an elec-
tromagnetic EDEPT is

UEM= dz dpp d6I 6 Eo '+p Hp

+/ IH, I')

Much effort has been concentrated on this MPS pulse be-
cause it has an appealing analytical form and its pulse
shape can be tailored to a particular application with a
straightforward change in parameters. Other spectra,
such as those resulting in Laplace transforms involving a
term such as (s +a ) were avoided because they have
a singularity in real space where s +a =0, i.e., where
p=O and o. =+a. Similarly, those involving simply the
term s were also avoided because they gave Laplace
transforms that have a singularity in real space where
(p=O, o =0).

For a particular choice of spectral parameters, this
EDEPT solution has the desired characteristics of locali-
zation near the direction of propagation for very large
distances. First, the presence of the backward-
propagating plane-wave portion of the original focus
wave modes (1.5) has been shown in Ref. 29 to lead to
some physically pathological properties in that solution.
However, by "tweaking" the spectrum; in particular, by
setting P to be very large, one can mitigate the effects of
these components. The resulting EDEPT pulses, as will
be discussed below, are not physically pathological.

Figure 5 shows surface plots and the corresponding
contour plots of one such "optimized" MPS field. These
plots depict the real part of (3.4) relative to the pulse
center locations z =0.0 km and z =9.42X10 km, which
correspond to the times t =0 and t =~X10 sec. The
parameters of this particular MPS pulse are a =1.0 cm,
a=10, b =10X10' cm ', /3=60X10', and

z0 = 1.667 X 10 cm. The transverse space coordinate p
is measured in centimeters; the longitudinal space coordi-
nate z —ct is the distance in centimeters along the direc-
tion of propagation away from the pulse center z =ct.
The time history of this particular MPS pulse at p=0. 0,
z =1

~ 0 cm is given in Fig. 6. It is centered about the
time t =z/c. The corresponding Fourier spectrum is
shown in Fig. 7. It is Aat at the lower frequencies from
dc to about 30.0 GHz, and begins to roll off quickly be-
ginning at about 200.0 GHz, reaching zero around 10
GHz.

The behavior of a MPS pulse along the direction of
propagation is easily characterized. Let P»1 and a= l.
This corresponds to the case given in Fig. 5. One has

cos(2hz /P) —(2z /Pa ) sin(2bz /P) 1
(p=O, z =ct) =

1+(2z/Pa) az0

1
when 2bz//3«1 and 2z//3a & 1,

az0

cos(2hz lg)/azo when 2z//3a & 1,
[ sin(2bz/P)/(2zo/P)](1/z) when 2z//3a & 1 .

{3.5a)

(3.5b)

{3.5c)
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MODIFIED POWER SPECTRUM PULSE
HERTZ POTENTIAL
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FIG. 5. The modified-power-spectrum pulse is localized along the direction of propagation and recovers its initial amplitude at
large distances. The real part of the MPS pulse is shown for the parameters a =1.0 cm, a=1.0, b =1.0X 10'o cm ', /3=6. 0X 10'',
and z0 =1.667 X 10 cm.

For a distance z «P/2b and z &Pa/2, the amplitude of
the pulse at the pulse center is constant. It then becomes
oscillatory with an oscillation length of rr13/b in an inter-
mediate zone P/2b &z &Pa/2, recovering its original
amplitude when z =n(rrP/b), n being any positive in-
teger. As will be shown below, the absence of a peak at
the pulse center occurs in conjunction with peaks appear-
ing on both sides of the pulse center. Finally, when the

observation point is very far away from the origin,
z )Pa/2, the MPS pulse decays like 1/z. The corre-
sponding electromagnetic MPS pulse consequently
satisfies the radiation condition at infinity. Notice that
when I3)) 1, different choices of a have little effect on the
pulse behavior until this far zone is reached.

The transverse behavior of this MPS pulse at the pulse
center is essentially

MODIFIED POWER SPECTRUM PULSE
z =1.667 x10' a =1.0 b =1.0x10" P =6.0x10" o. =1.0

TIME HISTORYAT(x = 0.0, y =0.0, z = 1.Oem) FFT OF INPS TINIE HISTORY AT (x = Q.Q, y = Q.Q, z = f .Q em)
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FIG. 6. The time history of the modified-power-spectrum
pulse shown in Fig. 5 is given for the point p=0.0, z = 1.0 cm.

FIG. 7. The Fourier transform of the time history in Fig. 6
shows the pulse spectrum decaying to zero at approximately
1.0X 10"Hz.
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—bp IPzof (p, z =ct)—e "f(p=0, z =ct), (3.6) UMPs 4 2/32 zb f dk o "~ (2k )
b/P

the waist of the Gaussian (the 1/e folding point) being
tvo=(&//3zo) ' . Along the direction of propagation z
and away from the pulse center the MPS pulse decays as

f—1/[zo+(z ct—) ]. Hence it is localized along the
direction of propagation as well.

The physical characteristics of the MPS pulse are very
appealing. The initial amplitude of the MPS pulse is
recovered until the distance z-/3a/2; and since /3 is a
free parameter, this distance can be made arbitrarily
large. Moreover, by adjusting the ratio b//3z o,

one can
adjust the degree of localization along the direction of
propagation. For the case in Fig. 5 the value at pulse
center remains constant until about z —/3/2b =1.0X 10
cm, where it begins to oscillate, recovering its initial
amplitude every hz = l. 88 X 10 cm until z —/3a /2
=3.0X10' cm, where the 1/z behavior begins to dom-
inate. The 1/e point of the amplitude of the pulse in the
pulse center cross section z =et is p=mQ=31. 6 cm. It
has also been shown' that the transverse spatial spec-
trum, i.e., the k —

ky spectrum, remains nearly invariant
as it propagates. Moreover, the transverse spectrum is
within the visible region of the allowed transverse wave
numbers.

The MPS pulse has finite energy. With (2.8) or (B7) it
is easy to show that

( 77 pM 2buE (2b )
2zo

( ~/3
zQba

=(~tv,'){/3a/2)[2~~ f (p
——0, z =0, t =0)~'] .

(3.7)

Thus the energy of the MPS scalar fieId is essentially con-
tained within the cylindrical volume defined by the
Gaussian waist teQ and the effective propagation length
/3a /2.

A number of concerns about the causal nature of the
original focus wave mode have been raised in Ref. 29. As
mentioned above, the "tweaked" MPS pulse should not
suffer from the same pathologies. This can in fact be
demonstrated analytically. BrieAy, a bidirectional
traveling-wave representation of exact solutions of the
scalar wave equation (such as the MPS pulse) has been
developed, from which a forward- and backward-
propagating plane-wave representation can be extracted.
In particular, it has been shown that the MPS pulse can
be written as

f (r, t)= g f du f dv f dye J(yp)e'"~6(u v—y /4)G„(u, v;y)e+'" e
27T 0 0 Q

(3.8)

This is actually a generalization of the EDEPT representation (2.6). The latter is obtained by taking the lowest-order
azimuthal mode, introducing the spectrum

F(v)e
Go(u, v;y) =

8~i (3.9)

and identifying the parameters v with k. Furthermore, by introducing the variables tr= u —v and tv= (u + v)c into (3.8),
the basis functions

J (+p )einPe +ivae iud~ J (gp )e inde i (xz —vu)

the constraint relation uv =y /4~co =(a +y )c, and the representation (3.8) becomes

f (r, t)= — g f d(inc) f dcv f dyyJ„(yp)e'"~5(cv —(ir +y )c )
n = —oo

X G„((cv+~c)/2c, (cv —i~c)/2c; y)e (3.10)

a superposition of forward- and backward-propagating Bessel beams. Consequently, one can connect (3.8) with a con-
ventional backward- and forward-propagating plane-wave representation

f (r, t)= g f da. f dtv f dyyJ„(yp)e'"~5(cv —(i~ +y )c )2& „0 0 0

X[G„(tv,x-, y)e ' ' "+G„(cv,a-, y)e+' '+ "]=f,+(r, t)+f, (r, t) . (3.1 1)

f(r, t)= f dyyJo(yp) f dk, A (y, k, )e

where co=+(y +k, )' c and the Fourier spectrum corresponding to the "bidirectional" spectrum" given in (3.9),

(3.12)

In particular, by integrating over co to remove the 5-function constraint in the lowest-order form of the azimuthally
symmetric version of (3.10), we can recover the MPS pulse from the expression
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—[(y +k )'i —k ] b—
277 I (tz)(/2+k 2)(i&

a —1

e 'exp {
—[(y +k, )

' i +k, ]zo /2 )

A(y, k, )= '

0 for k, )—Py b

b 4 P

2
XexpI —[(g +k, )' —k, ]pa/2) for k, (—

b 4 P
(3.13a)

(3.13b)

This gives the forward- and backward-propagating forms

P /4b —b /Pf,+(r, t)= J dyyJO(yp) J dk, A (y, k, )e
2b/P 0

f, (r, t)= J dggJO(gp) f, dk, A(y, —k, )e
0 b/P —Py /4b

+ f" dyyJO(yp) f dk, A(g, —k, )e
2b /P 0

(3.14)

For any value of b /p the ratio of the spectra A (y, +k, }
and A (y, —k, ) is such that

A (y, +k, ) ik ((t(. ..)

A(y, —k, )

Therefore, for the "tweaked" MPS pulse considered
above where P»1, one has A (y, +k, )))A (y, —k, ) for
non-negligible k„and hence only the forward propaga-
ting component contributes to the MPS pulse. On the
other hand, if a=P=1.0, b =0, and a =zo, one recovers
the splash pulse reported in Ref. 2 from the MPS pulse.
For that case this ratio yields A (y, +k, ) —A (y, —k, ),
i.e., there are about equal amounts of forward- and
backward-propagating waves. This result is confirmed by
Fig. 3 of Ref. 2. The same analysis applied to the focus
wave mode reproduces the conclusions reached in Ref.
29.

Therefore, in summary, the MPS pulse can be designed
to recover its initial amplitude after propagating very large
distances while remaining localized Very near the direction
of propagation It translat. es nearly invariantly in the
"near" zone, begins to "slosh" about the pulse center in
the "intermediate" zone recovering its initial amplitude

I

out to very large distances, and finally begins to fall off as
the inverse of the distance from its initial position in the
"far" zone. Moreover, it is not physically pathological;
its constituents have finite energy, and they are causal
and forward propagating.

C. Electromagnetic MPS pulse field derivation

E,=+Z,a„a„f,
H„=(3„8,f,
H, =(a,' —a,', )f .

The resulting Poynting flux is

P = (EeH, )r+ ( E&H„)z . —

(3.15a)

(3.15b)

(3.15c)

(3.16)

Explicitly, the MPS-field components are given by the
expressions

The corresponding electromagnetic fields follow im-
mediately from the Hertz potential formulas (3.1). For
brevity, only the TE field will be considered. Because the
MPS pulse is axisymmetric, the field consists only of the
Ee, H„, and H, field components and Eq. (3.1c) gives

E,=+Z,a„a„f=Z, . ——' l + B,s+a„a„s
z0+iw

'2

+
2

1 b+ s/p+a B„s(3,s f,(s/p+a) (3.17a)

H„=+a,a f = . + —b+1 e
p s /p+a

b+ s/p+a

B„s—i3,0„s
Z0+17
2

+ (),s B„s f, .
(s /p+ a)' (3.17b)

H, =+(8,—(3„}f= [((),s) —(B„s) ]——b+
p (s/p+a) ' p s/p+a

2

((),s —()„s )

[((3,s) —(()„s) ]+ . b+ ((),s+B„s) f . (3.17c)
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The terms

B„s=+ 27

Zp+17

+1
2 —1

(zo+ir)'

2r02 =—
(zo+i r)

0 fs= 2r

(zo+i r)

s— 217"

(zo+ir)

r0s= —
1 +1

(z o+i7)

8 &s=+
(zo + iw)

(a,s)'=—

(B„s) =—

7. 2 ?
+ ",+1.

(z, +ir)' (z, +ir)'
2 2 227

(zo+ir) (zo+ir)

This gives

2

(a,.)
—(a„.) =—2 2 4r

(zo+i r)

B,s —B„=O,

B,s+B„s= —2i,
thus reducing the expression for H, to

4o, r 1

p (s/p+a) (zo+ir)

24r e
p~ s/p+a

2
1 4 cr

(zo+ ir)3 p(zo+i r) s lp+a (3.17c')

With the expression (3.2) and the MPS spectrum (3.3),
the total energy in a MPS EDEPT, as shown in Appendix
B, is

U = [1+2ba +2(ba) ] .EM (3.18)

(3.18')

where Es'"(z =0, t =0) is the maximum value of Es at
t =0 in the initia1 plane z =0. Thus, as in the scalar field
case, this energy is contained in the effective cylindrical
volume (~wo)(pa/2). It is additionally modified by the
inverse square of the oscillation frequency, (pvrlb)
connected with the intermediate zone.

D. Modified-power-spectrum pulse results

Figures 8 —17 illustrate the electromagnetic field re-
sults. These results were generated from computer codes
that were constructed directly from Eqs. (3.4), (3.16), and
(3.17). The codes were run under double precision on a
Digital Equipment Corporation VAX11/785 computer
hosting the DISSPLA graphics library. The results show
that the tweaked MPS pulses have the desired propaga-
tion characteristics. All field quantities are normalized to
their maximum value at t =0.

In Figs. 8 —17 the MPS parameters are a = 1.0 m,
a=1.0, b =1.0X10' m ', P=6.0X10', and zo= 1.0

In the following results the parameter b is chosen so that
ba ))1. In this case the energy (3.18) becomes

M ps 277 b2 2

EM 4p
2

X 10 m. Figures 8 —12 show surface plots and the cor-
responding contour plots of the respective field quanti-
ties: the Hertz potential function f, the electric field
component E&, the magnetic field component H„ the
Poynting Aux component P„and the energy density U,
relative to the pulse center locations z =0.0 km and
z =9.42X10 km. The transverse space coordinate p is
measured in meters; the longitudinal space coordinate
z —ct is the distance in meters along the direction of
propagation away from the pulse center z =ct. The real
part of (3.4) was used to generate Fig. 8; the imaginary
part of (3.4) was used in the generation of the field terms
in Figs. 9—17. This choice was made strictly for conveni-
ence and does not detract from the generality of these re-
sults. It simply allows the amplitudes of all the quantities
to be maximum at z =t =0. Notice that in contrast to
the scalar field Re(f) which takes its maximum along the
z axis at p=0, z =ct, the EM field components E& and H„
attain their maxima just slightly off the z axis at p&0,
z =ct and have nulls at p=0, z =et. This is due to the
derivatives 0„ in (3.10) for those components.

The spatial window in Figs. 11 and 12 is smaller than
in Figs. 8 —10 to allow adequate visualization of the local
variations of P, and U away from the center of the pulse.
The smallness of the field components in Figs. 9 and 10 in
the off axis or "tail" regions results in even smaller prod-
uct quantities such as P, = —E&H„and the energy densi-
ty U =e

~
E

~
+p ~

H
~

in those regions. This recommends
at least the zooming employed here. A vector plot of the
power flow (Poynting's flux) at 942 km is also identical to
the corresponding plot at z =0.0 m. The power Aow is
highly directive in the desired direction since the longitu-
dinal magnetic field component H, is relatively small in
comparison to the other field components for this choice
of the MPS parameters.

Figure 13 represents a cross section along z —ct of Fig.



39 ~F ELECTRTROMAGNET E,NERO YTR ANSMISSIOLOCALIZED

SPECTRUM

x1o'05 b 10X1010o P- . x1.0 x

PULSE CENTER 9.4 x 10'kmPULSE CENTER =

2015

, 0

+ropy

l ampl «de"overs its»It aagation and reco,
, 6 0~10, and

the dlr«t1o" 1'
b =1.0X 10

1S l d long t
1 0 ——1.0,eters a =

spectruIH p
f the parame

The modIfied p
MPS pulse &s sho

I+'
h al part of thelarge distanc . h a pes. The rea p

Zo o ~=0.01 m.

' in r it is the time his-' in articular, it is t ea; p9

sured at p=0. 40 m, z =0.0 m a

er,
' —.OX 10' m. Theositive integ er, until z —.0

r transform o n is ivFourier

The a--f -n.,:"11.has is
ot higher- requregions are no

' - u

WER SPEGTRU M PULSE
COMPONENTE, FIE

x 0" z =1.0x10'= 6.0x10" b =1.0x' a = 1.0 x 10' p =u=1.0x 0 a=

PULSE CENTER == 0.00 km = 9.4$ x 10'kmPULSE CENTER =

q.O

O
D

netic MPSntE~ont z f the electromagCx ic field component~. 9. The electnc e nt
', P=6.0X10,an z-b =1.0X10' m

rs a =1.0 m, a=1.0,r the parameters a =pulse is shown for



39W ZgoLKOWSR(CHARD W.2016

SPECTRUM PULS
ENT„FIELD COMPON

x10" z =1.0 x10'= 60 x10" b =1.0 x10' a = 1.0x10' p =a=1.0 x

PULSE CENTER = 0.00 km PULSE CENTER == 9.42 x 10' km

pO

/

O

O
O

b

the scalar functionq Ypolots but not the sca
litud s are neg igie their amp i

tuate their prein (3.1Q) accentua
Th

case.
a netic field quan i iin the electromagne i

oscillations further
ectra fill inhP

spectrum of hf the e
14.

C~g

wn or rs a =1.0 m, a=1.0,wn for the parameters a =netic pMPS ulse is shown orH of the electromagnetic field component H„oF g= 1.0X 10' m

PULSEMODIFIED POWER SPECTRUM
oYNTING FLUX P

'4 z = 1.0 x 10 'x10" b=1.Qx10Qt — x1Q' a =1.0x10' p=

LSE CENTER = 0.00 m x 10'kmLSE CENTER = 9.

O

O'
O

Er)

eters a =1.0 m,own for the parametersa netic MPS pulse is shown orf the electromagneticonent P, oPo nting flux comprres onding oyn
=0.01 m.b =1.0X10' m ', P=a= 1.0,



39 ROMAGNETIC ENESMISSION OF ELELOCALIZED TRA

POWER SeECTRU M pULSE
RGy DENSITy

ULSE CENTER 42„10 kmPUL SE CENTER = 0'

1Q14 z = 1.0 x 1Q10 b 1Qx1QP a —1.Q x 100=

2017

D"
D

o jllustrate thed in these figures toreat]y jncrease in
lar er distances.

has been g
ld shape ov«much g ' of the

riance of the fie
the localization o

invaria
efinitively s ow

lar e dis-
ese results e

o a ation over very geld near t e
ma netic

direction of prop g '
MpS pulse isfact, the electrom g

d jg'raction-
tances. In

th n the correspondingdrama
jan laser e

tically better "
fi ld Let the wais o '

its
imit, ed Hermite-Gauss

and let ~ be0 be Q)0 azerot er laser field a
f agation its am-'rectjon o propth. Along the dire

2 2 & i2 so that the far-
wavel g .

~y[]+(Az/~~o~ ~plitude varies at

1.0 m,

a time where thisthe MPS pulse at a im is
'll t d

' Fin its maximum is i
lots of the

p gy
puse c

he lots show t anoted above, t e pAs no
ulse center.

of the
ou p

g
E

f the EM energy density
Th

'1'=9.42 X 10 km.creased to z =

r r D

for the ParameterspS lse is showf the electroenergy e yndin electrom g '
» z =0.01 m.

IG. 12. The correspon
g~4 —I =6.0)( &0, and zo-g =1.0& 10' m~ ——1.0,

).0-

SPECTRUM PULSEMODIFIED POWER
z =1.0x10' a = . . =1.0x=1.0 a=1.0 b=1.0x

-E, at(p =04 m,

1
35

-E TIME HISTORYFFT OF MPS PULSE-
I J ~II

O.S— 30-

0.6-

0.4-

25-

4P

20-
~~

15-

0.0
10-

-0.2—

-0.4 I I

-7.5 -5.0
I

0.0 2.5—2.5—)0.0
Time (sec) relat) ve

'
e to t = z/c

5.0 7.5
I

)0.0
x10"

5-
x10 "

0
10'

1 I ~ I ~

i0'
I I I 1 ~

10'
Frequency (Hz)

I I ~

10'o

field component E&E showne t1me
9 is given at the po'e oint p=ln 1g. 1

achieves its maximum.
f he time history

'
g.in Fig. 13ransform o t eFICx. 1

d b 8 4CsHectrum is localize ashows that the pulse spectrum



39ARD g Z2018

SPECTRUM PULSMODIFIED PO
ENERGY DENS

-2x 10' z = 1.0 x 10.0 x 10" b = 1.0 x10' a = 1.0 x 1 '
P = . xn= 1. x

LSE CENTER = 0. Al PULSE CENTER == 1.50 x 10s km

gQQ1O.

n but ha

n
' '

. is found by integrating its
Th ectral com-

ponents above 5 . . 0 z.

held 'h"' d'fi
the distance torameters gsve

The energy

z, is nomi-where it begins to decay as
f the ampli-Th f th

oint is 0.50 times its ini iP
ular spread of ththis laser e

MPS pulse paramrameters
gu ar

h hi hest frequency
the above

c of the13m. T e igwo=(blpzo)

at z =ct.istance where it is no t a maximum a z-a ceU of the MPS pulse is s
nized itself around t e p a

e
'

fi ld nergy density Uo
s reorganize i

. The electromagne
'

r the direction of prop g

FIG. 15. e
ns localized near t e irdensity remains oc

IFIED POWER SPECTRUM PULSEMO

8

x 10" z = 1.0 x 10 '.0x10'5 b =1.0xu= 1.0 x 10' a =1.0x10' p = . x

LSE CENTER = Q. m LSE CENTER = 9. x 10'km

q.0

Pppg

ains o
'

at extremely large distances,ains localized even at exnetic MPS pulse remains otE of the electromagneticfield component z n6. The electnc e tFIG
a =1.0 m, a=1.0, b =



NETIC ENER&MISSION QF ELFCTROMA&LOCAI IZFD TR 201939

SPECTRUM PULS
ENERGY DENS

x 0'4 z =1.0x102= 6.0 x10" b = 1.0 x' a =1.0 x10' p =+=1.0x a =

PULSE CENTER == 0.00 km ULSE CENTER = .42 x 10'km

o

a es' a =1.0even el large distances; a =even at extreme y aains localize evennetic MPS pulse rema'of the electromagneticr density U of
m = . = .OX 10' m ', /3=60m, +=1.0, = .OXm, = . b=1.0X ', —6.0

2

-0.872 km,

of the field at 10' km,and the spread of t e

'TTLU p

10 X 10' km-1 5 X10 km .—1.5X10- X

iall 10 ' its ini-10' km is essenti y
of the electromagnetic

-fi lci cii t

correspoare muc e

fhi 1 d1 li tioof ractica requestion p re

f the MPS
. IV. aram, , and zp o

in Sec.
Noet tt ep a

1

wit
ecrease t e n o

r of 10 increase in1 f troxima e y
the num er1' h ci

z is de-1 ci

eq

b,"tai re
set eThe effec o

sisrea iyt}1ization oof the pulse near
with a pena y1t of an increase i

ions everywhere.
. This occurs wi

num erber of oscillations eve

IV. PHYSICAL REALIZATION

onstrated theof Secs. II and III have demons

thth
existence o

d Maxwell s eq
p y p pro erties o o

distances.
1 are not

tenance over
PS pulses a

tude mainte
ted that t e "tweaked

we have in handl.0 Ica .
these so u

b dt i ciif
b' "1"'t'dS ulses can e

ra of radiating1e, by a fini e
lds that wouto od fie sThe hope is o
t solutions. s

ments. T
iles of the exactclose facsimi es

be recovere oMPS pulse ca b
of sources.f fi p

n below, the
lanar array o s

b very robust
degree of accuracy ro

d MPS pulse app ears to be ver

p

that
d 1 hwhile the indivi uatemporally, whi e

large bandwid th.

reconstructionA. Huygens s rec

PS ulse wasn of the scalar MPS p

1

of pointe essentia i

of each ra iarces one is always in
e array is readily old ponse of th

ion. In this simb superposition.



2020 RICHARD W. ZIOLKOWSKI 39

(4.1)

where n' is the inward pointing normal to S, where the
distance between the source coordinates r(x', y', z') on S
and the observation coordinates r=(x,y, z) in the volume
contained by S is

R =[(x —x') +(y —y') +(z —z')']'~

and the propagator

(4.&)

The reconstruction of the MPS pulse is accomplished
with a discrete version of the Huygens representation of
the field to the right of an infinite plane z'=const:

f (r, t) = —f dx' f dy' %(x',y', z', t —R /c)

(4.3)

The z-plane constant is determined by the requirement
that the field and its derivatives be zero on this plane at
t =0.

The driving functions for the array elements were
determined by the exact solution. In particular, they are

4(x',y', z', t —R /c)

(4.4)

For the MPS pulse one has explicitly

1 0,'
d,f = ——b+ 3 s-

p s/p+ a
l fzo+ir (4.5a)

array is driven with a (potentially different) time function
specified by the exact field.

Any scalar field V( r, t) can be defined within any
closed surface S through the Green's function or
Huygens's representation:

V(r, t)= f [g(r, r')(B, V)(r', t —R/c)
S

—V(r', t —R /c)[B,g(r, r')]

+g (r, r')(t)„V)(r', t —R /c)B,R ] dS',

components from a finite array is currently under investi-
gation. Only scalar field results will be presented below.

B. Finite-array results

The Huygens representation (4.3) of the MPS pulse
(3.4) has been implemented numerically in a variety of
configurations. These include circular, rectangular, and
hexagonal arrays of equally spaced elements. For in-
stance, for a rectangular array with (%+1)X(M +1)
equally spaced elements, (4.3) is approximated as

+N +M
f (r, t)= — g g [4(n bx, m hy, z', t

n= —Nm= —M

1—R„ /c)b, x b,y] 4~R„

(4.6)

where the spacings are Ax in x and Ay in y and the dis-
tances R„=[(x nbx—) +(y —m Ay) +(z —z') ]'
On the other hand, when the observation point lies along
the z axis, the axisymmetric nature of the MPS pulse
reduces (4.3) to 2ir times a radial integral. In this case it
is most cost effective to calculate (4.3) from a finite circu-
lar array with distinct, equally spaced annular sections:

+N
1f (p=O, z, t) = —g [ P(p'„,z', t —R„ /c)A(n)]

4m.R„

(4.7)

where the distances p'„= n bp' and R„=[(p'„)z
+(z —z') ]' and the area weighting of the annulus la-
beled by n is A ( n ) =~[(p'„+b p'/2 ) (p'„—&p'/2 ) ]'—=2~p'„Ap'. The annular regions are assumed to
represent a fixed number of radiating elements in the az-
imuthal direction. This will be the form utilized below.
Nonuniformly spaced arrays and adaptive beam-forming
techniques have not yet been employed. The following
results simply represent a straightforward, brute-force
approach to determine the possibility of launching a MPS
pulse facsimile.

The question raised in Ref. 29 about the causal proper-
ties of the FWM prompted an investigation of the full
Green's-function representation for the MPS pulse. In
particular, the representation

1 o,

p s/p+a t)„s+ f,zo+iw
(4.5b) f(r, t)=f+(r, t)+f (r, t) (4.8)

where the requisite derivative terms of s are given after
Eqs. (3.17). The aperture was made finite by truncating
the limits in (4.3) to some specified size. As will be shown
in Sec. IV B, computer simulations have demonstrated
that the MPS pulse can be recovered to a close approxi-
mation from a finite array at very large distances from it.

The electric field can also be defined within any closed
surface S through the Huygens representation analogous
to (3.1). The latter employs only the electric field and its
derivatives on S. ' ' An alternate (but related) represen-
tation employing only the tangential electric and magnet-
ic field and their derivatives on S is also possible. ' '

Reconstruction of the MPS electromagnetic pulse field

was utilized for the purpose of characterizing the amount
of advanced Green's-function contribution required for
this reconstruction process. The forward- and the
backward-propagating Green's-function components are,
respectively,

f+(r, t) = —f dx ' f "
d' y(qIxy', z', t —R /c)

(4.8a)

f (r t) = —f dx' f dy' 4( yx', z', t +R /c)

(4.8b)



39 LOCALIZED TRANSMISSION OF ELECTROMAGNETIC ENERGY 2021

It was found numerically that

f (r, t)~10 ' f+(r, t) (4.9)

EDEPT RECONSTRUCTION FROM A FINITE ARRAY
5.0 m CIRCULAR ARRAY WITH 104 ELEMENT SECTIONS

(x = 0.0, y = 0.0, z = 10.0 km)
0.2—

for any of the cases considered. This means that the
MPS pulse is reconstructed Only from the causal,
forward-propagating components in the Huygens repre-
sentation of the field.

Consider again the MPS pulse featured in Figs. 5 —7,
which has the parameters a = 1.0 cm, a = 1.0,
b =1.0X10' cm ', P=6.0X10', and z0=1.667X10
cm. The time history of the field (solid line) reconstruct-
ed at the observation point p=0. 0 m, z =1.0 km along
the z axis from a circular array of radius r,„=0.5 m is

compared to the time history of the exact field (dashed
line) in Fig. 18. The array is assumed to have 101 ele-
ment sections and to be located in the plane z'=0.001 m.
The observation distance and the array's radius are in-
creased, respectively, to z =10.0 km and r,„=5.0 m in

Fig. 19. There are 1001 time points in each of these
figures. The time axis represents the time relative to the
pulse center time t =z/c. Large negative times thus
represent times before the arrival of the pulse. Aside
from the late-time noise, the pulse reconstructions are re-
markably good. Similar results are also obtained when
the observation point is oft'-axis. ' Generally, if the pulse
is reconstructed well on-axis, it will also be reconstructed
well o6'-axis.

A quantitative measure of the size of a circular array
needed to reconstruct the MPS pulse at increasingly
larger axial distances is shown in Fig. 20. The field values
at the axial distances z =1.0, 10.0, 100.0, 1000.0, and
10000.0 km generated by a finite circular array are plot-
ted against the radius of that array. The curves become
horizontal when the exact field value is reached. Clearly,
the size of the array controls the reconstruction distance.
The scaling ratio is approximately a factor of 10 increase
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FIG. 19. The same MPS pulse is now compared to the recon-
structed pulse ( ) generated by a 5.0-cm circular array with
101 element sections at the point p =0.0 m, z = 10.0 km.

in radius size in centimeters for a factor of 10 increase in
distance along the direction of propagation in kilometers.
A smaller array, however, does not increase the trans-
verse width of the pulse, but only degrades the recon-
struction. As the array size is increased, the pulse
definition is enhanced relative to the surrounding fields.

One outstanding question is: "Where is the Fresnel
zone —far-field boundary or Rayleigh distance, 1rrrro2/A,

'?"

Unfortunately, the question does not have a definitive
answer here because of the pulsed nature of these solu-
tions. Those concepts are closely tied to cw excitations,
antennas, and wave propagation. Nonetheless, as a
matter of comparison, the Rayleigh distance has been

EDEPT RECONSTRUCTION FROM A FINITE ARRAY
50.0 cm CIRCULAR ARRAY WITH 101 ELEMENT SECTIONS

(x = 0.0, y = 0.0, z = 1.0 km)
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FIG. 18. The exact MPS pulse {———) with the parameters
a =1.0 cm, a=1.0, b =1.0X10' cm ', P=6.0X10', and

zo = 1.667 X 10 cm is compared to the reconstructed pulse
( ) generated by a 50.0-cm circular array with 101 element
sections at the point p=0.0 m, z =1.0 km.

FIG. 20. As the observation point is moved further away
from the sources, the size of the array needed to generate the
MPS pulse increases. The values of the reconstructed pulse at
z = 1.0, 10.0, 100.0, 1000.0, and 10000.0 km generated by a cir-
cular array are plotted against the radius of the array to illus-
trate this effect.
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used by others as a figure of merit for comparisons with
the array-launched MPS pulse.

Referring to Fig. 7, one finds the spectrum of the MPS
pulse under consideration deviates from a constant level
around 30.0 GHz, begins to steeply roll off to zero
around 200.0 GHz, but still has nontrivial components
approximately out to 1.5 X 10' Hz. The first frequency
corresponds to the wavelength A, = 1.0 cm, the second to
A, =1.5X10 ' cm, and the last to A, =2.0X10 cm. At
1.0 km the first wavelength gives a critical circular array
radius r, —[(1.0 cm) (1.0X10 cm)/vr]' =178.4 cm, the
second gives r, —[(1.5 X 10 ' cm)(1.0X 10 cm)/vr]'~
=69. 1 cm, and the last gives r, —[(2.0X10 cm)(1.0
X10 cm)/vr]' =8.0 cm. The 50.0-cm array radius in
Fig. 18 is smaller, about equal to, and much larger than
these values. Thus, for a majority of the spectral content
of this MPS pulse, the Fresnel —far-field boundary can be
reached from a finite array. Whether it is or is not com-
pletely reached may be a moot point and depends on the
intended application. These results alone indicate that
from a modest size array, energy can be transmitted lo-
cally without spreading over sufficiently large distances to
be of significant interest.

In both Figs. 18 and 19, one finds the front part of the
pulse reproduced exceptionally well. The element spac-

ing has a strong effect on the behavior of the back of the
pulse. This is most notable in Fig. 19. Taking the middle
value A. =O. 15 cm, the source spacing is —3k for the 50-
cm array and —30K, for the 500-cm array. Increasing the
source density, the number of source elements in the ar-
ray, decreases this late-time oscillation. The array size
also influences the smoothness of the pulse. A large array
will produce smaller amplitude oscillations in the back of
the pulse.

A planar array used as a potential MPS pulse launch-
ing system would be the simplest array to field as a
proof-of-principle experiment. However, there has been
concern about the sensitivity of these array results to per-
turbations in the initial driving-time histories and their
effects on the reconstruction of the MPS pulse. We have
checked many of these concerns and were surprised at
the results.

In the first perturbation analysis we applied an ampli-
tude taper to the aperture driving functions. The princi-
pal taper we investigated was a Hanning window. We
found that the amplitude taper actually helped the pulse
reconstruction by decreasing the late-time oscillations
and the source density. This occurred with a penalty in
the peak amplitude. With a slightly larger aperture size
and the amplitude taper, a very much improved recon-

MPS PULSE RECONSTRUCTION FROM A CIRCULAR ARRAY
1.0 m FOLDED ARRAY WITH 20,000 ELEMENT SECTIONS

DRIVING FUNCTION AT (p' = 0.10 m, z' = 0.001 m)
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FICx. 21. The time history of the area-weighted driving function applied to the source at p'=0. 1 rn, z'=0. 001 m in a 20000-
element section, 1.0-m circular array is shown.
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struction of the MPS pulse was actually achieved. The
effect of the taper is to remove all of the low-frequency
components of the field and to slightly emphasize the
high-frequency ones.

Next, the effect of actually frequency filtering the driv-
ing functions was considered. The late-time oscillations
occur because of the presence of undesirable, ill-behaved
higher-frequency components which become emphasized
in the superposition. Despite the presence of these com-
ponents, the essential features of the MPS pulse are
reproduced. To gauge the effect of removing some of
these unwanted components, a low-pass, second-order
Butterworth filter whose cutoff frequency is 250 GHz was
applied to the initial driving functions. Much of the
late-time noise was removed at a slight cost in the peak
value; yet the essential features of the MPS pulse
remained.

The stability of the MPS pulse reconstruction was fur-
ther tested by applying random Gaussian noise to the in-
dividual driving functions. Despite the addition of sub-
stantial amounts of noise to the initial driving functions,
the general features of the MPS pulse were recovered by
the corrupted, array-generated pulse.

All of these results are very tantalizing and suggest
that the array-reconstructed MPS pulse is not very sensi-
tive to perturbations in the initial driving functions.
These array signal processing and pulse-reconstruction
stability issues are still being pursued.

FFT OF DRIVING FUNCTION AT (p' = 0.10 m, z' = 0.001 m)
45 I I I I I I Ill I i I I I IIII I I I I I I tll i I I I I I I II I I I L I I I I

40-

35-

30-
U

25-
~ W

20-

10-

5-
x10 "

0 I 1 I I I I t I I \ I ~ t I I 1 ~ i I I I 1 I I I ~ I 1 I I I I 1 1

1 0IO 1 011 1 0lz 10" 1 014

Frequency (Hz)

FIG. 22. The Fourier transform of the driving function in

Fig. 21 shows a spectrum of frequencies centered near 3000
GHz with most of its energy being below 1.0X 10"Hz.

10'

The difficulty of defining the Fresnel —far-field bound-
ary is also compounded by the fact that the excitation
does not have a spectrum identical to the desired field,
but to its derivative. Figures 21 —24 show the area-
weighted driving function in (4.7) of p'= 10.0 and 50.0
cm and their respective Fourier transforms for a 1.0-m
radius circular array with 20000 element sections. Be-
cause the dominant terms of the driving functions involve

MPS PULSE RECONSTRUCTION FROM A CIRCULAR ARRAY
1.0 m FOLDED ARRAY WITH 20,000 ELEMENT SECTIONS

DRIVING FUNCTION AT {p' = 0.50 m, z' = 0.001 m)
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FIG. 23. The time history of the area-weighted driving function applied to the source at p'=0. 50 m, z'=0. 001 m in a 20000-
element section, 1.0-m circular array is shown.
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FFT OF DRIVING FUNCTION AT (p' = 0.50 m, z' = 0.001 m)
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FIG. 24. The Fourier transform of the driving function in

Fig. 23 shows a more complicated spectrum of frequencies,
again with most of its energy being below 1.0X 10"Hz. Larae Arrav Folded Arrav

derivatives of the MPS pulse, one expects the absence of
the dc components and the skew toward the higher fre-
quencies found in Figs. 22 and 24. Moreover, notice that
the spectrum of the driving function further from the z
axis (Fig. 24) fills in the spectrum of the driving function
nearer to the z axis (Fig. 22). This is also expected from
the above discussion on the frequency content in the tails
of the MPS pulse. One finds that the portion of the array
at larger distances from the axis of symmetry is responsi-
ble for the larger wavelength components of the pulse.
One also finds, however, that is responsible for recreating
the pulse at larger distances from the array.

C. Folded-array results

Although they were not optimized, the simple circular
arrays still reproduced the MPS pulse at significant dis-
tances from their location. However, it is still desirable
to see how close to or how far beyond the classical Ray-

FICz. 25. An infinite array can be mapped conformally onto a
finite array. This figure depicts this mapping and a resulting
staggered array.

leigh length one can reach. Since a larger array recon-
structs the desired pulse shape, what tricks, if any, are
there to squeeze a larger array into a smaller one?

One suggestion is the folded array depicted in Fig. 25.
The exterior of a planar circular array of radius r,„ is
"folded" onto its interior with the conformal map
p~r „/p. The folded array will be said to be staggered
if, when the interior points are located at n Ap, the
mapped exterior points are at (n + —,')b,p; unstaggered if
the interior and mapped exterior points coincide. This
folding trades a much less complicated source distribu-
tion for a more complicated one. In particular,
Huygens's representation for a point on the z axis be-
comes

f (p =0, z, t) = —2' f dp' p'%(p', z', t —R /c)
0 4'

2' f dp' p'—4(p', z', t —R /c)
0 4mR

3
2

f dg +(r,„/g, z', t —R, /c)

(4.10)

where R, =[(r,„/g) +(z —z ) ]'~ . This is still an infinite-array representation. A finite one is obtained by approxi-
mating the distance R, -R in the denominator of the second integral and by introducing time offsets into the mapped
source driving functions. In particular, set

f (p=0, z, t)= —2ir f dp'p'~II(p', z', t —R /c)
0 4~R

3
7

2

f '"
dg

'" +(r', „/g, z', t —T(g, z';p=0, z) —R /c ) (4. 1 1)

where now in the second term
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R =[/ +(z —z') ]'

2+ i 2 1/2T(,z';p=O, z)= [[(r,„/g) +(z —z') ]' —[g + z —z /c .

For the array this has the discrete form
+N

1f(p=O, z, t)= —g [%(p„,z', t' t —R /c)A(n)]
4mR„n =0

1[4(g,z', t —T(g, z', O, z) —R )/c, m
m=0

where the area weighting

(4.11')

A m =n'[ /(g —b,g/2)] —[,„/(g +kg/2)] I
=

ression (4.11') allows one to treat the two contn-
butions to the finite array separate y. n e

for the unstaggered array, g =m bp', so t a e re
structed field (4.11') can be simply written as

+& $ (p'„,z', t —R„/c)

n=0
(4.12)

corn licatedwhich emphasizes the appearance of a more co p
'

set of sources.

now a 1.0-m, folded circular array with
20000 element sections. Let it be eit er s agere
In the staggere case od both the interior and the mapped
exterior portions of the array have 10000 elements asso-

with each of them. The weighted driving function
at the staggered point p'=0. 100 m 'o

i i . 26 its Fourier transform is given in Fig.
26 F 2727. There are 1001 time points in Fig. . igur

constructed wit a -p
'

h a 16384- oint fast Fourier transform
in fromf 10001- oint time history extending rom—0 1 to +0. 1 ns. In contrast to the driving func

'

PS U S CO RU IO FROM A CIRCULAR ARRAY
1.0m F~ OLDED ARRAY WITH 20,000 ELEMEN

DRIVING FUNCTION AT (E = 0.1000 m,m z' = 0.001 m)

1000.0—

500.0—

0.0—

—500.0—

—1000.0 I

—10.0 —7.5
I

5.0
I I I I-5.0 -2.5 0.0 2.5
Retarded time (sec) relative to z' c

I

7.5
I

10.0
1Q-u

the source at p' =0.10005 m, z'=0.001 m in a 20000--wei hted driving function applied to the source at p =FICx. 26. The time history of the area-weig e r'

element section, . -m s, 1 0- taggered circular array is shown.
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FIGG. 27. The Fourier transform of the driving function in
Fig. 26 shows a much more complicated spectrum of frequen-
cies with most of its energy still remaining below 1.0X 10' Hz.
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shown in Figs. 21 —24, the curve in Fig. 26 is a larger am-
plitude, much more complicated time series. However,
its spectrum does not contain any higher frequencies,
only more resonances at the available ones.

The exact values of the MPS pulse along the direction
of propagation are plot ted in Fig. 28. They clearly
confirm the analysis (3.5). Figure 29 gives the ratio of the
reconstructed-to-the-exact-field value along the direction
of propagation for the 20000-element section unstag-
gered (solid line) and staggered (dashed line) 1.0-m arrays.
There are 100 points per decade in these curves. Withf,„=1.5X10' Hz or A;„=2.0X10 m and
w Q

=0.316 m, the Rayleigh limit is only ~w /k
4

0 min
=1.6X10 m. The larger bound 2D /k;„=4.0X10 m.
Thus one finds that this folded array produces a field
which has surpassed the classical diffraction limit at least
a thousandfold. The agreement between the reconstruct-
ed and exact field values is remarkable, especially consid-

MODlFIED POWER SPECTRUM PULSE
EXACT VALUE ALONG THE DIRECTION OF PROPAGATION

0.8

4P 0.4—

'a
OP 0.0—

CO

—0.4—

—1.2 +. -,I I IIIII I I I I I III[ I I I I I IIII I I I I I IIII I I I I I IIII ~UTTTTIt I I I I IIIII I I I I I IIII I I I I I III| I I I I I IIII T I I I I Ill

10 10 10 10 10 10 10 10 10 10 10
z(m)

FICx. 28. The exact field value of the MPS pulse on axis is

plotted against the distance along the direction of propagation.

FIG. 29. The ratio of the reconstructed to the exact field
value is plotted as a function of the distance from the array.
The reconstructed MPS pulse is generated by 1.0 m folded, un-

staggered ( ) and staggered ( ———j circular arrays with
20000-element sections. The Fresnel zone —far-field boundary is
located at z —3.0X 10' m.

ering the sensitivity of their ratio when the exact values
are very small. Note that these curves are very reminis-
cent of a Fresnel integral calculation. It may very well be
that the MPS pulse reconstruction is simply pushing out
the near field of this aperture to larger distances. Howev-
er, it does so without broadening the pulse in the trans-
verse direction.

The time history of the reconstructed pulse at p=0. 0,
z =942 km is compared to the exact MPS pulse in Fig.
30. It was generated by the 20000-element staggered ar-
ray. There are 1001 time points in both curves. Aside
from the low-amplitude late-time oscillations, the agree-
ment is very good.

It is found that the original, inner portion of the array
is responsible for the pulse reconstruction up to approxi-
mately 10 km. The folded portion contributes very little
to the field up to that point. After that point the roles are
reversed; the folded portion of the array is responsible for
recreating the pulse and the inner portion has little effect ~

This complementary action of the inner and folded por-
tions of the array may be important for potential applica-
tions. One application may require good pulse recon-
struction only near the aperture, while others may want a
pulse to appear only at large distances. Moreover, from a
practical point of view, keeping an inner and folded por-
tion may pose a dynamic range problem for the ampli-
tudes of the driving functions. The amplitudes of the
area-weighted driving functions are much larger for the
folded portion.

Because of the nature of the folding map, it is expected
that a higher-density array will recreate the pulse at fur-
ther distances, i.e., the folded portion of the array has ele-
ments very near the axis corresponding to very large
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FICx. 300. The reconstructed pulse ( ) at =0.0 m z =
20 000-element sectiions is compared to the exact MPS pulse ( ———)

at p=0.0 m, z =942 km generated b a 1.0-my . -, staggered, folded circular array with

-e ement section fo d-transverse distances. For the 20000-clem t
ed array, the element spacing is quite dense, there being
approximately a 1.667k, spacing between the elements at
t e smallest wavelength. The e6'ect of d
number of element sections is shown in Fig. 31. The ratio
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mc 4=0, (5.1)

which describes the behavior of a relativistic, spin zero,
massive particle. It can be shown that if the particle is
moving with speed v =pc /E along the z axis, then set-
ting

q)( r) ik [z+(c Iv)t]F
( r) (5.2)

and p =fik, (5.1) reduces to the hyperbolized Schrodinger
equation

b~FI, +4ik "r)+p+y d+g =0, (5.3)

where the relativistic term @=1/(1—
U /c )'~ and for

array, in contrast to conventional cw-driven apertures,
was driven by a spatial distribution of wide bandwidth
time waveforms. The array-generated MPS pulse appears
to be very robust and insensitive to perturbations in the
initial aperture distributions. The latter include ampli-
tude tapering the initial distribution, frequency filtering
the initial time histories, and simply adding random noise
to the initial driving-time histories. Even though the lo-
calization of the pulse was maintained near the direction
of propagation, the simple array only seemed to flirt with
the Rayleigh length and not definitively surpass it. One
alternative array concept, the folded array, traded com-
plexity in the source distribution for resoundly surpassing
the Rayleigh distance.

These nonoptimized results are very tantalizing and
suggest further investigations into the characteristics of
these solutions and their potential launching mecha-
nisms. One such eiT'ort would be a definitive, proof-of-
principle experiment. An experiment has already been
designed and fielded to study the acoustic version of these
directed energy pulse trains, the ADEPT. A synthetic
array was driven with a spatial distribution of time func-
tions corresponding to the scalar MPS pulse. The results
confirm the existence of this form of localized wave
transmission for ultrasonic waves in water. A number
of practical issues such as array design and optimization
and the propagation of ADEPT's through complex envi-
ronments involving scattering and refraction are current-
ly being studied.

Antennas and practical issues of realization aside, the
solutions presented here are interesting in their own
right. Exact solutions of any equation are extremely use-
ful in understanding the basic physics that can be de-
scribed by that equation. The solution procedure de-
scribed here can be applied to other situations and equa-
tions of interest. For instance, these EDEPT pulses can
be constructed in guiding structures such as
waveguides. It also leads to space-time generalizations
of conventional Hermite-Gaussian laser modes. The in-
version procedure and its generalization (introduced in
Refs. 2 and 42) have not been excercised much at all yet.
They provide an alternative to Fourier (plane-wave)
decompositions and can be exploited when transient,
space-time phenomena are under investigation.

Another interesting example is a localized solution of
the Klein-Gordon equation:

2

this case the distance parameter ~=z —vt. To leading or-
der, if v is near c so that y)&1, then the second deriva-
tive term in r is negligible and (5.3) becomes

4ikB+„+b, F„=O . (5.4)
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This is identical to Eq. (2.3). Proceeding as in Secs. II
and III with the MPS pulse, one can then construct local-
ized, finite-energy solutions of (5.1). Perturbation solu-
tions of (5.3) can be extracted from work ' ' describing
Gaussian beams beyond the paraxial approximation.

What issues remain? First, aside from the creation of
"photon torpedoes, " there may be many potential appli-
cations for pulses which locally transmit wave energy. A
number of obvious ones include microscopy, power
transmission, secure communications, and remote sens-
ing. There are probably many others and they should all
be identified and simulated. Second, the MPS pulse is
only one of an infinite number of new solutions that need
to be investigated. It might be possible to design other
EDEPT's, for instance„ that have propagation charac-
teristics similar to the MPS pulse but better launching
properties. These pulses may also be tailorable to
specified applications such as the above. Third, in con-
trast to conventional plane-wave analyses, these pulses or
"mac rophotons, " are constructed from fundamental
pulses that are themselves either plane-wave or clump
like solutions of the wave and Maxwell's equations. This
classical wave-particle duality is inherent in the superpo-
sition used to create the localized pulses. From a theoret-
ical point of view this conclusion makes these solutions
immensely interesting and its ramifications need to be
clarified. Finally, from a practical point of view, the use
of a planar array is probably the worst possible way to at-
tempt the generation of an EDEPT such as the MPS
pulse. The folded array was an attempt to optimize the
propagation distance for a given array size at a cost of
the simplicity of the source distribution. It still did not
recover the MPS solution everywhere. The MPS pulse
has a nontrivial, finite extent in space-time. Like conven-
tional laser modes, which require a modal volume for
their existence, the MPS pulses may require a finite-
volume source of some sort for their "unrestricted" reali-
zation. A more optimal launch system design may be
feasible and is under investigation.
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zation, Office of Innovative Science and Technology, un-
der the management of Harry Diamond Laboratories.

APPENDIX A: HERMITE-GAUSSIAN PUI.SES

Let space be restricted to real variable only. Then with
the ansatz (2.1), the wave equation (2.2) reduces to the
Schrodinger equation (2.3) without any source terms. In
x,y coordinates this becomes

The second is satisfied by

—P=i ln
wp + arctan(r/zo ),

w T

if one sets

w (r) =
[ w 0[1+(rlzo) ] I

'~

so that

(A3)

(A4)

4ikh F +8 F +0 F =0. (A 1) '2

One may obtain Hermite-Gaussian, exact solutions by
performing the constructions given in any of the standard
texts describing laser fields. ' ' The difference between
those approximate laser mode derivations and the follow-
ing exact pulse solutions is the presence of the variables
~=z —ct and o. =z+ct rather than just the spatial coor-
dinate z alone. No second-order spatial derivatives are
neglected here.

Let us assume

F„( xy, )r= constX exp[i(P(r)+kp Iq(r))] .

8 w= wp

ZQ

7

w(r)

In contrast with a conventional laser-beam field deriva-
tion, the beam-source location term zp is assumed here to
be independent of the parameters k and wp. Standard
derivations would set zp =kw p.

The Hermite polynomials are now included in the solu-
tion in the usual manner. A difference from standard
analyses also occurs here in the argument of the Hermite
polynomials. If one sets

Equation (Al) then yields two equations, one for q and
one for P:

B~ =+1, BQ =+i/q .

The first equation gives

R (r) =x[1+(zo/r) ],

r)(r) = —[(n +m)(zo/kwo)+1] arctan(r/zo),

A(r)=(zo/kwo)w (r),

(A5)

(A6)

(A7)

q =qp+~= —izp+~ . (A2) the real argument Hermite-Gaussian pulses take the form

Wp
(x y, &, &;k) = H„(&2x IQ(r) )H (v 2y /Q(r) )w(r)

(x +y )X exp
II (r)

k(x +y )
exp i +i)(r)+kcr

R (r) (A8)

With n =m =0. Qne has recovered, up to a constant multiplier, the fundamental Gaussian pulse (2.5):

(x'+y')
400(x,y, z, t; k) = exp n'( )r

k(x +y )
exp i +i)(r)+ko

R (r)

fk o'
—i arctan( ~/zp ) p 2

P kp 2

(zo + 7 ) (zo Ik)[ 1 + (r/zo )2] &[ I + (zo /r )2]

p ik( + t)e et Z Ct

zo+i (z ct)— (A9)

This result requires the identity

''"""'"= cos[ arctan(x)] —i sin[ arctan(x)]

=(1—ix)/(1+x )'~

One can now proceed as with the superposition (2.6) to
obtain EDEPT solutions and the spectrum (3.3) that led
to the MPS pulse. Here one has explicitly accounted for
the possibility of higher-order terms.

A comparison of (A8) with the expressions in Ref. 50,

Secs. 6.6 and 6.9 or Ref. 51, Secs. 2.2 and 2.4, reveals only
the differences noted above: the presence of the variables
~=z —ct and o. =z +ct rather than just the spatia1 coor-
dinate z alone. In fact, making the replacements o.~2z,
r~z, and k~k/2, one reduces (A8) to the standard
form. Although this derivation does not rely on the pres-
ence of a source term at a complex location, it reinforces
the connections between the stationary-complex-source
beam fields (laser modes) and the moving-complex-source
beam fields (EDEPT laser pulses). The case for employ-
ing the complex-source location interpretations of the
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beam fields to understand the underlying physics is also
made stronger by these close analogies.

For zp:kLUo one obtains exact wave-equations solu-2

tion counterparts of the real-argument Gaussian-Hermite
laser beams introduced by Kogelnik and Li. One can
also generalize the complex-argument Gaussian-Hermite
laser beams introduced by Siegman. These solutions
will be discussed in detail in Ref. 54.

APPENDIX B: FINITE ENERGY EDEPT'S

Let

g(t)= 1 (p) 1, A&0) .
(t +A)"

(83a)

I(x)= —25(x) f du lnu[g(iu)+g( —iu)]
0

=+25(x) f dzg(z)[i ln(+iz) —i ln( —iz)]
0

=2m5(x) f g(t)dt . (82)
0

I(x)= f g(ixy)dy, (8 la)

It will be shown in this appendix that the EDEPT rep-
resentation (2.6) yields finite-energy solutions of the sca-
lar wave equation (2.2) and of Maxwell's equations. First
consider the general integral

With (82) one then has

CO 1I (x)= dy
A+ixy "

2m5(x)

(p —1)A"

This is a slight generalization of Hillion's result given in
the appendix of Ref. 11. Similarly with (82) and with Eq.
5.1.5 of Ref. 55, if

where the function g(z) is assumed to be analytic for
Re(z) ) —e, e&0, and to have the following decay prop-
erties along an arc at infinity:

g(t)= (m =1,2, .. . ;A&0),(t+A)
(84a)

one also has
(8 lb)

vr/2
lim R'+' g( Re' )e' dO =0 .

R —w/'2

Rewriting the integral (Bla) along the non-negative real
axis yields

I(x)= f [g(ixy)+g( ixy)]dy—.

i'I (x;A)= dy
( A+ixy )

A —AI

=2m 5(x), f t
dt

Then with the rule for differentiating under an integral
sign and a change of variables u = ~x ~y, one obtains

A

=2m5(x), E (A) .
pm —1 m (84b)

f dy —f dt [g(it)+g( it)]-
o y o

f du —f dt [g (it)+g ( it)] . —
0 0 0 e E&(x)( ln 1+—1 (x )0), (85a)

Note that the exponential functions E„(x) have upper
bounds given by Eqs. 5.1.19 and 5.1.20 or Ref. 55:

Because of the symmetries of the integrand, the function
sgn(x) can be removed from the limit of integration and
differentiated to give

e E„(x)~ (x )0;n =2, 3, . . . ) .
1

x+n —1
(85b)

I(x)= [sgn(x)] f du —f dt[g(it)+g( —it)]
dx 0 9 0

=25(x) f du —f dt [g (it)+g ( it)] . —
0 EE 0

With an integration by parts, the assumed decay proper-
ties (8 lb), and the definition of the complex logarithm
function, one finally obtains

Now consider the total energy of a scalar wave Geld.
Since it can be written in the form

U„,= f dz f dpp f d9~f~',

the total energy of 'the axisymmetric EDEPT solution
(2.6) is

U„,=
™

dz dpp dO f dk F(k)e "' f dk'F "(k')e
16m. (zo+r ) 0

f dk f dk'F(k)F*(k') f dz, f dppe
ZQ

where F* and s* are, respectively, the complex conjugates of F and s. Since

(k+k')zo+i (k' —k)r
ks +k's* =p

zo+w
—i (k —k')cr,
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and

i (k —k')o
P —(ks + k's )

2 + 2 2 (k+k')zo+i(k' —
klan

(k +k')zo+i (k' —kl~

z +~ p
0

the energy (86) becomes

—t (k' —k)7.

U„,= f dk f dk'F(k)F"(k'}e ' "'"f dr
16~ o 0

(86')

The z integration can be performed as a contour integral
and with the help of (84). Consider first the case where
k'&k. The only pole of the integrand in the r integration
of (86') occurs at

k+k'
k' —k

Thus the sign of (k' —k) determines whether r is located
in the upper or lower half of the complex ~ plane. It is in
the upper (lower) half-plane if (k' —k) )0 [(k' —k) &0].
However, to ensure the proper behavior at infinity of the
integrand so that the contour can be closed in the upper
(lower) half-plane, one must have (k' —k) & 0
[(k —k') & 0]. Consequently, because the pole is not con-
tained within the closed contours, the ~ integral is zero
for k'&k. Now, to make use of (82), assume that
k'=k +g, where g«1. The energy integral (86') takes
the form

U,„„,„& f dk e '" ln 1+
0 2 zp

1 a /zO
[y + ln(a lzo )+e 'E, (a lzo )],Sa

where Euler's constant y =0.577 215 7. . . . This bound is
finite for a &0.

Now consider the electromagnetic-field-energy expres-
sion associated with the TE fields given by Eqs. (3.13):

UEM dz dpp de ~ Eo +p Hp

+plH, I') . (»)

Applying the operators directly to (2.6), one has the
"bases functions" for the EM fields:

dkl F k +Q kl e 2lgct

8' o o

—i g7.

X d~
Zkzo +i(r

E (r, t;k)=Z, B B„ili.

4ik p 2ik 2p3

(zo+ir) (zo+ir)

With Eqs. (84) and (85) one has immediately
2&k p

(zo+ir)
(89a)

U„,= —f dk IF(k)I e "Ei(2kzo)
0

H (r, t;k)=B,B„@„

& —' f "dk IF(k)I'» 1+
4 o 2kzo

4ikp 2ik p3

(zo+ir) (zo+ jr)3

f dk IF (k) I'—
8zo o k

(87)
2ik p

(zo + ir)

~, (r, t; k) =4& Q +k
Therefore, the EI3EPT pulses will have finite energy if, at
least, F ( k ) /i k is square integrable. This is readily
satisfied by MPS pulse since its spectrum (3.2) decays ex-
ponentially as k~ ~ and is identically zero near k =0.
However, the tighter Iogarithmic bound is needed for the
splash pulse because its spectrum is constant at k =0.
With Eqs. (4.331.1) and (4.337.1) of Ref. 56 the splash
pulse spectrum gives

—4ik + Pi ik
(zo+i'r) (zo+ir)

For instance, the field component

Ee(r, t)= f dk F(k)Ee(r, t;k) .
0

The energy expression (88) now becomes
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U M=— f dk f dk'F(k)F*(k')e ""' "'"f dz e '"' ""f dppeEM
8m 0 0 oo 0

gk (k') p 16k (k') p Sk (k') p 32kk'p 16k(k') p
(zo+r ) (zo+r ) (z o+r ) (zo+r ) (zo+r ) (zo i—1 }

16k k'p 16kk'p 16k (k') p
(zo+r ) (zo+ir) (zo+~ ) (zo+r ) (zo —ir)

With the integral (3.461.3) of Ref. 56,

2m +1 —ax m~

0 2am+1

16k k'p

(zo+r ) (zo+i~}

the p integrations are readily done and after some algebraic manipulations one obtains

UEM= f dk f dk'k F(k)(k') F*(k')e
277 0 0

X [6I~(k' —k;(k +k')zo}+4I, (k' —k;(k +k')zo)+I2(k' —k;(k +k')zo)],

w here I is given by (B4b). Proceeding as in the scalar case,

E4(2kzo) E3(2kzo) Eq(2kzo)
UEM= dk~F(k)~ k e ' 6 +4 +

0 (2kzo) (2kzo) 2kzo

With the recurrence relation 5.1.14 of Ref. 55,

E„+,(z) = —[e ' zE„(z)], —1

n

This expression reduces to the form

UEM dk F k k 3+ 20 (2kzo) (2kzo)

(B10)

straints and, as a result, the associated electromagnetic
fields have finite energy. In particular, the total energy in
the electromagnetic MPS pulse is

2&2
UMPs P e 2ba f dk e

—(20~)&[kz + ( kz )2] (B1 1)
4Z ()

b I'f3

With (3.351.2) of Ref. 56,

f dk~F(k)~ [kzo+(kzo) ] .
zo

(Bg') n n1f x"e ~ dx=e
An —j+ &j=0

(B12)

Therefore the EDEPT EM field is finite if
f o dk~F(k)~ k ( ~ for m =1,2. Since their spectra
tend to constants as k ~0 and decay exponentially as
k~ ~, the splash and MPS pulses satisfy these con-

this expression becomes

MPS
UEM =

3
[1+2ba+2(ba) ] .

z', a ' (B11')
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