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Phase sensitivity in atom-field interaction via coherent superposition
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Considering a system consisting of a two-level atom, initially prepared in a coherent superposi-
tion of upper and lower levels, interacting with a coherent state of the field, we show that the dy-
namics of the atom as well as the spectrum of the field are sensitive to the relative phase between the
atomic dipole and the cavity field. It is shown that, for a certain choice of this phase, "coherent
trapping" occurs in two-level atoms. In the case of spectra, for the same choice of the phase, in-
stead of a three-peaked symmetric spectrum, we have an asymmetric two-peaked spectrum.

I. INTRODUCTION

Linear superposition is one of the fundamental princi-
ples of quantum mechanics. Some very interesting phe-
nomena have either been predicted or observed to arise
due to this principle. Examples include quantum beats
and interference of quantum-mechanical amplitudes.
The idea of preparing the atomic system in a coherent su-
perposition of states has become quite popular, particu-
larly because of its applications to noise quenching by
correlated spontaneous emission, ' quantum beats, and
noise-free amplification.

Recent studies have also been directed towards the
possibility of observing the quantum-mechanical features
in macroscopic systems. The observation of macroscopic
superposition of quantum states is dificult because of the
"collapse" of the wave function. This is evidently due to
the influence of the environment in the form of dissipa-
tion on the system. Suggestions have, however, been
made to modify the environment by use of a "squeezed
bath" instead of a thermal bath to model the dissipation,
i.e., every single mode of the field with which the system
might interact is assumed to be squeezed. It has been
shown in Ref. 4 that a macroscopic superposition of
coherent states is preserved when the bath is such a
"squeezed vacuum. "

In this paper we consider a two-level atom, initially
prepared in a coherent superposition of the upper and
lower levels, interacting with a single mode coherent state
of the field in an ideal cavity. We show that the popula-
tion inversion and the spectrum of the field exhibit a
phase sensitivity and undergo dramatic changes with the
change in the relative phase between the atomic dipole
and the coherent field. In particular, we show that for a
certain choice of the relative phase, the population inver-
sion essentially remains unaffected. The results are quite
surprising in view of the general belief that coherent trap-
ping does not occur in two-level atoms. In the case of
the spectrum, for the same choice of the phase of the di-
pole, we have an asymmetric two-peaked spectrum in-
stead of the symmetrically placed three peaks. All these
effects arise due to the phase sensitivity of the system
which rnanifests itself in the macroscopic observables and
will be discussed in subsequent sections. Such a phase

sensitive system has also been proposed in Ref. 6 in
which a stream of atoms in a coherent superposition of
states is injected into a maser cavity. It is shown in that
paper that the upper level probability of the atoms leav-
ing the cavity depends on the relative phase angle be-
tween the atoms and the field. Measurement of the exci-
tation probability, therefore, is a tool to probe the coher-
ence produced in the field by the atoms. With the recent
advances in extremely cold, high Q cavities, it is now pos-
sible to perform such single atom experiments.

It should be mentioned here that a similar system, i.e.,
the two-level Jaynes-Cummings model (JCM), with the
atom in a coherent superposition of the two states, in-
teracting with "squeezed vacuum, " was considered in
Ref. 8. Contrary to the expectations, this model does not
have a phase sensitivity which is because of a lack of
coherent coupling between the one-photon transition and
the "two-photon" squeezed state. It was shown in that
paper that under such conditions, the results are similar
to those for a thermal field. Such a similarity was also
pointed out in Ref. 9.

It is also worthwhile to mention that the spontaneous
decay of an atom, ' and the fluorescence spectrum of an
atom in the squeezed vacuum environment, '' also exhibit
a dependence on the phase of the squeezed field. Once
again, some very interesting and novel effects occur due
to a change in the phase.

The present paper is organized as follows. In Sec. II
we define the model and calculate the population inver-
sion. Numerical results are presented for various condi-
tions of the relative phase. In Sec. III we calculate the
spectrum and finally, Sec. IV contains a discussion of our
results and conclusions.

II. POPULATION INVERSION

We consider the system of a single two-level atom in-
teracting with a single mode quantized radiation field in-
side an ideal cavity. We consider the atom to be initially
in a coherent superposition of the excited and the ground
states, i.e.,

~tt )„, =cos(0/2)~a )+sin(8/2)e '~ b ),
where ~a ) and ~b ) are the upper and lower levels, respec-
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tively. The Hamiltonian for the system, in the rotating
wave approximation, is

H= ,'fico—ocr3+ficoo(a a+ ,')+—fig(a o +cr+a) .

Here coo is the frequency of the cavity eigenmode which
we have taken to be resonant with the atomic transition
frequency, a and a are the usual photon creation and an-
nihilation operators, and a + and a are the atomic Aip-
ping operators given by
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and g is the atom-field coupling constant.
The Heisenberg operator solutions for the Jaynes-

Cummings model were given in Ref. 12. We shall use
them to calculate the population inversion. The operator

(t) is given by
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FICx. 1. Plot of population inversion against a dimensionless
time gt when the atom is initially in an excited state. The initial
state of the field is Poissonian with n = 10.o' C sinyt
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y
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relative phase between the dipole and the coherent state.
In Figs. 2 and 3 we have plotted the population inversion
for two different values of the relative phase. Note that
for itr /=0, th—e amplitude of the oscillations becomes
extremely small. This is also apparent from Eq. (9)
wherein, for large value of n, the Poissonian function
peaks sharply around n. The first and the second terms
add up to 1 and the population inversion essentially
remains unaffected. Indeed in a semiclassical limit, the
atom does not "see" any field. For P —P=m. /2, the dy-
namics of the atom is the same as that for the initially ex-
cited case.

A possible explanation for such behavior can be as fol-
lows. Whereas, in the case of three-level atoms, the
coherent trapping can be explained semiclassically, as the
destructive interference between the two transitions, i.e.,
a dipole-dipole destructive interference, in the case of
two-level atoms, the atomic dipole interferes destructive-
ly with the cavity eigenmode. This inhibits the transition
between the two levels. The trapping phenomenon can

where C and y are operators defined as

C=g(a a +cr+a),
—

( C2+ 2)1/2

For a general initial state of the system,

lg) „F= g (n la)[cos(8/2)ln, a )
n=0

+sin(8/2)e '~ln, b ) ], (7)
the upper level probability can be calculated in a straight-
forward manner, which is

(cr+cr ),= g l(aln )cos(8/2)cos(g&n+lt)
n=0
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For the coherent state la) with a=lale'~ and lal =n2=-
where n is the mean number of photons in the coherent
state, the population inversion is given by

nW(t) =2 g cos (8/2)cos (p„t )n!
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with p„=g&n +1. In the case of incoherent excitation,
i.e., for 8=0, Eq. (9) reduces to the well-known results
obtained in Ref. 12 (Fig. 1). The third term in the above
equation is the "interference" term and depends on the

FIG. 2. Plot of population inversion when the atom is initial-
ly prepared in a coherent superposition of the two states. The
amplitudes of the two states are equal, i.e., 0=~/2 and the rela-
tive phase g —/=0.
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FIG. 3. Same as Fig. 2, except for i(
—P= sr/2

13also be visualized in the Bloch vector representation.
The Bloch equation, describing the interaction of a two-
level system with nearly resonant electromagnetic field, in
the absence of relaxation is

dR
dt

where R=(Ri, R2, R3) is the Bloch vector and

Az =( —p-e/iri, 0, 5) is the field vector. The components
of the Bloch vector are related to the density matrix ele-
ments by

R
1 P]2e

' +P21e (1 la)

(1 lb)

P11 P22 ~ (1 lc)

III. PHASE DEPENDENCE OF THE SPECTRUM

It is obvious that the emission characteristics of the
coherently excited atoms would be different from those

and p and 6 are atomic dipole matrix element and atom-
field detuning, respectively. Generally, the vector R
precesses about A~ in a cone. The motion of R is largest
when R and Qz are orthogonal. However, if the atomic
system is initially prepared in such a way that R and Q&
are parallel (or antiparallel), R remains stationary. Un-
der these conditions, the atom and field are obviously
decoupled. It has been pointed out that such
configurations correspond to the dressed states of the
atom-field system. 14
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FIG. 4. Spectrum of the field for O=n. /2 and itj —/=0. In-

teraction time T=20g and the detectors response time I =0.2g.
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for the incoherently excited atoms. As a first conse-
quence, one would expect the spectrum to be dependent
on the phase of the dipole. We now proceed to investi-
gate the effect of the relative phase on the emission spec-
trum. The main difficulty with the ideal cavity treatment
is obvious; in the absence of losses, the emitted radiation
is not stationary. To this end, the "physical spectrum" of
Eberly and Wodkiewicz' can be used. Moreover, recent
studies show that for small values of the leakage parame-
ter in nonideal cavities, the spectrum of the transmitted
light and the cavity electrodynamics are very close to
those for the ideal cavity. '

The emission spectrum is given by the Fourier trans-
form of the dipole-dipole correlation function, weighted

17
by the detector response function

,(t, ) (t, )lg), (12)

X (/la+(ti )o. (t2)lit ) . (13)

Here T is the interaction time and 1/I is the detector's
response time. The correlation function (12) has been
calculated in Ref. 8. We will use those results in Eq. (13).
Using the notation of that paper, with minor
modifications,

where ll() is the initial state of the atom-field system
given by Eq. (7). The transient spectrum is given by the
expression

~(~)=2I f 'dt, f dt2exp[ (I ice)(T —t, )— —
0 0

—(I +i~)(T t,)]—

(halo+(t, )o (t, )lg) = g exp[ttuo(t, t, )]cos[p'„(t, t,)]-—
n=0

X [cos(8/2)cos(p„ t, )(al n ) +sin(8/2)sin(p„t i )e'~(al n + 1 ) ]

X[cos(0/2)cos(p„t2)(n la) +sin(6 /2)si n( p„t 2)
e'~{n+lla)] .

with p =g&n +1 and p' =g&n. On inserting Eq. (14) in Eq. (13) and performing the integrations, we obtainILL n g n

S(co)=—g l [F(p„,p'„)+F( —p„,p„' )][cos(0/2)( n la ) +sin(8/2)e '~( n 1+la ) ]l +(p'„~ —p'„),
n=0
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FIG. 5. All parameters same as Fig. 4 except f P= m/—2.
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with the function F(p„,p'„) defined as

exp[i(p„+p'„—co+ ~0)T ]—exp( —I T )

F(i. v'. )=
1 +i(p„+p'„—co+coo)

FIG. 6. Emission spectrum of the cavity field for atom initial-

ly in excited state (0=0). All other parameters same as Fig. 4.

Equation (15) readily reduces to the special case of Ref.
17 for the atom in the excited state initially (0=0). For
0=~/2, the interference terms are also present in Eq.
(15), whose phase is the relative phase between the dipole
and the cavity field.

Figures 4 and 5 show the spectrum for two different
phases. Of particular interest is Fig. 4 (g —/=0). Here
the two-peaked vacuum Rabi splitting becomes asym-
metric. This asymmetry persists as the mean number of
photons in the initial Poissonian state is increased. Com-
parison with Figs. 5 and 6 reveals that the most striking
effect of superposition and phase change appears for
larger values of mean number of photons. The asym-
metric fluorescence peak develops into a single sideband
at a distance 2g (n )' away from the central peak at coo

and the emission in the other sideband is inhibited. Note
that the intensity of this sideband is also doubled as com-
pared to the one for an initially excited atom or for a rel-
ative phase of ~/2. For the choice of the relative phase

P=rr, the spec—trum is just the reverse of Fig. 4 and
the sideband appears on the other side of the central
peak.

The emission characteristics in Figs. 5 and 6 are simi-
lar, which is to be expected from the dynamics of the
atom under the same conditions. The only difference be-
tween the two spectra is lower intensity for a lesser value
of n in Fig. 5. This is because of the lesser excitation en-

ergy available as compared to the case of the initially ex-
cited state of the atom.

IV. CONCLUSION

In conclusion, the dynamics of the atom, i.e., the popu-
lation inversion, as well as the emission characteristics
become phase sensitive when the atom is initially

prepared in a coherent superposition of the upper and
lower levels in the two-level JCM interacting with a
coherent field. For a particular choice of the phase and
in a semiclassical limit, "coherent trapping" occurs in

two-level atoms. This can be interpreted as the result of a
destructive interference between the dipole wave and the
cavity eigenmode.

The microscopic superposition also manifests itself in

the emission spectrum, which again exhibits a phase sen-

sitivity. In particular, unlike the ordinary case, the two-

peaked vacuum Rabi splitting does not evolve into the
three-peaked spectrum for higher values of mean number
of photons. Instead, one of the side modes is completely
quenched and the other is doubled in intensity.

ACKNOWLEDGMENT

Research was supported by the Pakistan Science Foun-
dation.

M. O. Scully, Phys. Rev. Lett. 55, 2802 (1985); M. O. Scully
and M. S. Zubairy, Phys. Rev. A 35, 752 (1987); K. Zaheer
and M. S. Zubairy, ibid. 38, 5227 (1988); J. Bergou, M.
Orszac, and M. O. Scully, ibid. 38, 754 (1988); W. Schleich
and M. O. Scully, ibid. 37, 1261 (1988).

W. W. Chow, M. O. Scully, and J. Stoner, Phys. Rev. A 11,

1380 (1975).
3M. O. Scully and M. S. Zubairy, Opt. Commun. 66, 303 (1988).
4T. A. B. Kennedy and D. F. Walls, Phys. Rev. A 37, 152

(1988).
~H. I. Yoo and J. H. Eberly, Phys. Rep. 118, 290 (1985).
J. Krause, M. O. Scully, and H. Walther, Phys. Rev. A 34,



2004 K. ZAHEER AND M. S. ZUBAIRY 39

2032 (1986).
D. Kleppner, Phys. Rev. Lett. 47, 233 (1981); D. Pavolini, A.

Crubellier, P. Pillet, L. Cabaret, and S. Liberman, ibid. 54,
1917 (1985); G. Rempe, H. Walther, and N. Klein, ibid. 58,
353 (1987).

8J. Gea-Banacloche, R. R. Schlicher, and M. S. Zubairy, Phys.
Rev. A 38, 3514 (1988).

G. J. Milburn, Opt. Acta 31, 671 (1984).
C. W. Gardiner, Phys. Rev. Lett, 56, 1917 (1986).
H. J. Carmicheal, A. S. Lane, and D. F. Walls, Phys. Rev.
Lett. 58, 2539 (1987).

' N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly,
Phys. Rev. A 23, 236 (1981).

' M. Sargent III, M. O. Scully, and W. E. Lamb, Jr. , Laser
Physics (Addison-Wesley, Reading, MA, 1974).

' N. Lu, P. R. Herman, A. G. Yodh, Y. S. Bai, and T. W.
Mossberg, Phys. Rev. A 33, 3956 (1986).

'~J. H. Eberly and K. Wodkiewicz, J. Opt. Soc. Am. 67, 1252
(1977).

' G. S. Agarwal and R. R. Puri, Phys. Rev. A 33, 1757 (1986).
' J. J. Sanchez-Mondragon, N. B. Narozhny, and J ~ H. Eberly,

Phys. Rev. Lett. 51, 550 (1983).


