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Accurate analytic off-axis electron trajectories
in realistic two-dimensional transverse wigglers with arbitrary magnetic field variation
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For several reasons, it is essential to have analytic descriptions of single-electron trajectories for
wigglers and undulators. (a) They give a better insight into the complicated dependence of the elec-
tron motion on quantities like the injection conditions or the wiggler parameter K; (b) one can hope
to calculate the radiation pattern from a particular wiggler or undulator only if at least the single-

electron velocity is given in closed form; (c) analytic single-particle trajectories are an essential start-

ing point for investigating advanced problems like stability analyses and free-electron laser perfor-
mance. Therefore, single-electron motion was studied in wigglers with two-dimensional magnetic
fields that are transverse and periodic but otherwise arbitrary on axis, and satisfy Maxwell's equa-
tions off axis. In this class of fields, the energy and one component of the canonical momentum are
conserved and can be used to reduce the trajectory problem to the integration of a single complicat-
ed second-order ordinary differential equation, which, for all realistic electron-beam emittances and
for all realistic values of 5 =E/y, is weakly nonlinear and lends itself to a two-level two-scale

analysis, through which an accurate analytic description of the complete electron trajectory can be
established. This analytic trajectory exhibits all the features that one expects to find in off-axis

motion, such as small-amplitude rapid wiggler oscillations superimposed on large-amplitude slowly

varying betatron oscillations. The accuracy of this analytic trajectory was tested for a sinusoidal
on-axi's field variation by comparison with a numerical trajectory, and it was found that even for
far-off-axis electrons, the agreement was excellent, typically on the order of one part in a thousand.
This high accuracy in the off-axis regime is an important feature, since in many devices real trans-

verse beam dimensions, initial beam velocity spreads, lateral beam injection, and a small undulator

period A,o lead to electrons traveling considerably off axis.

I. INTRODUCTION

Wigglers and undulators are important for shaping the
properties of synchrotron radiation to particular spectro-
scopic needs, and as major components of free-electron
lasers (FEL's). So far, a large number of different mag-
netic field configurations have been studied. The "linear"
or "transverse" wiggler —as opposed to the "helical"
wiggler —is characterized by a median plane of symme-
try (x-z plane in Fig. 1), which contains the wiggler axis
(z axis in Fig. 1). In the median plane, the static magnet-
ic field is everywhere perpendicular to this plane, and
varies periodically along the wiggler axis.

Outside the median plane (i.e. , off' axis), the magnetic
field is often approximated by the field on the wiggler
axis. ' Although such a field violates Maxwell's equa-
tions, it can nevertheless be regarded as a good approxi-
mation for electrons traveling su%ciently close to the
wiggler axis. However, in almost all wiggler or undulator
devices a large number of the electrons travel consider-
ably off axis, because of finite transverse beam dimen-
sions, initial beam velocity spreads, and injection with the
beam centroid off axis. ' For such off-axis elec-
trons, the above approximate field is no longer adequate,
and a more accurate description must be employed.
Assuming —in good agreement with realized designs—
that in the region of interest the magnetic field is uniform
in one transverse direction (wide enough poles in the x
direction in Fig. 1), the remaining two-dimensional mag-

netic field, in order to satisfy Maxwell's equations, neces-
sarily varies in the other transverse direction (y direction
in Fig. 1), and exhibits axial field components outside the
median plane (Fig. 2). ' In addition to the rapid oscilla-
tions in the x-z plane that are already present with the
unrealistic one-dimensional (1D) field, a realistic 2D field
induces slow betatron oscillations in the y-z plane, '

on which are superimposed small-amplitude rapid oscilla-
tions in the same plane. ' The additional electron oscilla-
tions in realistic wiggler fields must be expected to affect
the spectral and angular distributions of the emitted radi-
ation, and some of the crucial phase relations in a FEL.

The off-axis electron trajectories in realistic 2D static
magnetic fields have been calculated numerically, includ-
ing undulator field errors and fringing fields at the

FICs. 1. Sketch of a two-period permanent wiggler with axis
conventions shown.
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FIG. 2. Field lines, denoted by solid lines, of a 2D static mag-
netic field in the transverse y-z plane with a sinusoidal on-axis
field variation, indicated by the dashed line.

wiggler ends. However, analytic expressions for the
single-electron trajectories are essential for several
reasons. (a) One can hope to calculate the radiation pat-
tern from a particular wiggler or undulator only if at
least the electron velocity is given in a closed form; (b)
analytic expressions for single-electron trajectories give a
better insight into the complicated dependence of the
electron motion on parameters like the injection condi-
tions at the wiggler entrance or the wiggler parameter K;
(c) analytic single-particle trajectories are an essential
starting point for investigating advanced problems such
as stability analyses and FEL performance.

Therefore there has also been a great interest in finding
the electron trajectories in analytic form. ' ' One way
to establish these is to exploit the two constants of the
motion that exist in a 2D magnetic field of the above
type, namely, the energy and the canonical momentum
with respect to the uniform transverse direction. With
their help the problem of finding analytic trajectories can
essentially be reduced to the problem of solving in closed
form a single complicated second-order ordinary
differential equation, which governs the transverse
motion in the y-z plane. In the case of a sinusoidal on-
axis field variation, this transverse motion (assuming
small transverse amplitudes) is often approximated by a
simple harmonic oscillation. The approximation consists
in averaging over the rapid oscillations and in taking into
account only linear terms in a normalized transverse am-
plitude in the equation of motion, and essentially yields
the above betatron oscillations. ' ' Luccio and Krinsky
give an analytic expression for the small-amplitude rapid
oscillations that are superimposed on the slow betatron
oscillations ' again for a sinusoidal on-axis field variation,
and taking into account only lowest-order terms in the
transverse variable.

For electrons traveling considerably off axis, however,
it is to be expected that analytic expressions' ' based
only on the lowest-order terms in a normalized transverse
variable are insufficient to describe the motion accurately.
In fact, in many devices real transverse beam dimensions,

initial beam velocity spreads, ' lateral beam injection, '

and a small undulator period A.o (Refs. 25 —28) (note that
the relevant off-axis scale is not the transverse amplitude
y itself, but the ratio 2~y/ko) lead to electrons traveling
considerably off axis. For electron-beam sources supply-
ing electron beams with transverse beam dimensions in
the millimeter region, such as linacs, electrostatic ac-
celerators, ' and microtrons, " the usual wiggler or undu-
lator periods in the centimeter region lead to ratios
2'/Xo typically up to 0.6, i.e., extending into the far-
off-axis regime. For small-period undulators with periods
in the millimeter region, proposed in Refs. 25 —28 to
achieve shorter-wavelength undulator radiation with
moderate energies, the off-axis scale 2~y /Xo assumes
values greater than 0.1 also for low emittance sources
such as most storage rings, ' ' which supply electron
energies of hundreds of MeV with transverse beam di-
mensions of 0.05 —1 mm. In the following analysis, we
therefore include terms up to fifth order in the normal-
ized transverse variable to achieve high accuracy also for
far-off-axis trajectories.

As another important point we note that a purely
sinusoidal on-axis field variation is only an approximation
to the true magnetic field. Indeed, the fields of plane elec-
tromagnets or of permanent magnets in the Halbach
configuration (Fig. 1) require for their description the in-
clusion of higher harmonics. ' ' the transverse variation
of which becomes progressively important for increasing
distances from the wiggler axis. While for plane elec-
tromagnets and for Halbach configurations the harmonic
content can be substantially taken account of by includ-
ing second-harmonic terms, ' higher harmonics seem to
be of greater relevance for microundulators as proposed
in Ref 26. Besides, in order to optimize the radiation
characteristics from wigglers and undulators, efforts are
being made to produce on-axis field variations that deli-
berately deviate from a sinusoidal form. We thus strive
in this paper for accurate analytic trajectories in realistic
2D magnetic fields with arbitrarily prescribed periodic
on-axis field variation.

In Sec. II we define the class of static magnetic fields
considered and derive the corresponding vector potential.
With the aid of the two constants of the motion that this
class of fields admit, we reduce in Sec. III the set of rela-
tivistic equations of motion to one complicated nonlinear
second-order ordinary differential equation for the trans-
verse coordinate y(z). This equation holds for the class
of vector potentials specified in Sec. II, and it turns out to
be weakly nonlinear for realistic beam parameters and for
realistic values of 5 =K/y. To solve this equation, we
employ in Sec. IV a two-level second-order two-scale
analysis, by means of which an accurate description of
the y-z motion is established. This description exhibits all
the features that one expects to find in off'-axis motion,
such as small-amplitude rapid wiggler oscillations super-
imposed on large-amplitude slowly varying betatron os-
cillations. In Sec. V, we discuss the implementation of
the initial conditions, and in Sec. VI, we use the expres-
sion found for y (z) to determine the complete 3D trajec-
tory in analytic form. In Sec. VII, we specialize to a
sinusoidal on-axis field variation in order to compare our
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approximate trajectory graphically with the result of a
numerical integration and with that found from the sim-
ple harmonic approach. We find the accuracy of our tra-
jectories to be excellent and greatly superior to the simple
harmonic approach for a wide range of the parameters of
the problem, especially so for electrons traveling consid-
erably off axis.

II. TRANSVERSE 2D MAGNETIC FIELDS

is a constant of the motion.
In the following, it is convenient to transform the in-

dependent variable t to the axial variable z. Performing
this transformation and exploiting the two constants of
the motion (3.2a) and (3.2b), the three equations (3.1) can
be decoupled for arbitrary field variations ~(y, z). In par-
ticular, we thus find a nonlinear second-order ordinary
differential equation governing the electron motion in the
y-z plane,

2
We consider 20 magnetic fields of the form

B=B (y, z)e +8,(y, z)e, , (2.1)

d y =e [b —~(y, z)]
dz2

dy
dz

8 (y =0, z)=8,„(z), 8, (y =0, z)=0 . (2.2}

uniform along e, and with e, pointing along the wiggler
axis (Fig. 1). We assume the x-z plane to be the median
plane of symmetry, in which the magnetic field is parallel
to c and varies periodically along the wiggler axis e, .
We prescribe the on-axis field by an arbitrary periodic
function B,„(z) with period A.o,

where

X [1 e[b——~(y, z)] ]

6 poe=, b=
Po

'
mcy05

X (y, z) — (y, z)
Ba dy Ba

(3.3)

(3.4)

The complete magnetic field of the type (2.1) with on-axis
variation (2.2) that satisfies Maxwell's equations in Uacuo,
V X B=0 and V.B=0, can be written as

and where 5„denotes as usual the wiggler parameter K
divided by yo,

B=Re[8,„(z+iy)]e~+Im[8,„(z+iy}]e, . (2.3)
K
Vo

eAO

mcyo
(3.5)

For a sinusoidal on-axis field variation, the magnetic field
(2.3) is indicated in Fig. 2.

The corresponding vector potential to (2.3) is

A= A(y, z)e„=Re ~ f8,„(g)dg e„, (2.4)

A(y, z}=Aou(y, z), (2.6)

where Ao is the maximum on-axis amplitude of A (y, z).

III. EQUATIONS OF MOTION

If radiation reaction is left out of account, the relativis-
tic single-electron trajectories in the class of magnetic
fields considered are the solutions of the equation of
motion (in the usual notation),

e(yP)= —PX8 .
dt rn

(3.1)

where g=z+iy is an auxiliary complex variable. For
convenience, the gauge has been chosen such that

A p
A y =0, z dz =0 . (2.5)

0

In the following, we write the only component of the vec-
tor potential in the form

In order to simplify the notation, y and z denote from
now on dimensionless variables that are obtained from
the original variables y and z by multiplying them by
k0=2m/A, o. Thus the new variables y and z are normal-
ized to the wiggler period ko.

Since for all realistic wigglers and undulators the quan-
tity 5, and, therefore, e is small (typically a few parts in
one hundred or less), Eq. (3.3) is weakly nonlinear. Since,
furthermore, realistic beam parameters and field
geometries limit the value of y to, say, ~y ~

~0.6, the re-
duced potential u(y, z) and its derivatives may be expand-
ed around y =0 in powers of y to an appropriate order.
In the subsequent analysis, we will find the inclusion of
terms up to 0 (y ) sufficient to ascertain the required ac-
curacy even for far-off-axis motion.

IV. TWO-SCALE ANALYSIS

We attempt to establish an accurate periodic approxi-
mation to the solution of the weakly nonlinear equation
(3.3), valid throughout the entire wiggler, by way of a
two-scale perturbation analysis. Therefore we intro-
duce a "fast" scale z+, associated with the wiggler
period, and a "slow" one z, associated with the slow be-
tatron oscillations. We take

The corresponding total energy,

E =mc yo, (3.2a)

Z =Z, Z =Ez (4.1)

and, in the spirit of the two-scale approach, we treat z+
and z as independent variables, such that

is a constant of the motion, and, in magnetic fields of the
type (2.1), also the x component of the canonical momen-
tum,

d
dz

a + a+E'
Bz Bz

(4.2}

p„(z)=mc yo P (z) +e A 0~(y, z) =p o„, (3.2b) +2t +t
dz' az+' az+az- qz

-'
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We assume the solution in the form of an expansion,

y(z)=yo(z+, z )+ay, (z+, z )+ay, (z+,z )

+ey3(z+, z )+ey4(z+, z ) . (4.3)

a'
+2 (4.4a)

and

yi yo

Bz+ Bz+Bz
(4.4b)

In order to avoid secular terms in z+, we see from (4.4a)
that yo must depend only on the slow scale z

Next we insert (4.1)—(4.3) into Eq. (3.3), after a(y, z) and
its derivatives have been expanded with respect to y, and
equate coefficients of like powers in e on both sides of the
resulting equation. For e and e' we find

would give rise to secularities in y2 with respect to the
fast scale z+ upon a double quadrature of (4.7). To avoid
these, we require

3+g aoyo' '(z )=0,
n=1

(4. 1 1)

which is the desired equation for yo.
With the ao; found, Eq. (4.11) could be immediately in-

tegrated once and then solved exactly in terms of elliptic
functions. However, sufficiently accurate approximate
solutions are preferable, since they are easier to handle
and still maintain the high overall accuracy that we in-
tend to achieve. For this reason we first reduce (4.11) to a
more convenient form by rescaling the dependent and

independent variables according to Qao, z =z and

yo=(yo), ~0, where (yo),„ is the maximum amplitude
of the oscillation. Then (4.11) reads

yo=yo(z (4.5) +yo+ey o+e ay o=0z'
Substituting this result into (4.4b), we find that also y,
must depend only on the slow scale z

2
02(yo)max

Qo)
(4.12)

y, =y, (z }. (4.6)

8y2
+2

By f, (z+)yo(z ) ——f&(z+)yo(z )'
z

—f3(z+)yo(z ) (4.7)

where the f, (z+) are periodic functions of the fast vari-
able z+, defined by

Ba bBa
By By O, ,+

1 B'a B'a

By By'
a

ay 4

1 ,B'.
12 10 B

y=o, z=z

(4.8a)

(4.8b)

1 Ba 38a Ba
10 By' 2 By' By' .. .+

(4.8c)

Note that no odd derivatives of a(y, z) with respect to y
appear as a consequence of the properties of the 2D mag-
netic field (2.1). We now extract the mean values ao;
from the 2m-periodic functions f;(z+),

f, (z+) =ao, +f, (z+),
where

(4.9)

Qo;=; Z dZ
2& 0

(4.10)

Obviously, the constants ao; and the term —3 yo/Qz

As usual in two-scale procedures, the function yo(z ) is
determined by the requirement that yz(z+, z ) contain
no secular terms in z+. The equation that determines
y~(z+, z } is found from equating the coefficients of e,

3 += —gyo' '(z )J (z —z)f, (z)dz
i=1 l

+gz(z ), (4.13)

where the f, (z+) have been defined in (4.9), and the con-
stants c; have to be chosen such that no terms propor-
tional to z+ appear as a result of the integration. For
most applications it will be sufficient to determine the
lowest-order term h, (z ), as yz enters the solution (4.3)
only multiplied by e .

The term y„; ~, (z+,z ) in (4.13) describes fast, small-
amplitude oscillations, that are superimposed on the
large-amplitude, slowly varying betatron oscillations,
which are essentially described by yo(z ). The function
gz(z ) in (4.13) is an as yet undetermined function of the
slow scale, which improves the description of the beta-
tron oscillations. In order to obtain a complete second-

aO3aOi
2

ao2

If F«1 and a=0(1), Eq. (4.12) is weakly nonlinear and
is amenable to the application of a separate two-scale
analysis, independent of the above two-scale pro-
cedure with respect to e. It turns out that the two-scale
solution of (4.12) is very accurate even up to compara-
tively large e, such as, e.g. , a=0. 5. This means that the
requirement e«1 is not very stringent, and that Eq.
(4.12) can be considered to be weakly nonlinear for al-
most all physically relevant field variations, which in turn
determine the magnitude of the coefficients ao, .

By integrating (4.7) subject to (4.11), we find

yz(z+, z )=y„; „(z+,z )+gz(z )

3

=gyo' '(z )h, (z+)+gz(z )
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order solution (involving yo, y, , and y2), it therefore
remains to establish g2(z ) and y, (z ).

The function y, (z ) is determined by requiring that
y3(z+, z ), although itself omitted from the solution that
we are aiming at, contain no secular terms in z+. Con-
siderations analogous to the determination ofyo(z ) lead
to a homogeneous equation of Mathieu type for y, (z )

corresponding to (4.11) for yo(z ). As will be seen in
Sec. V, the implementation of the initial conditions leads
to y, (0)=0 and By, /Bz (0)=0, which, in view of the
equation for y, being homogeneous, requires y, (z ) to
vanish for all z

y, (z )=0 . (4.14)

The function gz(z ) in (4.13) must be found from the
requirement that y&(z+, z ) contain no terms that are
secular on the fast scale z+. As g2(z ) varies only on the
slow scale, and appears in the expansion (4.3) only as a
term multiplied by e, it suffices to determine gz(z )

from the terms linear in y in the expansion of the reduced
potential ~(z,y) and its derivatives. Together with (4.14),
this facilitates collecting the terms that make up the
equation for y4, and it ensures that the equation for
g2(z ) simplifies substantially,

y (z) = [yo(EZ )+6 g2(EZ )]+[6 y~;&&ie(z)] (4.18)

where yo(ez) and E g2(ez) describe the large-amplitude,
slowly varying betatron oscillations, and e y; &, accu-
rately describes the superimposed rapid oscillations with
a slowly varying envelope.

V. IMPLKMKNTATION OF THK INITIAI. CONDITIONS

Our next task is to subject y(z) to the initial condi-
tions, in order to assign values to the various integration
constants. These initial conditions are

y (z =0)=yo,
&o,y'(z =0)=

(5.1)

where yo is the electron's vertical distance from the
wiggler axis at the wiggler entrance, and Po~ and Po,
denote the initial velocities in the y and z directions, re-
spectively. Hence the conditions to be satisfied by the ex-
pansion y (z) are

solved in closed form.
Thus all terms of the desired accurate second-order

closed-form expansion of y (z) are known,

B2

Bz
(z )+aoig2(z ) =ao4yo(z ) (4.15)

and

yo =yo(0, 0) +ey, (0,0) + E y&(0, 0) (5.2a)

The function yo(z ) is the already known solution of
(4.11), ao, is the first of the constants (4.10), and the con-
stant ao4 is given by

(4.16)

=e (0,0)+e (0,0)+e (0,0)

By2+e (0,0),
Bz

(5.2b)

with the 2n-periodic function f4(z ) being

B2 B2f (z+)= b (O, z ) — (O, z+) (O, z+) h, (z+)
By By

B.
b (O, z+ ) —~(O, z+ ) (O, z+ )Bz

' '
Bz

' Bz+

B2
+[b —~(O, z+)] (O, z+) . (4. 17)

By

Note that hi(z+ ) has already been determined in finding
y~(z+, z ) from (4.13).

We note that Eq. (4.15) is that of an undamped har-
monic oscillator driven close to resonance, since from Eq.
(4.11) the frequency of the driving term yo(z ) is close to
the eigenfrequency coo=+aoi of the oscillator on the
left-hand side of (4.15). Thus gz(z ) will show a nearly
secular behavior on the slow scale z . In contrast to a
fast-scale secularity, which we have so far successfully
avoided, such a slow-scale behavior of gz(z ) not only
poses no problems, but on the contrary ensures that
g2(ez ) multiplied by e corrects yo(ez ) in such a way that
the two terms together describe the slow betatron motion
of the electron very accurately. Since by virtue of the
weak nonlinearity of Eq. (4.11), its (approximate) solution
yo(z ) is given in closed from, Eq. (4.15) can also be

yo =yo(0, 0), (0,0),
& Po, Bz

(5.3a)

By,
O=y, (0,0), 0= (0,0),

Bz

By 2 By 2O=y2(0, 0), 0= (0,0)+e (0,0) .
Bz Bz

(5.3b)

(5.3c)

Equations (5.3a) allow us to determine uniquely the two
integration constants in yo. In the case that yo itself has
to be found through an auxiliary two-scale procedure, it

where the properties (4.5) and (4.6) have been incorporat-
ed. Equations (5.2a) and (5.2b) involve more than two in-
tegration constants. In order to determine them uniquely
by only two equations, further conditions have to be im-
posed. The question of how different choices of these
conditions give rise to different accuracies of the resulting
expansion is discussed in greater detail by way of a simi-
lar example in Ref. 34. Here we adopt a policy that was
found to lead to very accurate results. It consists in set-
ting those terms on the right-hand sides of (5.2a) and
(5.2b) equal to the given initial values on the left-hand
sides of (5.2a) and (5.2b), respectively, that involve yo,
and in setting equal to zero terms involving y, and y2, re-
spectively,



1994 P. TORGGLER AND C. LEUBNER 39

may at first involve more than two integration constants,
which in turn have to be reduced to just two by adopting
a similar implementation policy before substituting yo
into (5.3a). Note that (5.3b) was already used in Sec. IV
to find y, (z+, z ) =0. Equations (5.3c) determine the in-

tegration constants in gz(z ), as the other part of
y~(z+, z ), namely, y; s~, (z+, z ), only contains in-

tegration constants via yo(z ), which are at this stage al-

ready known from (5.3a).

VI. COMPLETE TRAJECTORY

P, (z) = Pox

mego
—5 ~(y(z), z),

Py(z) =P, (z) dy (z)
dz

P, (z)= /3()
—P„(z)

'
2

dz

1/2

components as a function of z,

(6.1a)

(6.1b)

(6.lc)

In Secs. IV and V an accurate expansion for the trans-
verse motion in the y-z plane has been established for the
given initial conditions. With the aid of the two con-
stants of the motion (3.2a) and (3.2b), we can now
proceed to find analytic expressions for all three velocity

with y(z) from (4.18). In keeping with the expansions
with respect to 6„and y that were invoked to find the an-
alytic expression (4.18), we also expand P (z) and P, (z)
with respect to 6, and y. Assuming, furthermore, that
Po «1, which is well satisfied in all wigglers and undu-
lators, we find

1 a' g4
/3, (z) =6„, b rc(O, z) ——— (O, z)[yo(ez)+2e yo(ez)h, (z)+2e y, (ez }gz(ez)]— — (O, z)yo(ez) (6.2a)

dyo(ez ) dy„; „(z) dg, (ez)
/3~(z)=5 I 1 —

,'e [b ——cz(O,z)] I +e +e
d(ez) dz d(ez )

(6.2b)

B 0
/3, (z) =go 1 —,'e [b —~—(O,z)] —[b —cr(O,z)],' yo(ez )+

2
dyo(ez )

d(ez)
(6.2c)

In (6.2a), h, (z) is the fast-scale dependence of the lowest-order term ofy„; ~, as defined in (4.13).
In order to establish the complete trajectory in the convenient form t (z), x (z), and y (z), it remains to perform two

quadratures [as y (z) has already been determined],

, P (z')
x (z) =xo+f, dz',

o ,(z'

dz't(z)=
o c/1, (z')

(6.3a)

(6.3b}

where the initial conditions x (0)=xo and t (0)=0 have already been implemented. These integral representations of
x (z) are acceptable for some applications, for example, for the asymptotic evaluation of the classical radiation integral
that determines the spectral and angular characteristics of the radiation emitted by an electron following the trajectory
t(z), x(z),y(z) in the wiggler or undulator. Yet, for other applications, it is preferable to have analytic expressions
not only for the velocity components (6. la) —(6.1c) or (6.2a) —(6.2c), but also for x (z) and t (z). To establish them, we ex-

pand the integrands of (6.3a) and (6.3b) with respect to 5 up to second order, and the reduced vector potential ~(y, z)
with respect to y up to an appropriate order, as we did in finding the expansions (6.2a) —(6.2c) of the velocity com-
ponents. This yields

}t3 (z)

/3, (z)
1

b —~(O, z) —— (O, z)[yo(ez)+2e yo(ez)h, (z)+2e yo(ez)g, (ez)]
0 2

2

1 dyo(ez )

~ (O, z)yo(ez)'+ ,'e'[b —~(O,z)]—
24 By

' ' d(ez)
+ —,'e [b —rz(O, z)]

2 2

—,'e [b —~(O, ci)]
2

( , 0) zy( oze) —,'e (O,—z)[b—cz(O, z)] yo(ez) (6.4a)

r

a2
1+—,

' e [b — (O, z)] —[b — (O, z)] (O, z)y (ez )+
cP(z) cgo '

By

dyo(ez )

d(ez }

2

(6.4b)
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With these expressions, the integrations in (6.3a) and
(6.3b) only involve the known z dependence of the re-
duced potential -u and its derivatives, and powers of the
function y(z), which is known in closed form. This al-
lows us to calculate the expansions of x(z) and t(z) in
closed form for a large number of physically relevant field
variations ~(y, z) by integrating (6.4a) and (6.4b) term by
term.

0.5t

0-

VII. ANALYTIC VERSUS NUMERICAL SOLUTION

In order to assess the accuracy of the analytic approxi-
mation to the true trajectory x(z), and to compare this
accuracy with the one achieved on the basis of the fre-
quently employed simple harmonic oscillation in the y-z
plane, we choose the example of a sinusoidal on-axis field
variation. Using (2.4) and (2.5), such a sinusoidal on-axis
field variation is described in (scaled variables) by a re-
duced vector potential of

zz(y, z) =cosh(y)cos(z) . (7.1)

yo(ez ) =(ap+a i )cos(viz )+ (ho+ bi )sin(viz )

+ —,', ao(a p
—3b p )cos(3vez )

+ ', b p(3a p
——bo )sin(3vez ), (7.3)

with the "frequency" v being given by

1v= [1+—,'(ao+bo)+ —,', (ao+bo) + z(aoai+bobi)l .v'2

(7.4)

By virtue of its two-scale origin, yp(ez) involves four in-
tegration constants ap bp a, , and b]. The two equations
(5.3a), to which y p(ez) has to be subjected, place only two
conditions on these four constants. Therefore a policy
such as the one in Ref. 34 has to be adopted to determine
all four of them. Carrying out the integrations in (4.13),
we find

y„, „(z)= bcos(z)[yp(—ez)+ 6yp(ez) + „',yp(Ez) ]- —
+ —,'cos(2z)[yp(ez)+ ,'yp(Ez) +——,',yp(ez) ] .

(7.5)

The function gz(ez) can be easily found from (4.15),
which can be solved exactly for the values of a» and ap4
given by (7.2), and for the driving term yp(ez) given by
(7.3). Inserting (7.3), (7.4), and g2(ez) into (4.18) yields
the desired expansion y (z) in closed form.

We begin our comparative studies with the y (z)
motion. Off-axis injection as well as initial velocity
spread give rise to an oscillating motion in the y-z plane,
in addition to the large-amplitude oscillation in the x-z
plane. The y-z motion consists of small-amplitude, rapid
oscillations superimposed on a large-amplitude, slowly

The corresponding constants ao, [defined in (4.10)] are

ap, =
—,', apz =

—,', ap3 „ap4= —,'b —
—,
" .—(7.2)

With these constants, Eq. (4.12) can be accurately solved
by an auxiliary two-scale procedure to yield

-0.5.
0 z(units of ), )

30

FIG. 3. Slow betatron oscillation in the y-z plane for two
different sets of initial conditions: yo=0. 4, Po =0 (sohd curve
1), and y =0, Po /Po, =3.6 mrad (dashed curve 2), but otherwise
identical parameters (PO„=O, 8„,=0.05, y„= 195, N& = 1,06).

6 z Po&2 5z
yharmonic(z) =yo os . +

pz w

(7.6)

In Fig. 5 we compare the relative deviations 5 of our

varying betatron motion. This betatron motion, accu-
rately described by the terms yo(ez)+e g2(ez ) in (4.18), is
shown in Fig. 3 for two different sets of initial conditions.
It can be seen that the electrons perform about one full
betatron oscillation in the relatively strong (K =10) 30-
period wiggler chosen. For smaller values of K or higher
injection energies, i.e., for a smaller value of 5, the
wavelength of betatron motion increases, so that the elec-
trons will reach the wiggler end before having completed
a full betatron oscillation. This is the case in many real-
ized devices.

Besides a laterally displaced injection as in curve 1 of
Fig. 3, also a realistic angular spread of the electron
beam, that is a transverse velocity component po~ at the
wiggler entrance, leads to betatron oscillations of consid-
erable amplitude, as indicated by the dashed curve 2 in
Fig. 3. In fact, most electrons will enter the wiggler or
undulator both at a transverse distance yp from the
wiggler axis and with a transverse velocity component
Ppy.

In addition to the slow betatron motion (Fig. 3) in the
y-z plane, the electrons execute rapid oscillations of small
amplitude in the same plane, which are described by the
term e y, 1,(z) in (4.18). For better graphical display,

y; &,(z) is shown separately in Fig. 4, which —after mul-

tiplication by e —should be imagined to be superim-
posed on curves 1 and 2 of Fig. 3, respectively.

Next, we compare, still for the case of sinusoidal on-
axis field variation, the accuracy of our solution (4.18)
with the accuracy achieved by the usual result in the
near-axis regime, which arises from considering only
terms of lowest order in y and from averaging over the
rapid oscillations. This usual result is a simple harmonic
oscillation, ' ' which after implementation of the initial
conditions (5.1) reads
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FIG. 4. Behavior of the small-amplitude rapid oscillations in
the y-z plane that are superimposed on the slow betatron oscilla-
tions shown in Fig. 3 for the same sets of parameters as in that
figure.

solution (4.18) I'with yo(ez) from (7.3) and y„; &, (z) from
(7.5)], and of the harmonic solution (7.6) from an exact
numerical solution of Eq. (3.3), with ~(y, z) taken from
(7.1). By relatiue deviation b, we mean the differences
between the respective approximate solutions (4.18) and
(7.6), and the exact solution, divided by the maximum

amplitude of the betatron motion, which is essentially
equal to the maximum amplitude of the y-z motion. The
parameters chosen in Fig. 5 correspond to the far-off-axis
regime, i.e., maximum values of the normalized trans-
verse variable of about 0.3 and above. Such values result
from substantial initial transverse displacements of the
electron entering the wiggler, in Fig. 5 about 4% of the
wiggler period ko, and/or from a substantial initial trans-
verse velocity spread, which is taken to be 11 mrad in
Fig. 5. Indeed, a substantial portion of electrons supplied

5 —9 llfrom electron sources such as linacs, microtrons,
and electrostatic accelerators, ' will travel so far off' axis

if a wiggler or undulator period in the usual centimeter
region is used. Such a far-off-axis regime can even be
relevant for low emittance sources such as storage
rings, ' ' if the wiggler period is in the millimeter re-
gion as proposed in Refs. 25 —28.

Curve 2 of Fig. 5 shows that the relative deviation of
the harmonic solution (7.6) exceeds 15% after as few as
20 wiggler periods, which corresponds to about X&=0.7
betatron oscillations. In contrast, the solution (4.18) is
much more accurate, with typical relative deviatioris of a
few parts in a thousand (dashed curve 1 in Fig. 5). We
note that the high accuracy of the solution (4.18) is not
only due to the inclusion of terms up to fifth order in the
transverse variable, but also due to the inclusion of
e g2(ez) and ey„;ss1,(z). The dashed curve 1 in this
figure is the diff'erence between (4.18) and the exact solu-
tion and its smooth behavior indicates that this dift'erence
does not vary on the fast scale, i.e., with individual
wiggler periods, and, therefore, that (4.18) correctly de-
scribes the rapid oscillations in the y-z plane that are su-
perimposed on the slow betatron motion. In contrast,
curve 2 of Fig. 5 exhibits a fast oscillatory behavior,
reilecting the fact that the harmonic solution (7.6) takes
no account of these rapid oscillations.

Fig. 6 shows that also in the intermediate-oA-axis re-
gime, with a maximum transverse normalized amplitude
of about 0.1, the analytic solution (4.18) is superior to the
harmonic solution (7.6). Such transverse amplitudes typi-
cally occur with initial transverse displacements of about
1 —2% of the wiggler or undulator period, and with ini-
tial beam velocity spreads of a few mrad. This
intermediate-off-axis regime is not only relevant for de-
vices using electron sources with transverse beam dimen-
sions in the millimeter region, but also for some low emit-
tance sources, such as storage rings in the 100-MeV re-
gime in combination with wiggler or undulator periods of
up to a few centimeters. Note that the relative di6'erence

1st
——

g (0/)

-15-

5J
0 z(units of X, )

20

z (units of ~, ) 20

FIG. 5. Comparison of the relative deviations Ay of the solu-
tion (4.18) (dashed curve 1) and the simple harmonic solution
(7.6) (solid curve 2) from the exact numerical solution of (3.3)
for the y-z plane motion, in the far-off-axis regime (y0=0. 25,
P„„/Po, = 11 mrad, P„,=0, 8„,=0.05, yo= 195, LV =p701).

FIG. 6. Comparison of the relative deviations Ay of the solu-
tion (4.18) (dashed curve 1) and the simple harmonic solution
('7.6) (solid curve 2) from the exact numerical solution of (3.3)
for the y-z plane motion, in the intermediate-off-axis regime
(y0=0. 08, Po /P„=4. 5 mrad, PO„=O, 8 =0.05, 7 0=195,
%p =0.71).
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Y, 0.5

of the analytic solution (4.18) does not even oscillate on
the enlarged scale of Fig. 6, reAecting the accurate
description of the rapid oscillations by the term
E y„; „(z) in (4.18).

In Figs. 7 and 8, we show the mean relative deviations
rr, in order to study the dependence of the accuracies of
(4.18) and (7.6) on various parameters, such as on the ini-
tial transverse electron distance from the wiggler axis
(Fig. 7), or on the parameter 5 (Fig. 8). For a given
wiggler- with a fixed number of periods, this quantity o
is obtained as usual by summing the squares of the rela-

FIG. 7. Comparison of the mean relative deviations o~ of the
solution (4.18) (dashed curve 1) and the simple harmonic solu-
tion (7.6) (solid curve 2) from the exact numerical solution of
(3.3) for the y-z plane motion. yo is the initial displacement
from the wiggler axis, the interval shown covering a range from
near axis to far off axis 15„=0.05, pa~=0 po =0, ) p=195,
N =20, Np=0. 71).

tive deviations 6 at n equidistant values of z, by dividing
this sum by n —1, and by then taking the square root.

From Fig. 7 we see that the deviation o. of the har-
monic solution (7.6) (curve 2) from the exact solution is
substantial, especially in the far-off-axis regime, i.e., at
the right end of the abscissa. In contrast, the accuracy of
the solution (4.18) (dashed curve 1) remains high even in
the far-off-axis regime, typically with mean relative devia-
tions o. below a few parts in a thousand. Since in this
figure the initial transverse velocity pc~ was taken to be
equal to zero, the shown dependence of the mean relative
deviation a on the transverse injection displacement yo
is at the same time the dependence on the maximum
transverse amplitude. This dependence hardly changes, if
this maximum transverse amplitude is caused by a com-
bination of transverse injection displacement yo and
transverse velocity component pp~.

Figure 8 shows the dependence of the mean relative de-
viations o. on 5 . This parameter essentially determines
the frequency of the betatron oscillations in the y-z plane,
and also the amplitude of the rapid oscillations superim-
posed on these betatron oscillations. As can be seen, for
small values of 6 the mean relative deviation o. of the
harmonic solution (7.6) (solid curve 2) is only a few parts
in one hundred and it is nearly zero for the analytical
solution (4.18) (dashed curve 1). Such a behavior is to be
expected, since the number of betatron oscillations N&
decreases with decreasing 5, and with almost no beta-
tron oscillations (N&=0.07 at the left end of the abscissa
in Fig. 8), the solution (7.6) is nearly as satisfactory as
(4.18).

The y-z motion studied so far in this section enters the
remaining quantities p„(z), p, (z), x(z) and t (z) that con-
stitute the complete trajectory, and errors in y (z) there-
fore propagate to these quantities. In Fig. 9 we chose to
study this error propagation by way of the relative devia-
tions b,

&
of the velocity component P in the x-z plane

x

RRR
V V

0
0.005

(N ~0.07)
0.07

(N~ =0.99)
z (units of ), ) 20

FIG. 8. Comparison of the mean relative deviations o.
~ of the

solution (4.18) (dashed curve 1) and the simple harmonic solu-
tion (7.6) (solid curve 2) from the exact numerical solution of
(3.3) for the y-z plane motion, for fixed initial conditions
(yo =o.4, po, =0, p0„=0, yo= 195, N =20), and as a function of
5„.

FIG. 9. Comparison of the relative deviations b& of the ve-

locity components in the x-z plane corresponding to (3.18)
(dashed curve 1), and corresponding to the simple harmonic
solution (7.6) (solid curve 2), from the exact numerical solution
(PO„=0, yo =0.3, Po =0, 6„,=0.05, ) o

= 195 ).
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(relative meaning here that the differences of the approxi-
mate analytic solution for P, from the exact solution are
divided by 6, since the magnitude of this parameter is of
the order of the amplitude of p ). If p is calculated
from the harmonic solution (7.6), we find 6(3 to lie below

~X

1% even in the far-off-axis regime (solid curve 2 in Fig.
9), although the relative deviation b, of (7.6) was typical-
ly 10% and more in the far-off-axis regime. As can be
seen from the dashed curve 1 in Fig. 9 the relative devia-
tion of p„ is nearly zero, if p„(6.2a) is based on the ana-
lytic solution (4. 18).

VIII. CONCLUSIONS

Since the usual magnetic field variation studied in the
literature is the purely sinusoidal one, it was obvious to
compare our approximate trajectory with that found
from the simple harmonic approach, on the one hand,
and with the result of a numerical integration, on the oth-
er hand. This comparison revealed an excellent accuracy
of our trajectories, which is greatly superior to the simple
harmonic approach for a wide range of parameters, espe-
cially for those corresponding to electrons traveling in
the intermediate- and far-off-axis regime (normalized
transverse distance in the y-z plane from the wiggler axis
about 0. 1 and above). The high accuracy of our analytic

solution in the off-axis regime, with its correct descrip-
tion of the rapid small-amplitude oscillations superim-
posed on the betatron oscillations, is to be considered an
important feature, as, in fact, in many devices real trans-
verse beam dimensions and initial beam velocity spreads,
lateral beam injection, and a small undulator period A,o
lead to electrons traveling considerably off axis.

Although not graphically represented in Sec. VII, our
analytical trajectories also exhibit a high accuracy even
outside the typical far-off-axis regime, that is, for normal-
ized transverse distances from the wiggler axis greater
than 0.6. This might be of interest if small-period undula-
tors are used with electron-beam sources that supply
electron beams with transverse beam parameters leading
to transverse amplitudes in the order of magnitude of the
small undulator period, such as most linacs do.

Beyond the important accuracy considerations in Sec.
VII and above, it should be noted that our approach is
able to provide accurate analytic trajectories in realistic
2D magnetic fields with arbitrarily prescribed periodic
on-axis field variation. This allows one to take into ac-
count field variations more realistic than the simple
sinusoidal one, which might be of great relevance to mi-
croundulators, and to on-axis field variations that deli-
berately deviate considerably from the sinusoidal one, as,
for example, proposed in Ref. 29.
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