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Analysis of an Nth-order nonlinear differential-delay equation
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The problem of a nonlinear dynamical system with delay and an overall response time which is

distributed among N individual components is analyzed. Such a system can generally be modeled

by an Nth-order nonlinear differential delay equation. A linear-stability analysis as well as a numer-

ical simulation of that equation are performed and a comparison is made with the experimental re-

sults. Finally, a parallel is established between the first-order differential equation with delay and
the Nth-order differential equation without delay.

I. INTRODUCTION

Self-oscillating and chaotic behavior in dynamical sys-
tems has been the subject of recent investigations. In op-
tical bistability, since the work of Ikeda, a good deal of
interest has been focused on hybrid devices as simple and
reliable models for the study of instabilities in delay-
differential systems. Among the problems connected
with these systems, the question of the relevance of the
corresponding discrete model to describing the dynamical
evolution toward chaos as a control parameter is varied
has been thoroughly debated. In particular, the situation
characterized by a large ratio of the delay ~d to the total
response time ~ led Ikeda in his early model to make the
adiabatic elimination assumption which has been ques-
tioned recently. Actually, such an elimination would be
appropriate in the case of a system with no delay but with

two (or many) response times when one is much larger
than the other(s). However, in the situation where a de-
lay and a single response time are involved the response
time cannot be neglected because of the transient effects
occurring on this time scale. This is especially true in the
chaotic regime where an increase in the complexity of the
solutions must be expected as the ratio ~d /~ is increased.

In a recent paper it was shown that a hybrid bistable
device can generally be described by an Nth-order
differential-delay equation when N independent com-
ponents contribute to the total response time. In particu-
lar, the case N =2 was analyzed and it was shown that
the second-order differential term explains the discrepan-
cies observed between the numerical and experimental re-
sults when the delay is of the same or smaller order than
the total response time. Here we analyze the general case
of N independent response times which give rise to the
Nth-order differential-delay equation:

X(r) + + + d X(r) d2X(r) dX(r)+ + g g g r, r,r„,+ g g r, ~, + g r, +X(t)=F(X(t —r„);p),
dt i=] j&ik&j dt i=] j&r' dt i=] dt

F(X(t ~d);p}=~[ A —@sin [X(t rd) Xs]j . — —(2)

A special case which can be considered without too
much loss of generality consists in equating the individual
response times r, to the same value r/N so that Eq. (l)
becomes

m
N

C"X™=F(X(rr, );p), —
N

(3)

where X™is the mth derivative of X(t) and C
represents the number of combinations of N quantities
taken m at a time.

where r=g, r;, F(X(t rd )} is a nonl—inear function, p
the control parameter, and ~d the time lag. In the case of
the acoustooptic device one has

As will be shown below the interest in studying the
Nth-order equation arises from the fact that for N ~ 3
self-oscillation becomes possible even for a delay equal to
zero —which does not occur for the first- or second-order
equation. In the particular case (rd=0) which will be
discussed at length here, the resulting Nth-order
differential equation describes a system having a finite
number (namely, N) of degrees of freedom. Therefore it
becomes possible to study the dynamical evolution of the
system as a function of N and p in the same manner as a
first-order differential-delay equation can be analyzed as a
function of ~d/~ and p. In fact, a correspondence be-
tween the two systems will be established in Sec. IV. Be-
forehand, results of a linear-stability analysis (in Sec.
II A) and of a numerical simulation (Sec. II B) of Eq. (3)
will be shown. The experimental results will be presented
in Sec. III.
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II. ANALYSIS

A. Linear-stability analysis

can be written in the asymptotic case defined by N ~ ~:
—-y(~d + ~)

Be " = —1,

g K,„y+Be "=0,
m=0

(4)

The linear-stability analysis' of Eq. (3) leads in a
straightforward manner to the Nth-degree equation

from which we obtain for a =0:

P(r„+r)=k7r (k odd),

B =+1,
(9a)

(9b)

where
'm

K = — Cm N m (5)

dX

and y—:a+ jP. The N solutions y, can be obtained by
solving Eq. (4) in the complex plane. Each solution cor-
responds to a linear mode in the system whose natural
frequency of oscillation is given by P, . The real part a, is
an attenuation (or amplification) factor. Now, since the
situation a, 0 implies the instability of the fixed point
solution of the ith mode, its threshold of self-oscillation
can be obtained as a function of N and ~d/~ by putting
o,'; =0. Result of such an analysis for the first linear mode
to become unstable (i =1) are shown in Fig. l. It ap-
pears that the asymptotic behavior for rdlr~ ~ is the
same for all N, i.e., the thresholds of self-oscillation tend
toward the lower limit predicted by the discrete model
(0.324. . . ). However, for rd/v~0 the self-oscillation
thresholds strongly depend on N. For N ~2 the thresh-
old goes to infinity as ~„/~is decreased. For N =3, how-
ever, the threshold reaches an upper limit equal to
6.02. . . , which means that self-oscillation is now possi-
ble for a delay ~d strictly equal to zero. This upper limit
rapidly decreases with N increasing so that for large N
(typically N ) 20) the bifurcation point is almost indepen-
dent of the ratio ~d/w and equal to the discrete model
value. The last result should not be surprising since it
can be derived directly from Eq. (4). The summation
term in (4) can be written

B. Numerical simulation

To proceed with the numerical integration of the Nth-
order differential-delay equation one must first transform
it into a system of N first-order differential-delay equa-
tions. When N is large special care must be taken to
avoid divergence of the solution. This can be easily un-
derstood, as for a simple harmonic signal sin(~t) the mth
derivative is proportional to co . Fortunately the
coefficient (hereafter defined as C to shorten the nota-
tion) appearing in front of the (m —1)th derivative in Eq.
(1) compensates for the growth of the latter. This natu-
rally suggests the following definition for the variable u

used in the computation:

X(m —l)
m m (10)

where the minus sign is rejected in (9b)—because the
function F(X) has a negative slope at the fixed point of
interest —and therefore k must be odd. This result tells
us that as N is increased the slope of the nonlinear func-
tion F(X) at the fixed point approaches —1 at the onset
of the self-oscillation, as in the case of the corresponding
difference equation (discrete model). It also appears that
the period of the self-oscillation corresponding to the first
linear mode (k = 1) is given by 2(rd +r), regardless of the
ratio ~d/r. The first mode, because it is the first to be-
come unstable, plays a dominant role in the dynamics of
the system, especially for N &50. It is to be remarked
that a similar case of mode hierarchy is observed in the
first-order differential-delay equation. ' In both cases, as
N (or cdlr in the first-order case) is increased, the fre-
quencies of the higher modes approach the frequencies of
the odd harmonics of the first mode.

V

N

m

gx 1+ 7+
m N

N

With this definition Eq. (1) can be rewritten in terms of a
set of N equations:

which tends toward e~' for N large. Therefore Eq. (4)
um

C(

C2
u +, (m =1,2, . . . , N —1),

u,v— C,V

CN+1
[F(u, )

—u, —u, — —uvj .

4

Op
4

N=20

log Td /7.

FICi. 1. Thresholds of self-oscillation for various values of A.

This set of equations can be easily integrated using a
Runge-Kutta algorithm generalized to a system of first-
order equations. We were able to integrate Eq. (1) in this
manner for N as large as 110. Naturally the usual tests to
ensure the exactness of the simulation were performed;
the comparison with the experimental results being the
ultimate one. Notice that the preceding definition of u

is not necessary but was chosen to avoid the overflow
problems which occur with the more natural definition
u =X' '. In fact, using this definition in our first at-
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FIG. 3. Experimental bifurcation diagrams.

also interesting to note that for N =20 the transition to
the P3 waveform looks like a tangent bifurcation and
that the width of the corresponding window is unusually
wide. For N =25, the onset of chaos returns to normal
(i.e. , through a period-doubling sequence); meanwhile,
the P3 window has been noticeably shrunk. The P3
waveform has completely disappeared for N =30. It is
also to be noticed that the veil-like structure on the dia-
grams increasingly blurred as N is increased. The period-
ic windows appearing within the chaotic region for
N =30 and 35 correspond to the two P5 waveforms
shown on Figs. 4(b) and 4(c).

From the preceding results it is clear that the increas-
ing complexity of the solutions is probably the most strik-
ing eA'ect to be observed in the system as N is increased.
The first step of this increase in complexity, the onset of
self-oscillation, was correctly predicted by the linear-
stability analysis to occur for N =3. However, an ex-
haustive analysis of the system for diA'erent settings of the
relevant parameters has shown to us that although the se-
quence of events was rather unique the value of N at
which a specific phenomenon was occurring could vary.
For instance, the first onset of a chaotic solution does not
depend on p and N only and is therefore not fixed to
N =9. As a matter of fact, for other values of 2 and X~
chaotic solutions were observed only for N ~ 11. In fact,

the smallest value for which one could clearly observe
chaotic solutions was N =8 (for A =0.35, Xz =0) when
care was taken to equalize as much as possible the indivi-
dual response times. Therefore the importance of the
preceding results is not so much in the specific values of
N for which the phenomena occur but in the sequence in
which they appear. This fact will become more obvious
after the comparison is made with the numerical results.

B. Numerical analysis

Results of the numerical analysis are summarized in
Fig. 5. The agreement with the experimental results is al-
most perfect as far as the sequence (as N is increased) of
bifurcation diagrams is concerned. However, one can see
a discrepancy between the values of N for which a
specific bifurcation diagram is obtained experimentally
and numerically. For instance, the diagram computed
for N =17 would correspond, apart from a shift of the
parameter p, to what is observed experimentally for
N =20.

After an analysis of the influence of the various param-
eters we found that the discrepancy is related to the small
but unavoidable inequality between the individual
response times in the experiment which are assumed
strictly equal in the computations. We therefore pro-
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FIG. 5. Numerical bifurcation diagrams for various N
(rd /~=0). Points of these diagrams correspond to zeros of the
first derivative of X(t).

ceeded with a simple test consisting of using the actual
experimental values of the individual response times in
the computation of the coeKcients of Eq. (1). The results
for N =20 (shown in Fig. 6) are conclusive as an almost
perfect qualitative (shape of the diagram) agreement is
observed between the experimental and computed dia-
grams. In this example the relative standard deviation of
the ~, was 9% and observable changes were produced (cf.
Fig. 5 for N =20). However, for smaller relative stan-
dard deviations (around 5%) the effects were barely no-
ticeable. It should also be pointed out that the results
shown in Fig. 5 were obtained for ~d=0, although an
unavoidable intrinsic delay was always present in the ex-
perimental device. In fact, it is clear from Fig. 1 that as

is decreased the self-oscillation thresholds asymptote7d
towards a fixed value. However, this analysis is applic-
able only to the fixed point stability. This is why we pro-
ceeded to an investigation of the solution of the Nth-
order differential equation with delay in order to estimate
the inhuence of the nonzero delay on the subsequent
period-doubling route to chaos. Typical results are
shown for N =8 in Figs. 7(a) —7(c). For small values of

rd/~ (typically less than 10 ) Fig. 7(a) shows no observ-
able difference when compared with the no delay case (cf.
Fig. 5). (This is especially fortunate for very short de-
lays, as it allowed us to model the experimental system by
the ordinary diff'erential equation without delay [Eq. (1)
with ~d =0]. This considerably reduced the computation
time, since in the case with delay, it is necessary to have
at least one point for every delay interval. Thus the max-
imum value of the step size h is fixed by ~d. With
~d /~= 10 ", for instance, the maximum value for h
would be 10 (in units of ~), which implies that the
number of points per oscillation period [approximately
2(a+ad )] is around 2X 10+ . On the other hand, by in-
tegrating the ordinary differential equation without delay
similar results were obtained with only SOO points per os-
cillation period. ) The changes introduced by a nonzero
delay become obvious for ~d/z larger than 10 ' [Fig.
7(b)], as if a nonzero delay corresponds to an increase in
the order of the equation. Further increasing ~d/~ leads
us to results which approach what is observed for the
more familiar first-order delay-differential equation case
[Figs. 7(c) and (d)].
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Fourier transform of the P16 waveform are shown in
Figs. 9(d) and 9(e). The second solution, which is the
most readily attainable of the two, appears in the interval
0.98 & p, & 1.015 of Fig. 8(b). This solution corresponds
to a state in which the first two modes of the system in-
teract. This interaction occurs between the P2
waveform and a frequency component related to P4 (the
P4 waveform of the first mode) which is near ( —,', ) the fre-

quency of the P2 oscillation. In fact, this solution is
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The numerical simulation also allowed us to extend our
analysis of the system up to N =100, which for practical
reasons is not possible in the experimental device. Very
interesting results were found within the range
50&N &100 which revealed the presence of the second
linear mode. The bifurcation diagrams computed for
N =—100 are shown in Fig. 8 ~ The wide periodic window
appearing on this diagram for p ranging from 0.8 to
0.975 is associated with a fundamental oscillation of fre-
quency equal to three times that of the P2 waveform.
This oscillation clearly corresponds to the P2 waveform
of the second linear mode of the system or —according to
a previously defined notation —to the P2 waveform.
As p is increased beyond 0.975 the P2 waveform bifur-
cates towards as two-attractor solution. In fact, in the in-
terval 0.975 & p & 1.015 two distinct oscillating solutions
(or branches) can be reached depending on the initial con-
ditions used in the computations [Figs. 8(b) and 8(c)].
The first solution consists of the sequence of subharmon-
ics of P2 resulting from successive period-doubling bi-
furcations with an accumulation point around 1.02 [Fig.
8(c)]. In Fig. 8(b) this solution shows up as a small win-
dow for p) 1.015. The time signal as well as the fast
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the quasiperiodic one. ) Fast Fourier transforms of both
signals (quasiperiodic and frequency locked) are shown in
Figs. 9(b) and 9(c). It is the spectra which allow one to
distinguish between the two, since the quasiperiodic one
is characterized by the presence of sidebands around each
peak. These sidebands can be related to the dift'erence be-
tween the irrational ratio of the two frequencies and the
nearest rational number corresponding to a frequency-
locked situation. For the frequency-locked region the
frequencies are in the exact ratio —", . This does not, how-

ever, rule out the possibility of narrower frequency-
locked windows around the ratio —", (e.g. , the ratio =")

4

which would not show up in our bifurcation diagram be-
cause of the limited resolution used to compute it. A
more exhaustive analysis of this quasiperiodic solution is
now under investigation.

FIG. 8. Numerical bifurcation diagram for N = 100
(~d /~=0).

quasiperiodic everywhere on this interval except in a win-
dow around p=0. 996, where the two frequency com-
ponents are locked or entrained together. Figure 9(a)
shows the time signal corresponding to this quasiperiodic
state. (The time signal for the frequency-locked signal
over short-time periods is virtually indistinguishable from
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FIG. 9. (a) Time signal of the quasiperiodic waveform ob-
tained for X = 100 and p = 1.01; (b) fast Fourier transform
(FFT) of the frequency-locked signal; (c) FFT of the quasi-
periodic waveform; (d) time signal of the P16 waveforrn for
p= 1.017; (e) FFT of the P16 waveform.

IV. DISCUSSION

The dynamical evolution of the solution in the general
case defined by an Nth-order equation with delay can be
analyzed as a function of the two time-related parameters
~d/~ and N in addition to p, the parameter controlling
the nonlinearity. This problem can, however, be ana-
lyzed in terms of two limiting or "pure" cases. The first
one corresponds to N = 1 with ~d&0 and was the most
thoroughly studied in the past. ' The second, introduced
in this paper, is characterized by N 3 with ~d =0.

In fact, the analysis of the "mixed" situation defined by
N ) I with wd&0 (as shown in Fig. 7 for N =8) reveals
that the corresponding bifurcation diagrams can be close-
ly associated with an equivalent pure case diagram. In
other words, no more information on the dynamical evo-
lution of the system is obtained by studying the so-called
mixed case. The reason for this can be understood by
considering the similarity existing between the two pure
cases themselves. Indeed, it is possible to establish a
direct relationship between the Nth-order differential
equation (DE) and the first-order differential-delay equa-
tion (DDE). This correspondence appears very clearly in
the linear-stability analyses (LSA's) of the fixed points of
both equations. In fact, the LSA's show that as N (or
rd/r) is increased the self-oscillation threshold p* de-
creases toward the discrete model value (@=0.32. . . ).
Thus, from the two relationships (N versus p, *)and (w /wd
versus p ), it is therefore possible to establish a
correspondence between N and zd/~. Figure 10 shows a
log-log plot of ~d /~ as a function of N. One can see that
for large N the slope approaches —,', i.e., that ~d/~ grows
as the square root of N.

The correspondence between the first-order DDE and
the Nth-order DE is not restricted to the fixed point sta-
bility and can be readily extended to the subsequent
bifurcations —whether or not they lead to chaos as p is
increased. Such a correspondence is better established by
recalling that typical practical values of N correspond to
relatively small values of the ratio ~d/r. (Notice in Fig.
10 that the square-root relationship previously discussed
is an upper limit for ~d/r). This is worth noting since
most of the previous experimental results from hybrid
bistable devices were obtained for relatively large values
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FIG. 10. Correspondence between the Nth-order differential
equation and the first-order differential-delay equation. To ob-
tain this plot the thresholds of self-oscillation p* were first cal-
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equation without delay. Then the ratios ~d/~ corresponding to
these values of p* were computed from the LSA of the first-
order equation.
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of rd lr (typically rd lr + 10). Few authors, however, an-
alyzed the situation characterized by a delay smaller or
equal to the response time of the system. Although the
first-order delay equation studied by these authors [Refs.
10(b) and 10(c)] was slightly different from ours (as their
transmission curve maximum was swept along with the
parameter controlling the nonlinearity) such a
phenomenon as the period bubbling of the P2 solution
was observed [Ref. 10(b)] or predicted [Ref. 10(c)] for
7 d /7 around unity. We performed both numerically and
experimentally an exhaustive analysis of our system for
N =1 and ~d/~ around unity. Three typical experimen-
tal bifurcation diagrams are shown in Fig. 11. The simi-
larity between these diagrams and those obtained for
N = 8, 9, and 13 (Fig. 3) in the Nth-order case without de-
lay is quite obvious. In fact, a sequence of diagrams simi-
lar to that shown in Fig. 3 is obtained for the first-order
delayed system as idlr (instead of N) is increased. For
instance, the P3 waveforms which disappear for N ) 28
in the Nth-order case also disappear in the first-order de-
layed case for ~d /~ ~ 2. 5. Moreover, the position of the
period-doubling bifurcations and the exact pitchforklike
shape of the solutions in both systems become more and
more similar to each other and tend toward those pre-
dicted by the discrete model. For instance, the diagram
obtained for N = 100 fits exactly that obtained for
vd /~= 8.9 over the periodic region. In the chaotic region
such a comparison naturally becomes obsolete because
the dimensions of the attractors rapidly become too large
to be compared on the basis of a simple one-dimensional

FIG. 11. Experimental bifurcation diagrams for N =1 and
~d /~ around unity: (a) ~d /~ = 1 04; (b) ~d /~ = 1 12; (c)
~d /~= 1.34.

bifurcation diagram. This is why we are now in the pro-
cess of calculating the dimensions of the attractors of
both systems in order to compare them as they grow in
complexity. In the case of the first-order DDE it is the
ratio ~d/~ which determines the degree of complexity of
the solution even though, strictly speaking, the phase-
space dimension always remains infinite. In the Nth-
order case the phase-space dimension is finite and equal
to N:—~/~, and the asymptotic situation N~ ~, which
implies that ~, —~0 in order for ~ to remain finite, corre-
sponds to a system composed of an infinite number of
infinitely fast components. It is therefore an interesting
matter to precisely establish how the finite-dimensional
Nth-order equation could be used to model the infinite-
dimensional first-order delayed equation.
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