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Phase-sensitive population decay: The two-atom Dicke model in a broadband squeezed vacuum
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We show that atoms interacting with a squeezed radiation field reservoir can exhibit phase-
dependent population decay and relax into a highly correlated pure state, in striking difference to
decay in a heat bath. We use a Heisenberg operator treatment of radiative transitions in a broad-
band squeezed light field described as a quantum white-noise field with correlated fluctuations to de-
scribe the modified decay of a single atom, and of two atoms cooperatively decaying in a squeezed
vacuum. We compare this decay with that generated by a broadband thermal field which lacks the
essential field-mode correlations characteristic of squeezing.

I. INTRODUCTION

Squeezed states are states of the radiation field with
phase-dependent noise, i.e., with an amount of noise in
one quadrature which is below the quantum vacuum lim-
it! (this, of course, is at the expense of an increased noise
in the conjugate quadrature of the field). In the two-
mode squeezed state this is realized by a strong correla-
tion between the modes, so that squeezing properties
manifest themselves only in the expectation value of field
operators acting on both modes.? On the other hand the
expectation value of field operators acting only on one of
the two modes show thermal-like features. For this
reason the two-mode squeezed state is a thermofield rep-
resentation of thermal statistics.> A broadband squeezed
vacuum can be used to describe a reservoir with a phase-
sensitive white noise.* A similar reservoir contains
strong internal correlations, a feature completely absent
in a heat bath at finite temperature. The interaction be-
tween a single atom and a broadband squeezed vacuum
has been studied previously, concentrating on the Lamb
shift and the decay of population and polarization of a
two-level atom in a squeezed reservoir and on modified
probe absorption spectroscopy in a broadband squeezed
vacuum.5

In this paper we study the dynamics of two atoms in-
teracting with broadband squeezed light. We obtain a
phase-dependent decay of the atomic population near res-
onance, and find the quadrature phase dipole operators
decay at different rates because their decay is stimulated
by the different amount of noise contained in the two
quadratures of the field. The population decay is in-
creased by the stimulated emission due to the nonzero
number of photons present in the reservoir, but for a sin-
gle atom does not show phase sensitivity. As far as the
population is concerned, the single two-level atom decay
is analogous to a decay in a heat bath at finite tempera-
ture, due to the single photon nature of the process.
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With a single two-level atom it is impossible to change
the population by two-photon absorption or emission.
This is not the case in the interaction between a two-atom
Dicke system and the field.® We show that this system
exhibits phase-sensitive population decay when interact-
ing with a squeezed reservoir, a feature completely absent
in the single two-level atom decay. This is due to the fact
that two-photon process are now possible, due to the
cross correlation between population and polarization be-
tween the two atoms. Another very interesting feature of
this system is that the final equilibrium atomic state is a
highly correlated pure state in which the two atoms are
both excited or both in their ground state. These states
are known as two-atom squeezed states or fermionic
thermofields.” They have properties similar to the two-
mode squeezed state, in that the expectation value of
single-atom operators shows single-atom thermal statis-
tics, but the expectation value of product of operators
acting on both atoms shows the strong correlation exist-
ing between the two atoms. The final equilibrium atomic
state is far from being a state of thermal equilibrium be-
cause correlations and phase information are transferred
from the reservoir to the atomic system. This is very
different from the behavior of a two-atom Dicke system
interacting with a heat bath. In this case the bath con-
tains no phase information or internal correlation be-
tween the modes and the final atomic state is simply a
state of thermal equilibrium.

The plan of the paper is as follows: in Sec. II we dis-
cuss the decay of a single atom in a squeezed vacuum; in
Sec. III we examine the decay of two atoms in an ordi-
nary heat bath at finite temperature. In Sec. IV we report
our results on the decay of two closely positioned atoms
interacting with a broadband squeezed vacuum and
demonstrate that this system relaxes to a highly correlat-
ed fermionic thermofield or two-atom squeezed state.
Two Appendixes summarize the properties of the
radiation-field broadband squeezed state and the two-
atom squeezed state.
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II. SINGLE-ATOM DECAY
IN A SQUEEZED VACUUM

In order to illustrate the technique we will use to ob-
tain the equations of motion for the two-atom decay in a
squeezed vacuum, we first treat the single-atom decay in
a broadband squeezed vacuum® with our Heisenberg
equation technique. We assume that the system is de-
scribed by the following Hamiltonian:

H=1lw0,—i S g (o,+0_Na,—al)+ zwka}iak ,
A Fy

(1

where we use units such that #=1. The atomic system is
modeled by a two-level system. The pseudospin opera-
tors o obey Pauli algebra

[0 +>0 — ] = O3,
[0y,0,1=20, , (2)
o =q" ,
T g o . .
and a, and a, are boson annihilation and creation opera-

tors for the radiation field. The index A includes both po-
larization and wave vector values, and

lay,al.1=8, ,

[a;,a,:]1=0 .

The Heisenberg equations of motion are

6;=—23 (0, —0_)Na,—al)g, ,
A
0_=—lwyw_+ Eg;p}(a}\—a;) , (4)
A
dk=—iwhak+gk(0++a,) .

This is a set of coupled operator differential equations.
Assuming that the coupling is weak we adopt an itera-
tive solution in powers of g,.% Formally integrating Eq.
(4) we obtain

o,=—23g, fotdt’[a+(t’)—0,(t’)][a;\(t’)-—a;(t’)] ,
A

- 1(00[

o_(t1)=o_(0)e

. .
fwg(t'—1)

+ S g, [ldrosiay () —al()e ,
A

(5)
a,(0=a,(0)e '

. .
fw, (1"=1)

+g; fotdt’[0+(t’)+0‘(t')]e

If we look for an iterative solution we can suppose in first
approximation

a+(t’):a+(t)e+iw°“ - ,

—lw,(t'"—1) (6)
a;\(t'):a;\(t)e A

Substituting Eq. (6) in Eq. (5) we obtain the first-order

solution,

iP + —iP
~— 4 — + _ +78(w; —
o,(1) 2§gk o (t)a,(t) P md(w; —wy) | +a,(t)o_(2) pa—— T(wy —wy)
iP —iP
—o _(D)a, (1) —a—)ﬁ—wowwa(wﬁwo) —al (Do (1) wh+a)0+rr§(wk+wo) ,

a,(t)~a (O)eim*’+g o (1) i—ﬁr&(a} +wy) | +o_(t) —iP +78(w; —wg) (7)
al)=a, A + w, + g A 0 - w, —ay A 0 ’

o_(D~0_(0)e "+ 3 g, |oy0a(t) | —E— +78(w,—wy) | —al (Doy(t) | ——F 4 28(e, +op)

- v - < A 3 A w; — A 0 A 3 a);\+w0 A 0 ’

where we have used the identity®

. P
dt’ expli (@; —wo)(t'—1)] ~ o) i
fo expli(wy —wo)(t'— 1)} ~78(w; — w,) lwx“wo ’

(8)

valid for times ¢ >>w21,a)a’, and P denotes the Cauchy
principal part.

We use normal order so that we have kept all creation
(annihilation) operators on the extreme left (right) in any
operator product. We could have chosen any other or-

[

dering scheme, but once a scheme is chosen it must be
maintained during the whole calculation.® Substituting
the first-order solution, Eq. (7), back in (4) we obtain a set
of equations correct to second order in the coupling con-
stant g,. These can be solved with the following method:
firstly we use the Heisenberg equations to derive
Langevin equations for the expectation value of the atom-
ic operators. We neglect all nonsecular terms, i.e., all
terms oscillating too fast [at +(wy+w;)] in a rotating
frame.!® We define the slowly varying operators & _(t)
and @, (¢) by the relations
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—lwyt

a,\(t)ZE;L(t)e
If we assume that the carrier frequency of the squeezed
reservoir is resonant with the frequency of the atomic
transition we obtain the following Langevin equations for
the slowly varying operators:

a [ST-O] |—yeN+D  —2yM
dt (G| | —2rM  —y(N+1)
(T_(1))

SR E ©a)

%(mm =2y N +1){o5(1)) —27 , (9b)
where

(aT(w)a(0)=N(w)dlo—w'),
(a(w)a(0))=M*(0)8o'—20+0), (10)

M=Mw N=N(0)l,-q, -

’(L) Q)O?
In (9a) we have neglected the imaginary part associated
with the principal value part of expression (8) which can
be shown to be negligibly small on resonance.” We note
the presence of off-diagonal elements in Eq. (9a) which
would be absent if the reservoir were not squeezed. Their
origin is due to the presence of secular terms of the form
(o_alal.) which are absent in a heat bath with phase
insensitive random Gaussian noise (in Appendix A we
summarize the relationship between intermode correla-
tions and squeezing). The equation of motion of the in-
version {o3) contains no phase-sensitive terms.

The solutions of the final “squeezed Bloch equations”
(9) are given by

= 1 L)
(o3(0))= [(04(0))+ o | i
/ (11a)
(o, (0))=(0,(0))e TEN+2M+11
(11b)
(0,(1))=(0,(0))e YEN—2M+11
where

oy=0,tio,

The physical interpretation of Eq. (11b) is straightfor-
ward: the quadrature phase atomic dipole operators o,
and o, are stimulated by the different amount of noise in
the two quadrature of the field and causes them to decay
at different rates. In other words, they show phase sensi-
tive decay. On the other hand {o;) shows no phase sen-
sitivity but behaves as if the atoms were interacting with
a heat bath at finite temperature. Indeed, we can define a

fictitious temperature for the reservoir by defining
explwy/kTs )=(N+1)/N . (12)

The absence of phase sensitivity in the population decay
is due to the impossibility of having phase sensitive secu-

lar terms in the eauatlon of motion of (o;) because
(o0%a,a, )=(o0%aja). )=0. This means that the in-
teraction between a single two-level atom and the radia-
tion field is fundamentally a combination of one-photon
processes so that it is not possible to change the popula-
tion by simultaneous two-photon absorption or emission.

III. TWO-ATOM DECAY IN A HEAT BATH
AT FINITE TEMPERATURE

The impossibility of having phase-sensitive population
decay with a squeezed reservoir leads us to consider the
decay of a two-atom Dicke model.>!! In this system
two-photon processes changing the total population are
possible through interactions which couple to both
atoms. In this section we will study the decay of the total
atomic population of a two-atom system interacting with
a heat bath at finite temperature, and in Sec. IV we will
study the same system interacting with a broadband
squeezed vacuum, stressing the striking differences be-
tween the two decay processes.

We assume that the system is described by the follow-
ing Hamiltonian:

H=loloc®+a¥)+ > fo;\a;[a;\
A
—i g0 P+oP+0 D40 a,—al), (13
A

where the o, refers to atom a and o, refers to atom b.
The Hamiltonian is again of the electric dipole form in
which the atomic dipole d and the electric field operator
E are coupled in the form d-E form in dipole approxima-
tion, and we have assumed that the distance between the
two atoms is much smaller than ¢ /w,. If this is so, we
can assume that the two atoms are close enough to
neglect the spatial variation of the resonant mode.® How-
ever, we assume also that any exchange interaction be-
tween the two atoms due to overlap of the atomic wave
function is completely negligible. This model is known as
the Dicke model.® The only states taking part in the dy-
namics are the triplet states (|e ),|g ) describe the excited
and ground states of the two identical atoms)

[1)=le,e,) ,
|2):T/172(}ea,gb)+]ebga)) , (14a)
!3>=|ga9gb> ’
and the singlet state
|4>—7— 1820, ) —lea gy )) (14b)

is completely decoupled from the triplet state: the Ham-
iltonian (13) is invariant under the exchange a<+b which
implies that the symmetry of the atomic state is a con-
stant of motion. The singlet state is antisymmetric while
the triplet states are symmetric, which means that they
cannot be coupled by the interaction with the field.

To study the atomic dynamics we will again work in
the Heisenberg picture. The equation of motion of the
operators are
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G (@)= _1 zgx(o(_:_’)—a(il))(a;“a;rt) ’
A

('7(3”)=—ZEgK(o‘b)—o(f))(al—a{) ,
(f):'—la) o9+ Eg 0‘” A—a;), (15)

+
(b)=_lw U(b)+ zg O.(b) A_ak) ,

a,=—iva;, +g (0@ +oP+0@+0?) .
These equations are used to derive Langevin equations
correct to second order in g,. The radiation field at finite

(o§”) —2y, 0 —2(y +ib)
(o) 0 -2y, —2y—id)
% (o' @a®) |= |Ly—i8) Ly+id) —2y,
(a'Po') Hy+i8) Ly—id) 0
(o{@oi®’) —2y —2y 4y,
where
25, | B P — 2
y—id= fco dow w+w0+w—w0 + 78w —wy) [g¥(w) ,
(18b)
Y1=Q2N +1)y

As we are interested only in the decay of the total popula-
tion we can reduce the system of equations to the follow-
ing simpler form:

E(t) -2y, —4y 0 E(1)
ZCON=1 vy T 2r | |C
F(t) -2y 4y, —4y,|F@®
+ 0 , (19)
0
where
E(n=(o{()+a{"(1)) ,
Cc(t)=(a@(t)ocP()+ o' P(t)a'P(1)) , (20)

F(=(o@(t)a®()) .

These equations can be solved easily by using Laplace
transform techniques. We denote by E(s), C(s), and F(s)
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temperature is characterized by the following expectation
values for the annihilation and creation operators:

{(a(w)a(w))=0,
(a'(w)a () =N(0)dlw—0'), (16)
(a(w)a’(0))=[N(w)+118w—w') ,
where
N(w)=[1+explwy/kT)] ! (17)
We obtain the following Langevin equations:
—2y—i8) O (') —2y
—2y+id) 0 (a¥) —2y
0 Y1 (a'@a®)y |+ 1] 0 |, (18a)
-2y, 7, (U(b)a(aJ> 0
47,1 _4.},] <0,(ai (b)) 0

the transforms of E (¢), C(t), and F(t) and we obtain the
following linear system:

(s +2y,) 4y 0 E(s)
-y (s+2y)  —2y, Cl(s)
2y —4y, (s+ay) | |F(s)
E(0)—4y/s
= C(0) @21
F(0)

Using Cramer’s rule we obtain the following results for
the various states of interest. (a) For the initially inverted

state |1), we have the initial conditions E(0)=2, C(0)
=0, F(0)=1,
- —32yy, 43y, —vy)+s
E(s)=

VTG A —Ays (s —A)(s —Ay) @2
with

M=dy H2Ayi=r))' 2,

(23)

Ay=dy,—2(y2—y))12

The Laplace inversion leads to the following expression
for the time-dependent two-atom inversion:
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EQ) —3}2\;:/

+ xlixz 'ekk" 67/1*y—kl+32{—1y‘1

—e M 6y, —y—A+ 32;::/1

(24)

(b) For the state |2), the Dicke symmetric state initially
excited, we have the initial conditions E (0)=0, C(0)=1,
and F(0)=1. We find for the two-atom inversion in
Laplace space

32yy,y 8y
(S +)\.1)(S +)\,2)S (S +}\.1)(S +}\.2)

E(s)=—

} , (25a)

and inverting we obtain for the time-dependent inversion
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—wy,/kT wo/kT
(e O —e®

—wy/kT

)

oy /kT

E

therm. equil. =2

(e +1+4+e
_ —202N+1)
3N?+3N +1

)
(26)

where we have used the fact that in thermal equilibrium
the average number photons is given by Eq. (17). We
note that E\pey, equi. 18 identical to E (o) given by Eq.
(24) and (25), and that at zero temperature our results
coincide with Lehmberg’s'? for which A,=X,=4y and
for the initially fully excited state

E(t)=4e ¥ (1+2y1)—2 27
and for the initially excited symmetric state
E(t)=2(e *'—1). (28)

IV. TWO-ATOM DECAY IN A BROADBAND
SQUEEZED VACUUM

We now study the decay process of the same two-atom
system interacting with a squeezed-vacuum reservoir.
The Hamiltonian describing our model is again (13). Us-

32yy, ing the same techniques we used to study the decay of the
()=-— two-level atom we obtain the following Langevin equa-
AAy ons:
tions:
sy | | 4 4 —Mv+u (29a)
— e rl— +1 dt FL/8 > a
(Ay—Ay) Ay
4 where the column vectors v and u are given by
T P e )
A2 (o)
’ 27
b
The physical interpretation of the process is simple: the (o) -2y,
atomic system relaxes into a state of thermal equilibrium. (a'@a'?) 0
The decay constants show the typical superradiant be- N P _
havior characteristic of the Dicke model.® Indeed, if the v= (o) |, u=| 0 (29b)
heat bath is at zero temperature we see that A, =21, =4y, (oW 0
which is twice the natural decay rate of a single two-level (@) (b) 0
atom. The presence of the thermal noise merely increases (oe@o) 0
the decay constants by stimulated emission. The final (a@a'®)
equilibrium atomic state is, of course, a state of thermal ’
equilibrium. Indeed it is simple to verify that and
J
-2y, 0 —2(y+id) —2(y—id) 0] 0 0
0 =2y, —2(y—i8) —2y+id) 0 0 0
Hy—id) (y+id) -2y, 0 —(y,+id;) —(y,—idy) Y1
M= |Ly+id) Ly—ib) 0 —2y, —(y,+id;) —(y,—i8,) Y , (29¢)
0 0 —(y,—i8y) —(y,—i8,) —2y,+i§)) 0 (y,—i6,)
—2y —2y 4y, 4y, 4(y,+id,) 4(y,—1i9d,) —4y,
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where ¥ —i8 is given by Eq. (18b) and the new decay pa-
rameters are
Uy, +i8,)= [wido,M(w))

X —L‘FTT&(Q);L"G)O)
W)™ Og
Xg(w;)g(2QA—w,) ,
(30)
(y,+i8)= [ widw,
—iP iP
0, tw, wy—w; m8(w, o)

XgXw,)[2N (0))+1] .
We note again the presence of phase sensitive terms due
to the nonzero expectation value of {a;a; ) and
(ala X ). As we are interested only in the decay of the
total atomic population we can concentrate our attention
on the following simpler system of equations:

E) -2y, —4y O 0
d |cw) Yo T2ye T2r2 21
dr Sy || 0 =2y, =2y, 2y,
F(1) —2y 4y, 4y, —4r,
E(t) —4y
C(1) 0
st | o |- 31
F(1) 0

where E(t), C(t), and F(t), are the same as in (20) and
S()=(c'@'P+0'Y¢?). In obtaining (31) from (29)
we have neglected the shifts §, and &, which can be
shown to be negligibly small when the atoms are resonant
with the carrier frequency of the squeezed reservoir.’
From the preceding results it is already possible to appre-
ciate the new features shown by the equations of motion
describing the total population decay. The two-atom in-
version E(t) is coupled to S(z) through C(¢). This
means that now, because of the cross coupling between
population and polarization of the two molecules, E(t)
shows a phase-sensitive decay, in strong contrast with the
case of a single two-level atom. This is due to the possi-
bility of changing the atomic population by two-photon
absorption or emission, described by terms such as
(d'@0'Pa,a;.) in (29).

The two-atom Bloch equations (31) can be solved by
Laplace transform techniques. By analogy with Eq. (21)
we can now write

(s +2y)) 4y 0 0

-y (s +2y,) 2y, —2v,

0 2y, (s+2y) —2v,

2y —4v, —4y, (s+4y)
E(s) E(0)—4y /s
C(s) C(0)

“150 |7 s (32)

F(s) F(0)

(a) For the initially inverted state E(0)=2, F(0)=1,
and C(0)=S(0)=0, and we find

~ — 8y(y+v,)
Es)= |[-2=% ey , (33)
s(s +2y) (s 2y )0s +A,)(s +A4,)
with
)\]=—4('}’1+']/2) N
(34)

My=—4y,—7y) -

The inverse Laplace transform gives the time-dependent
inversion as

_ + iy +vy)
E(n=—2L 4 2 | X110 4 s
Y1 Y1 Y27 V1

_y Yt T L a5
2 v 2y,t7, 2y, 7,

(b) For the initially-excited Dicke symmetric state
E(0)=S8(0)=0, C(0)=1, and F(0)=—1, and we find

1 4 1
(s+2y)s (s +A (s +A,)

E(s)=—4y

i 27,
(s +2y )Ns +A)(s +A,)

] , (36a)

2
E(t):__2_’)/+§1-__.27/2—2e*2y11
71 Y1 (4y3—vy1)
Y Y1it+7, —4(y, +ryht
2y, v1+2y,
32—V | —aty, vy . (36b)
2v,— v
The final equilibrium population is
E(oo)=—=—2 37
2N +1

It is also straightforward to verify that irrespective of the
initial conditions, the interatomic dipole correlation S (t)
relaxes to

Ya_ M
vy, 2N+1°

S(o0)= (38)

It is now possible to see in detail the strong differences
between the decay in a squeezed reservoir and the decay
in a heat bath. Comparing (34) with (23) it is evident that
the decay constants are now phase sensitive and that the
final atomic state is not a state of thermal equilibrium.
Indeed, E() is twice the value of a single two level
atom inversion for atoms interacting with a heat bath and
this does not describe a state of thermal equilibrium
[compare [Eq. (26) with Eq. (37)]. We note that the final
state contains internal correlations as evidenced by the
nonvanishing S (). The internal correlations character-
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izing a squeezed reservoir are transferred to the atomic
system. The final equilibrium atomic state is a pure state
of the form

|4y ) =cosblg, g, ) +sinble,e, ), (39)
where
172 12
cosg= | N1 sing= |-
2N +1 ’ 2N +1

These states are known as two-atom squeezed states.’
They describe a strongly correlated pure quantum system
exhibiting thermal statistics in the expectation values of
single-atom operators, but showing strong correlations
when the expectation value of operators acting on both
atoms is taken. These properties are characteristic also
of the two-mode squeezed state.’

V. DISCUSSION

We have studied the decay of the total atomic popula-
tion of (a) a two-atom Dicke system interacting with a
broadband squeezed vacuum and we have compared it
with the decay of (b) a single two-level atom and also
with (c) a two-atom system interacting with a heat bath
at finite temperature. In case (b) the atomic polarization
shows phase sensitive decay but the population does not
show any phase sensitivity. Its decay is analogous to de-
cay in a heat bath at finite temperature. The final popula-
tion is also characteristic of thermal equilibrium. In case
(c) the heat bath does not contain any phase-dependent
noise so the atomic population decay is not phase sensi-
tive and the final equilibrium atomic state is merely a
state of thermal equilibrium. Case (a) exhibits features
completely different from the one described above in that
the atomic population decay is now phase sensitive due to
the possibility of two-photon processes in the cross cou-
pling between population and polarization of the two
atoms. Equivalently, we may say that the individual di-
pole fields are phase sensitive and these couple to the in-
version of their partner atoms to create a phase sensitivi-
ty to the cooperative inversion decay. Moreover, the
final state is not a state of thermal equilibrium but it is a
highly correlated pure state known as a two-atom
squeezed state, in which both atoms are both excited or
both in their ground state. This means the internal corre-
lations contained in the bath are now transferred to the
atomic system. We want to stress that because the triplet
state of the two atom Dicke model behaves as a three-
level ladder system, in which the ground state and the
most excited state are decoupled it would be easier to
study experimentally the latter system which contains
some of the characteristics of the model we have studied,
including for instance the possibility of containing phase
information through internal correlation among the
atomic states.
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APPENDIX A: THE BROADBAND SQUEEZED STATE

The two-mode squeezed-vacuum state is defined as
(e.g., Ref. 1)
0(m)) =S (n)|0), (A1)

where the two-mode Bogoliubov transformation generat-
ing squeezing is given by

S(77)=exp[n*aJr(a))aT(ZQ—w)—'r]a(w)a Q—w)],
n=re'®. (A2)
It is easy to show that

ST (ma(w)S(n)=coshr a(w)+sinhr ea’ (20 —w) .

(A3)
From (A3) we obtain
(a'(0)a" () =M ()80’ —2Q+w) , (A4)
(a(wa(w))=M*(0)d(o'—2Q+0) , (AS)
(a'(@)a(e))=N(w)dlow—0), (A6)
(a(@)a’(0)=[N(2)+1]8(0—0') , (A7)
where
M (w)=coshr sinhre'® | (A8)
N (w)=sinh?r . (A9)

There is no loss of generality in assuming the phase angle
of the squeezing ¢=0. Two-mode squeezed states are
used as thermofield representations of boson fields in
thermal equilibrium. If we calculate the expectation
value of single-mode field operators we obtain thermal
Bose-Einstein statistics if we relate the squeeze parameter
r to the effective temperature 7 through?

coshr =[1—explw/kT)] /%,
sinhr =[exp(w/kT)—1] /2.

(A10)
(A11)

On the other hand if we calculate the expectation value of
operators acting on both modes we obtain results show-
ing clearly the correlations between the modes. Equation
(A7) is a clear example of these characteristics of a two-
mode squeezed state. The two-mode squeezed vacuum is
characterized by time-stationary quadrature phase noise,
so that if we write the electric field as

E(t)=E (t)cos(Qt)+ E,(t)sin(Qr) (A12)

the quadrature phase field operators E (¢) and E,(1) are
characterized by time-independent Gaussian noise. A
squeezed state generated by Eq. (Al) is a minimum un-
certainty state in which the amount of noise contained in
the two quadratures is different. If the functions N (w)
and M (w) are broad functions of w, i.e., if their spectrum
is much broade. than the linewidth of the atomic transi-
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tion we are interested in, the squeezed vacuum can be
considered a reservoir with white noise.*

APPENDIX B: THE TWO-ATOM SQUEEZED STATE

By analogy with the definition of a two-mode squeezed
state it is possible to define a two-atom squeezed state.
They have been introduced by Takahashi and Umezawa’
with the name of fermion thermofields and have been re-
cently utilized by Barnett and Dupertuis in connection
with quantum optical problems.’

The two-atom squeezed state is defined as

In)=S(n)lg, 8 » (B1)

where the atomic squeezing transformation S (7) is given
by

S(n)=exp(n*0' Yo —no'@o'?), n=06e . (B2)
It is possible to show that’
In)=cosblg, g, ) —sinfe’®le e, ) . (B3)
If A is an operator acting only on one atom we obtain
(n] Alm) =cos’0(g| Alg ) +sin’6{e| Ale) , (B4)
and if

cos’0=[1+exp(—wy/kT)] "},
sin?0=exp( —wy/kT)/[1+exp(—wy/kT)] ,

1969

then {n| A|n) reproduces the single-atom thermal aver-
age. This is not the case if the operator acts on both
atoms. As an example, we take

|n)=cosblg, g, +sinble e, ) , (B3)
then
exp( —wy/kT)—1
(a) — B6
Cnlo i) = e o kT (B6a)
exp(— 1wy /kT)
(@) (B)| Yy — _ B
{nlofoim) 1+exp(—wo/kT) (BEb)
If we write
explwy/kT)=(N +1)/N , (B7)

where N is the thermal average number of photons at
temperature T [Eq. (17)], we obtain

(o) =(aP)=—1/2N +1),

(@ By — ¢ () ()y— [N(N+1)]'"?
(o'Pa'?)y=(c'P5'?) AN +1 ,

which are identical with Egs. (37) and (38).
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