
PHYSICAL REVIEW A VOLUME 39, NUMBER 4 FEBRUARY 15, 1989

Amplification of an external signal in an acousto-optic device with delay
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When an additive external signal is applied to an acousto-optic bistable device showing the

Feigenbaum period-doubling route to chaos, various amplification phenomena are observed. We
present these phenomena and show the importance of linearized modal and Floquet analyses in

their explanation.

INTRODUCTION

It is well known that in the neighborhoods of dynami-
cal instabilities, systems show effects which are indepen-
dent of the exact physical or mathematical system being
studied, but which, in fact, depend only on the type of in-
stability or bifurcation. The best such example is prob-
ably the scaling laws for period-doubling bifurcations as
determined by Feigenbaum. ' Another such effect is
the presence of noisy precursors to bifurcations in the
power spectrum. As the bifurcation is approached the
frequencies at which new lines appear after the bifurca-
tion are marked by the presence of noise amplification in
their neighborhoods. ' This effect has been studied ex-
perimentally and analytically by Jeffries and Wiesenfeld
on an electronic system, and in the case of a Hopf bifur-
cation has been observed in an acoustic-optic bistable de-
vice by Vallee.

The same phenomena are predicted to be observed if
the stochastic noise is replaced by a periodic signal.
In the case of a periodic signal there are two kinds of sys-
tems which must be considered. The first is a nonauto-
nomous system. This is a driven system, a system that
will not oscillate unless there is some external periodic
driving force, for example, the driven DufTing oscillator
described by the equation

x+yx+f3x = 4 +8 cos(t) .

For this example and other nonautonomous systems the
existence of amplification just before a period-doubling
bifurcation has been demonstrated. ' ' '"

The other type of system, an autonomous system, is a
system which oscillates of its own accord, as does our ex-
perimental system. The principal difference between the
two systems is that in the nonautonornous system an ap-
plied additive external signal is completely equivalent to
the driving force, except perhaps for its weaker ampli-
tude. In the case of an autonomous system the external
signal is unrelated to the basic oscillation. Experiments
showing the existence of amplification before a Hopf bi-
furcation in such a system have been done by Martin and
Martienssen. ' In this paper we present a11 the
amplification phenomena that we observed in our auto-
nomous delay differential system. This includes, most

importantly, amplification around Hopf bifurcations with
effects due to higher-order modes, and effects around
period-doubling bifurcations. We also study effects of
amplification when far from an instability and in a chaot-
ic state. In a final section we discuss the effects of two
time delays that can be studied using these amplification
phenomena.

THEORETICAL PREDICTIONS

x =F(x,p), (2)

where F is some vector function which may or may not
be some periodic function of time, but is a function of
some control parameter p. The inhuence on the behavior
turns out to be relatively independent of the type of
modulation, either additive or multiplicative. This is
demonstrated by their Floquet analysis. They show that
the solution of (2) has the form

t,. (t) =g exp[pk t ]Pt, ( t),

where Pt,. (t) is the set of basis solutions of the unper-
turbed equation. The Floquet exponents p& determine
the bifurcation behavior of the system in one of three
ways.

(i) One of the exponents is pure real and crosses the
imaginary axis. This gives rise to saddle node, transcriti-
cal, and pitchfork bifurcations.

(ii) The imaginary part of one of the exponents crosses
the line Imp =

—,'. This is a period doubling bifurcation.
(iii) A complex conjugate pair of Floquet exponents

cross the imaginary axis with an imaginary part different
from zero or one-half. This is a Hopf bifurcation, which
corresponds to a transition from a steady state to a
periodic solution.

Near the bifurcation Weisenfeld and McNamara con-

Theories explaining and predicting the various phe-
nomena have been developed by Wiesenfeld and
McNamara' and by Hackenbracht and Hock. ' In this
section we will present a brief overview of the results of
Wiesenfeld and McNamara necessary for understanding
the results of our experiments. They consider the first-
order differential equation without delay
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and ~~ being the ratio of the total delay time ~D in the
system to its total response time ~.

LINEARIZED-MODE ANALYSIS
OF OUR EXPERIMENTAL SYSTEM

The Floquet exponents for our system can not in gen-
eral be derived analytically. This, however, is not the
case before the Hopf bifurcation from a period-1 (Pl) to a
period-2 (P2) orbit. In this case the solution has a unique
constant value which is easily calculated. Equation (11)
can thus be linearized around the fixed point and the Flo-
quet exponents determined. The exponents based on
linearization around the fixed point have become known
as the linearized modes of the system and can easily be
calculated using techniques of linear stability analysis, '

which are completely equivalent to techniques used in
perturbation analysis.

Linearizing the Eq. (11) around its fixed point X* gives
the characteristic equation

yr+ 1+p~ sin[2(X* —X~ ) ]exp( —y ro ) =0, (12)

where y is a complex eigenvalue, equivalent to a Floquet
exponent. Putting

y =a+i/3 (13)

r/3 7' sin[2(X—*—Xz )]exp( —arD )sin(/3ro ) =0, (14b)

which can be solved independently for a and /3. The
solutions for the y are then the points of intersection of
the two resulting families of curves (Fig. 2). Because of
the infinite dimensionality of the system there are an
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FICi. 2. Solutions of the linearized Eqs. (14). The intersec-
tions indicate the solutions for ~~ = 8, p =0.45, 2 =0.16,
X„=—0.427.

into Eq. (12) and isolating the real and imaginary parts
gives

1+ra+ erg sin[2(X' —Xs )']exp( —aro )co(/3rD ) =0,
(14a)

infinite number of solutions, or modes, of these equations.
Each of these modes corresponds to a different possible
resonant frequency /3 of the Floquet analysis and thus
each should give rise to the same characteristic features
predicted by Wiesenfeld and McNamara in the power
spectrum.

The importance of the real part of the eigenvalue of
Eq. (12) is that it is an indication of the strength of the
mode. Normally the first of these modes to traverse the
imaginary axis is the one that determines the bifurcation
structure of the system. However, the other modes still
make themselves visible in our system.

EXPERIMENTAL RESULTS

Experimental procedure

The frequency response of the system at the frequency
of the applied signal was measured in one of two ways for
various combinations of ~D/~, various values of p, and
different values of the external frequency. The response
signal was measured either on the oscilloscope for simple
wave forms with only one frequency component, or on
the spectrum analyzer. The frequency resolution em-
ployed with the spectrum analyzer was 100 Hz, as this al-
lowed a reasonable time per sweep and it minimized the
possible side effects of averaging frequency over too large
an interval as would have been the case with a lower reso-
lution. When using the spectrum analyzer every mea-
surement was made by recording the height of the peak
corresponding to the external signal and subtracting the
background value measured without the external signal.
This was necessary as the level of the background was not
always the same due to the effects of noise amplification.

Amplification in the neighborhoods
of Hopf bifurcations

Before the first bifurcation we observe perhaps our
most significant result, modal amplification. This
phenomenon highlights the importance of the linearized
modes in the behavior of the system, and also provides a
convenient tool for their identification, both experimen-
tally and numerically. It should be mentioned that exper-
imentally they can be put into evidence by noise, ' al-
though not with the same precision as to the form or the
location of the mode. In both analytic and computation-
al analysis the use of noise is not elegant and often in-
volves the use of complicated stochastic process theories.
The use of a regular signal yields cleaner data that are
uncomplicated by the presence of the necessary uncer-
tainties produced by random noise.

Figure 3 shows a typical spectrum produced by the
sweeping of the external signal before the first bifurca-
tion. It consists of a background level of 69 mV on top of
which are located three regions in which there is
amplification of the external signal. At first glance it ap-
pears that the regions of amplification are centered
around the odd harmonics of the fundamental frequency.
This is not the case as was verified by going to the very
short delay limit. In this limit the odd harmonics and the
linearized modes are not as closely superposed as in the
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long delay limit. ' There are, however, two problems
with the short delay limit. The first is that the agreement
between the experiment and the numerical model is not
as good' and the second is that the effect is considerably
weaker. This can be explained by the necessity of includ-
ing higher derivative terms in the model for the short de-
lay limit. These terms affect the linearization and at the
same time cannot easily be taken into account by the Flo-
quet analysis. There is also another effect that plays a
role. If the system had been a simple ordinary differential
equation (ODE) there would only have been a single de-
gree of freedom, implying only one Floquet exponent
which in turn implies only one mode. As the delay de-
creases the effective number of degrees of freedom on the
system must decrease, weakening the higher-order mode,
until, in the case of zero delay, the number of modes must
match the number of modes in the ODE. In our experi-
mental system it has been shown that as the delay is de-
creased the number of modes ceases to be dependent on
the delay but instead becomes dependent on modes due to
the effects of higher-order derivatives on Eq. (11).' Spec-
trally, the number of modes that produce observable
effects we found was approximately equal to the value of
~D/~. This indicates that the effective dimension of the
system has approximately the same value. This is in
agreement with a recent conjecture of Le Berre et al. '

concerning the dimensions of chaotic attractors in de-
layed feedback dynamical systems.

Table I lists the frequencies of the maxima of Fig. 2
and their angular frequencies renormalized to units of ~.

TABLE I. Frequency of modes.

Measured
frequency

(kHz)

Normalized
angular

(rad)

Calculated
angular

(rad) Ratio

75
222
380

0.1065~
0.315 24~
0.5396~

0.124vr

0.338vr
0.581~

0.95
0.933
0.923

FREQUENCY ( 1tHz)

FIG. 3. Experimental amplification spectrum before the first
bifurcation. It shows quite clearly the effects of modal
amplification. ~& =8, @=0.45, 3 =0.16, X~ = —0.427.

where the term ~D+ ~ can be considered to be the
effective delay time of the feedback loop. A signal with a
period of T/2, if after only one passage through the cir-
cuit a signal did not have its sign reversed, or in other
words, the signal was not inverted, would be able to in-
terefere constructively with itself after only one passage
through the loop. The inversion, however, introduces a
phase shift of ~ which can only be eliminated after a
second passage. The period required for constructive in-
terference is thus twice the effective delay time. For
higher-order modes the argument is similar.

The form of the regions of arnplification around the
modes is predicted to be Lorentzian' when the
amplification is considered a power amplification. Doing
least-squares fits to our curves shows, in fact, that the
amplitude amplification is the square root of a Lorentzian
and therefore that the power amplification is Lorentzian
(Fig. 4). The general background level of 69 mV comes
from the overlap of the rather long tails of the square
root of the Lorentzians.

From the form of the Eq. (8) the half width of these
Lorentzians is directly proportional to the value of a or
the real part of the eigenvalue k. Figure 5 shows the
value of e calculated from the measured frequency half
widths by renormalizing them with respect to ~~. The
agreement is reasonable except when the value of p is too
close to the bifurcation point. The fact that in reality the
amplification cannot become infinite, as is required by the
Floquet analysis at the bifurcation point, accounts for
this. We find that the height of the maxima also depend
on 0. , which is illustrated by the best-fit line of slope
2.00+0.03 in Fig. 6. It should be noted that very small
values of e are not considered as once again saturation
effects must be taken into account which reduce the accu-
racy of the fit. To take these effects into consideration a
nonlinear analysis, including higher-order terms, must be
performed.

The fact that the theoretical predictions are confirmed
in our system even when suSciently far from the bifurca-
tion shows that the external signal not only can be used
to measure the preferred frequencies of the system, i.e.,
the imaginary part of the Floquet exponents, but also in a
certain fashion the stabilities of these frequencies, i.e., the
real parts. If this technique is to be used to measure the
values of the exponents, one problem is whether the effect
is observable when the value of p tends towards zero or
if, in fact, there is a value of p at which the effect changes
discontinuously. Experimentally, as the value of p is de-
creased, the amplification becomes weaker until it
reaches the point where it is hidden by the noise. Nu-
merically it is possible to observe the arnplification down
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FIG. 4. Least-squares fit of the first peak of Fig. 3 to the
square root of a Lorentzian. The best fit obtained was
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FIG. 6. Log-log plot of square root of maximum power as a
function of the Floquet exponent calculated from the half
widths. This is done by calculation for ~R =12, p=0.3, @=0.01.

to the level of the numerical noise. With decreasing p the
increasing width of the peaks adds a further complica-
tion. The positions of the maxima can still be readily
measured but their widths and their heights are affected
by overlap with the extra width of the neighboring peaks.
To determine the values of e these eff'ects would have to
be removed (Fig. 7). This is easily accomplished by fitting
the resulting curve to a sum of square roots of Lorentzi-
ans each centered at the positions of the maxima. In-
creasing the amplitude of the external signal at sma11 p
does not serve to make the peaks move visible. Its only
effect is to multiply the curve everywhere by the same
factor.

Amplitudes, however, cannot be increased without lim-
it. The response at some point must cease to follow that
predicted by linearized theories. This effect was investi-
gated by studying the output signal amplitude as a func-
tion of the input amplitude under various conditions (Fig.
8). As is to be expected with small input signals, the
response is linear, gradually increasing until at very large
output amplitudes there is saturation. However, when
the signal amplitude is very weak, noise starts to play a
role, thereby introducing nonlinearities into the response.

What is interesting to observe here is that the extent of
the linear region is dependent on the input frequency, and
that it takes the same form for additive and multiplica-
tive modulations. The response remains linear longest
for frequencies that are far from a modal frequency. This
demonstrates conclusively that the output cannot be
modeled in the same way as the output of a normal am-
plifying component.

In order to further elucidate the mechanism, the
amplification effect was studied to see if the actual pres-
ence of the linearized mode was necessary to the
amplification, or if, in fact, it was independent. The first
mode was thus removed through the use of a selective
amplifier (notch or antiresonant filter). It has the effect of
attenuating, by more than 100 dB, frequencies within a
narrow band centered on some desired frequency. In our
case this was the position of the first mode. The width of
filtered band depends inversely on the Q factor which was
chosen to be as small as possible (Q =2) in order to elimi-
nate the largest possible range of frequencies. The results
indicate that they are independent. The arnplification
outside the band filtered by the notch is the same as if it
had not been there. In the same manner the
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FIG. 5. Value of a, the real part of the Floquet exponent,
calculated from experimental half widths and by calculation.

FIG. 7. Observation of amplification effects for very small
values of p. p =0.1, a =0.05, ~~ = 8, 2 =0.16, X~ = —0.427.
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X„+,= sr[ A —p sin (X„—X~ ) ] . (16)

amplification around the second mode is also unaffected.
This implies that, under these conditions, there is no in-
teraction between the modes. It is also to be noted that
when narrow filtering windows (high Q) were used the
system would adjust its frequency of oscillation so that it
would be just outside the window. This change of fre-
quency did not, in any case, change the frequency
response of the amplification. It did not recenter itself
around the new fundamental frequency, remaining cen-
tered around its natural value.

The actual mechanism for the amplification is partially
a result of the previously described constructive feed-
back, but at the same time comes from the dynamics of
the underlying mapping:

(a)
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Exactly the same phenomena occur for the equivalent
discrete map as the bifurcation is approached [Fig. 9(a)].
Geometrically the frequency dependence can be under-
stood from the accompanying figures. For a~=2m/2 the
condition for a stable orbit leads to the stable orbit shown
with the amplification coming from the gradual increase
in the slope of the mapping. This increase in slope is

X„
FIG. 9. Amplification effects in the discrete map

X„+,=a[A —p.sin'(X„—X~)] as the first bifurcation is ap-
proached. a=0. 1, w=@, 3=0.16, X~ = —0.427.
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FIG. 8. Variation of output amplitude as a function of input
amplitude. In (a) we show the effects of a multiplicative modu-
lation. (b) ~R =8, p=0.4, Xz =0.427. The frequencies are 40.1,
50.1, and 60.1 kHz, where 60.1 kHz is the frequency of the first
mode. The modulation in this case is additive, rz =8, p=0.25,
A =0.16, X~ = —0.427.

nullified for co=2ir/4 by the presence of the additional
step in the iteration cycle which pulls the two branches of
the solution back towards the solution of the mapping
without the external periodic signal. This geometric in-
terpretation has been put on an analytical basis by
Heldstab.

In the case of su=2~/2, for the discrete map, and the
frequency of the unperturbed P2 for the continuous mod-
el the system never actual1y bifurcates from P1 to P2 as
with this choice of frequency the system is always in a
period-2 state. In the Lyapunov spectra the normal bi-
furcation point is marked by the gradual approach of the
exponent towards zero and the equally gradual decay
away from zero without actually having reached it. This
contrasts with the sharp transition present in the case of
a normal bifurcation.

How does the amplification actually depend on the
variations of the parameters in the system? Figure 10
shows experimental bifurcation diagrams for the system
with various external signals. As can be seen from Figs.
9(a) and 10(b) when the frequency is correctly chosen and
corresponds to a modal frequency the result resembles
the results for the discrete map. With only a very slight
deviation from this frequency the result is essentially the
same as for the unperturbed case.

To study the amplification effects after the bifurcation,
the spectrum analyzer had to be used to measure the
response to a frequency that was slightly removed from
the frequency of the linearized mode. This had to be
done in order to isolate the effects of the external signal
from those which were natural to the unperturbed sys-
tem. The external signal also had to be sufticiently weak
so as not to cause entrainment in the system. The mea-
sured power response both before and after the bifurca-
tion is illustrated in Fig. 11. As expected, from the re-
sults of Weisenfeld et al. it reaches a maximum at the bi-
furcation point. The form of the curve on either side is,
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however, somewhat more complicated. Assuming that
the values of e vary approximately linearly with p led us
to expect that its form would be reasonably close to a
Lorentzian. This is certainly not the case. To correct
this manifest lack of fit we tried various p-dependent
weighting functions based on universal scaling properties
of bifurcations. As n, the other of the bifurcation, in-
creases, the values of p„for each of the succeeding bifur-

cations get closer and closer together. The desired
weighting function was chosen to have the property that
this effect would be normalized out and that the effective
distance between the bifurcations would be the same. To
do this, the idea of a continuum of bifurcations was intro-
duced: between the first (n =1) and second bifurcations
(.V =2) there are bifurcations of order n=1.25, n=1.33,
n= 1.47, etc. For integral n the value of p at which the

(a) no signal

(b) FREQUENCY
= 2O. I RH

(c) FREQUENCY

Nl II q «q e y &Ill L w, M

=22. l kHz

0.55 0.44
FIG. 10. Bifurcation diagrams showing amplification as the bifurcation is approached. The amplitude of the modulation was 50

mV. w= 12, 3 =0. 16, L~ = —0.427.
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bifurcation occurs is well defined. The problem is to
define it for nonintegral n. Feigenbaum's universal result,

(p„—p„)a5 (17)

where C is a constant to be determined.
This is the weighting function with which we did the fit

of Fig. 11. The only additional parameter introduced
into the fit beyond the parameters in the Lorentzian was
the parameter p . Its value is not the same as its actual
value because the result that was assumed to be an equali-
ty is strictly true only in the limit of large n. However, as
with the calculation of 5 using Eq. (17) the results are still
reasonably valid.

RESULTS AFTER THE FIRST BIFURCATION

where p, is the nth period-doubling bifurcation and 6 is a
universal constant defines it sufficiently. By assuming
that the value of n is continuous, it is possible to solve for
the corresponding value of the bifurcation parameter p.
But more importantly, it allows for the solution of the
weighting function

dPn8'(u) =
dn

which can be calculated to be

[»(v- —v. )]'(v- —v. )
W(u) =

(a)
I" mode

F mode

tances from the first bifurcation grew, it approached the
position at which the second mode, alone, bifurcates.
This resulted in a renormalization of the relative heights
of the modal peaks, the second becoming stronger than
the first. This occurs because the solution of the first
mode moves away from the fixed point solution with the
result that the linearized analysis becomes less accurate
allowing for a weakening in the strength of the first
mode. At the same time the relative magnitudes of the
others increased [Fig. 12(a)], as in the chaotic regime
where in the immediate neighborhood of an existing peak
there is some decrease in the power in the frequency.
This was verified both experimentally and numerically
and is due to the mechanism previously described [Fig.
12(b)].

Continuing to increase the value of p brought the sys-
tem close to the first period-doubling bifurcation. Once
again (Fig. 13), amplification was observed at the posi-
tions where new spectral peaks would appear after the bi-
furcation (i.e. , f I2 and its odd harmonics). The form as
a function of frequency is predicted by the Floquet
analysis to be a possibly slightly modified Lorentzian.
Experimentally, this turns out to be the case [Fig. 13(b)].

Beyond the first bifurcation, experiments are compli-
cated by the presence of additional lines in the frequency
power spectrum. At these frequencies the system's
response to an external signal could not easily be deter-
mined. In order to give these frequencies a measured
value, their response was assumed to be that of the
nearest measurable frequency.

While still far from the second bifurcation the
amplification due to the modes continued to play an im-
portant role. As the parameter p increased and the dis-
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FIG. 11. Growth of amplitude (square root of power P) of
response to external signal as a function of p. ~R =12, @=0.01,
co=2m(0. 477)/~R, 3=0.16, Xs = 0.427.

FIG. 12. (a) Modal structure after the first bifurcation. The
second mode has become stronger, ~R =12, @=0.49, 2=0.16,
X~ = —0.427. The modulation amplitude is 100 m V. (b)
Deamplification in the neighborhood of a peak present in the
system. ~R =2.
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From the parameter values of the illustrated fit the real
part of the Floquet exponent governing the bifurcation
was calculated to be —2.34X10 . This is small as is to
be expected from the very minor changes produced in the
temporal signal at the bifurcation.

The amplification with this bifurcation occurs over a
much narrower range of p than in the case of the first bi-
furcation (Fig. 14). For higher bifurcations the effects be-
come even narrower, so narrow, in fact, that they become
unmeasurable. Nevertheless, the behavior as a function
of p is the same except that it has to be rescaled to the
new value of p and its rate of change with the order of
the bifurcation.

After the sequence of period-doubling bifurcations the
other type of bifurcation shown by the system is bifurca-
tion from chaos into a periodic window of uneven period.
These windows are most easily observed in the short de-
lay limit where several experiments were done just before
and just after the transition. In neither case was
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FIG. 14. Amplification around the second bifurcation. The
form of the peak is similar to that observed in %'eisenfeld's cal-
culations.
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amplification observed. Amplification is thus not generic
to all bifurcations but depends on the bifurcation type. It
is not, in fact, to be expected when the system does not
change gradually from one attractor to another, as the
amplification is a result of the change in form of the at-
tractor. In the case of this transition, there is a sudden
jump from a chaotic to a periodic attractor.

The same applies to the transition from chaos to
mode-locked state in which the temporal signal is the
result of a combination of signals arising from two
modes. Just before the transition no amplification was
observed. Thus, there is no change in the underlying dy-
namics of the system. The transition to a mode-locked
state from chaos is therefore just the result of the interac-
tion between the modes concerned.
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FIG. 13. (a) Amplification just before the second bifurcation.
3 =0.16, Xz = —0.427, ~~ =4. (b) A Lorentzian fit to the
amplification of the period-doubling bifurcation ~R = 13,
3 =0.29, X~ =0.367, @=0.73. The fit is

1.317
(~ —8.85) + 1 376 42

where xX =0.05. Top line, 60.1 kHz; middle line, 50.1 kHz;
bottom line, 40. 1 kHz.

EFFECTS OF EXTERNAL SIGNAL
ON CHAOTIC SYSTEM

In certain situations, especially in fully developed
chaos, the system did not strongly react to the external
signal. The result was thus the simple incoherent addi-
tion of the signals of both the chaotic system and the
external generator. This indicates the possibility of fur-
ther studies concerning the strength of the interaction be-
tween the two. Ho~ever, in developed chaos at very 1ow
frequencies (of the order 10 Hz), a slight dimunation of
the peak height was observed. This can be explained by a
distortion of the wave form due to the presence of the
chaotic attractor. In this case the dynamics of the chaos
play a role. The period of the low-frequency external os-
cillation is such that in the time required for one oscilla-
tion the external signal can make several passes through
the feedback loop. This evidently corresponds to several
iterations of the related discrete map [Eq. (16)j.

With each iteration a little information is lost and the
signal looks less and less like a sine wave, with the result
that the frequency component at its fundamental is re-
duced. In the case of higher frequencies one complete cy-
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cle can be detected before this phenomena occurs.
When the chaos is not fully developed, i.e., there are

still clearly resolved frequency peaks due to the inverse
sequence of Lorenz, there are small perturbations to the
simple following of the background level. In an interval
with a width of the order of 1% of the frequency around
the frequency of the remaining peaks the amplitude is
slightly increased. In their immediate neighborhood,
however, the injected signal and the system's natural fre-
quencies compete, resulting in a reduction of the power
in both of the peaks. In the former case, where the signal
is not too close to the natural frequency, the slight in-
crease in amplitude can be explained by an entrainment
effect. Frequency components that are near to these
values diverge less rapidly than more distant signals. The
external signal locks in on these components hindering
their divergence resulting in a purer signal at these fre-
quencies, which, when added to the external signal, pro-
duces a stronger signal at the given frequency. %'hen the
frequencies are further away the rate of divergence is too
great for any form of locking to take place. The diminua-
tion in the immediate neighborhood is due to the com-
petition between the two frequencies. The cause of this
effect can be seen by first considering what happens if the
two frequencies are identical. In this case the amplitude
of the sum signal is limited by the finite maxima of the
transmission function. Therefore, it will not be as great
as it ~ould have been had the transmission function been
infinite. If the frequencies are slightly displaced exactly
the same effect occurs except that the sum must be re-
placed by the time average of the sum. When the fre-
quencies differ more the effect is less significant.

MODAL EFFECTS OF TWO DELAYS

Modal amplification can be used to study the modal
structure of other experimental systems, which can be too
complicated for other forms of analysis. Our apparatus
with two delayed feedbacks, which can be used to model
the Fabry-Perot system of Ikeda ' is such a system. Ex-
perimentally, because the time delays obtainable were
two orders of magnitude too large, we were unable to ver-
ify his predictions concerning the sudden jurnp phenome-
na which occur when the ratio of the frequencies intro-
duced by the two delays is continuously varied. We were,
however, able to observe the interactions between the two
delays when they are both of the same order of magni-
tude.

The circuit used to provide the two feedbacks is illus-
trated in Fig. 15. The values of v.

D for each feedback
loop were adjusted individually and kept constant. Care
was taken to ensure that when the two feedbacks were
added together the values of A for each loop were halved
so that the final value of 3, the sum, was equal to the one
feedback value.

With only one feedback in the system the linearized
modes can be made evident by the amplification of noise
in their neighborhoods. Evidently, when there is only
one delay in the system we obtain the same modal struc-
ture as for the system on which we did the experiments
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FIG. 15. Experimental setup for the study of the effects of
two feedbacks.

with the external signal. In Fig. 16 one can see the effect
of the addition of the record delay on the modal structure
before the first information. By comparing the three pho-
tographs of Fig. 16, it can be seen that the modes remain.
The modes of the longer delay are most obvious, but their
strengths are modulated by the modes of the shorter de-
lay. Normally, the strength (height) of a mode decreases
with increasing order. This is not the case in Fig. 17(c)
where the third mode is stronger than all the others. The
position of the third mode nearly coincides with the first
mode of the shorter delay. This reinforcement of the first
few modes occurs at the expense of the second mode of
the short delay. With the two delays it cannot be seen,
whereas it is quite visible with the short delay alone.

Before the first bifurcation the two delays are indepen-
dent of one another. After the bifurcation there are three
possible scenarios. The first is that both of the delays
enter into oscillation independently producing a quasi-
periodic state. The second is that one of the delays takes
precedence and controls the systems behavior, and the
third is that there is a strong coupling between the two
with the result that the final frequency is at some frequen-
cy other than the natural frequencies of either of the two
one delay systems. Figure 17 shows the three possible
cases for the temporal signal just after the first bifurca-
tion. From the frequency of the spectra it is evident that
the long delay has imposed itself. There has, however,
been a slight change in its frequency. Normally, its fre-
quency is 18,4 kHz and that of the short delay is 73.0
kHz. When both delays are present the frequency be-
comes 19.4 kHz. Thus the effect of the second delay is to
slightly increase the frequency. The fact that just after
the bifurcation the long delay is the important one can be
easily understood by considering the relative strengths of
the modes for each delay, those of long delays being in
general considerably stronger. From the form of the sig-
nals it is easy to see that the added feedback has the effect
of smoothing out the square edges of the single delay sig-
nal wave. This is to be expected as the second feedback
sums the signal with the signal at a time v, —~2 later.
The resulting signal is thus similar to an average of the
original signal and an exact copy displaced in the time
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domain. The bifurcation structure for the three cases is
illustrated in Fig. 18. The second delay has had the effect
of considerably postponing the bifurcations. Thus the
two delays compete, each preventing the other from
entering into oscillation until one, the longer, is
suSciently strong. With the two delays a period-

doubling bifurcation from P2 to P4 was never observed.
With this postponement the entrance into chaos is also

delayed. Thus when the single delay systems are chaotic
the double delay system can be periodic. This periodic
state is dependent on the path used to reach it. If
reached by gradually increasing p with both delays in the

(a) I delay with 7= g.&l l

(b) I delay with V=23 8'

(c) both delays combined

kHz

250
FIG. 16. Modal structure in the presence of two delays. 3 =0.16, XB = —0.427, just before the erst bifurcation.



39 AMPLIFICATION OF AN EXTERNAL SIGNAL IN AN. . . 1959

circuit, the same state is reached as when the value of p is
fixed, with only the long delay in the circuit followed by
the introduction of the second delay. A different periodic
state at the natural frequency of the short delay, however,
is attained when the long delay is introduced after the
short delay. This hysteresis phenomenon indicates that

there are two independent attractors in the system each
of which can control the system's behavior.

CONCLUSIONS
In our experiments we have demonstrated the validity

of the predictions of Wiesenfeld and McNamara for the
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FICx. 17. Effects on the form and spectra of the P2 solution in the presence of two delays. (a) ~& =23.8, (b) ~z =63.11, (c) com-
bined effect. A =0.16, X~ = —0.427, p =0.48.
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Hopf and period-doubling bifurcations of an autonomous
system. More importantly, because our system is a delay
differential equation, there are an infinite number of de-
grees of freedom which give rise to effects at other fre-
quencies than those at which spectral peaks appear after
the bifurcation. These additional effects can be explained

by the linearized modes of the system. We also demon-
strated that the modal structure before attaining chaos is
independent of interactions between modes. Additional-
ly, we examined the effects when the system was not near
a dynamic instability and found regions of
deamplification, and regions of amplification when the

( c) COMBINE D DE L AY$

0.3I

FICz. 18. Suppression of second bifurcation by interaction of two delays. 2 =0.16, X& = —0.427.
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system was in a chaos of low dimension. Finally, we used
the idea of modal amplification to study the phenomena
produced in our system by two delays. We found that the
two delays produced slight changes in the bifurcation
structure and that they introduced an additional attrac-
tor into the system.
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