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Nonresonant interaction of a three-level atom with cavity fields.
III. Photon-number probabilities and fluctuations
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We study the photon statistics in the interaction of a three-level atom with cavity fields of arbi-
trary detunings. A number of new features of photon-number distributions and fluctuations are
found and discussed. The possibility of sub-Poissonian and antibunching effects is also discussed.

I. INTRODUCTION

It is well known that fluctuations exist in every type of
electromagnetic field. There are always random uncer-
tainties in the amplitude and phase of the light. In prac-
tical cases, these fluctuations may be regarded as a result
of the environmental influence on the light source. How-
ever, the field still fluctuates even if all the environmental
effects are removed. This is because the quantum-
mechanical uncertainties are intrinsic, and the noise that
exists in light propagation can never be removed by any
means.

In general, the fluctuation of any variable quantities F
can be expressed by its variance ( (bF ) ) = ( F ) —( F ) .
The variance of the photon number is usually expressed
in terms of Mandel's Q parameter' defined by

(n)
When the light field is in the coherent state, Q =0 and
the photon-number probability distribution is Poissonian.
When Q & 0, the photon-number fluctuation is large.
The probability distribution spreads wide and is called
super-Poissonian. When Q & 0, the photon-number fluc-
tuation is small and we have sub-Poissonian probability
distribution which has a narrow peak. There is a lower
bound Q = —I corresponding to a pure number state.

In a system of an atom interacting with the radiation
field, the photon statistical properties have been of great
interest. The sub-Poisson photon distribution in reso-
nance fluorescence is now well established. ' Recent
works of Filipowicz et al. and Davidovich et aI. have
shown theoretically that the photon-number statistics of
a one-photon or a two-photon micromaser exhibit sub-
Poisson distribution. Kim and Knight have studied fluc-
tuations in fl.uorescence intensity produced by a three-
level atom in a two-state random telegraph signal. Many

authors' ' have investigated the photon statistical dis-
tribution in the Jaynes-Cummings (JC) model. Meystre
et al. " studied photon statistics for a two-level atom in-
teracting with an initially coherent cavity mode and con-
cluded that, for 1ong times, the atom acts as a nonlinear
filter on the coherent properties of the cavity mode. In a
recent review, Loudon and Knight' considered a two-
level atom interacting with an initially squeezed cavity
mode. Their conclusion is that the photon distribution
properties depend strongly upon the squeezing parame-
ter. Different choices of the squeezing parameter can re-
sult in a sub-Poisson or super-Poisson distribution of the
photon-number probability. In the micromaser experi-
ments of Rempe and Walther, ' the quantum collapse
and revival phenomena predicted by the JC model were
demonstrated for the first time. It is also expected in
these experiments that the cavity field will develop
significant sub-Poisson statistics.

In the first paper of this series' (hereafter referred to
as I), the problem of nonresonant interaction of a three-
level atom with one- or two-mode cavity fields of arbi-
trary detuning was formulated and the atomic level occu-
pation probabilities discussed in detail ~ The coherent
properties of the stimulated field were studied in the
second paper' (this paper will be referred to as II from
now on). It is found in II that the idea of a nonlinear
filter discussed in Ref. 11 is no longer true in general. We
investigate in the present paper the photon-number dis-
tribution and fluctuation of the field in the off-resonance
interaction of cavity modes with the atom.

We consider two cases of interaction similiar to what
we have done in the previous papers of this series: a "-
type atom with one-mode field and a A-type atom with
two-mode field. The time dependence of the photon-
number probability distribution function p (n, t) or
p (n, , n2, t) as well as the Q parameter for various detun-
ing parameters are calculated. We find that for one-mode
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type sub-Poisson and super-Poisson distributions ap-
pear alternately as time develops, and for two-mode A

type the distribution is always super-Poissonian.

I+(0)&=lg, g&=lg& gg( )I

for one mode and

(8a)

II. THEORY

H=A(HO+H, ), (2)

The general formalism of a three-level atom interacting
with cavity fields is given in I. Here we merely outline
what is essential for our present discussion of photon
statistics. We consider the two typical cases: one-mode
:" type and two-mode A type. The relevant atomic level
configurations are shown in Fig. 1.

The Hamiltonian is, in the interaction picture,

I+(0) &
= lg, g, , g, &

= Ig& & g)(n) )g, (n, )ln, , n, &

t'I 1, P1
2

for two mode where n„ is the photon number when the
atom is in the level g, and n;„ is the photon number refer-
ring to the mode i T.he probability amplitudes in (7) are

3= —e ' QUpe
i =1

where, for the one-mode = type,

Ho= g co„A"„A„+Qa a,
g=a, b, c

(3)

i(A —6 )t

l t t 2

3

C=V2+ Ue

(9b)

(9c)

6, = —
( 0 —

cob + tc, ), h2 =Q —co, +co, :
(4) where

and for two-mode A type,

Ho= g co„A „A„+ g fl, a,ta, ,
q=a, b, c i =1,2

—ib, [t —iA~t
Hi =k]e ' a]A, Ab+A2e 'a23, 3, +H. c. ,

61 —01 COQ +Mb, A2 —02 CO~ +CO~

(6)

p, = —
—,'x, + —,'(x, —3x~)' cosg,

pp 3xi+ ~(x i 3xp) cos(8+ ~77)
2 1/2

p, = —
—,'x, + —', (x, —3x, )

' cos((9+ ', vr ), —

9X1X2 2X
1 27X30=

3
cos

2(x —3x )

(loa)

( lob)

(10c)

(10d)

The operators in the Hamiltonian are defined as follows.
A „creates an atom in the state lg&, a creates a photon,
A, ; are the usual coupling constants, and 6; are the detun-
ing parameters.

As has been shown in I, the wave equation can be
solved by the state vector

and

X, =6,—262,

x, = —[V, +V~+62(b, ,
—b2)],

x3=(62 —b, , )V~ .

(1 la)

(1 lb)

(1 lc)

I'l(t) &
= y g(n)[A (n„t)la, n&

+B(nb, t)Ib, nb &+C(n„t)lc, n, &]

(7a)

for one mode or

I+(t)&= y g, (n, )g, (n, )

nl, n2

x[~ (n] n2 t)la, n„,n2,

+B(n~t, n2g, t)lb„

The probability amplitudes for one and two mode take
the same expressions (9) and depend on the photon num-
ber in different modes through the coupling strength pa-
rameters V, and V2. The explicit forms of these parame-
ters are listed in Table I of I for different cases.

III. PHOTON-NUMBER DISTRIBUTION
AND Q PARAMETER

The photon-number probability distributions are most
easily calculated from the density matrix which is defined
by

+C(n)„n„,t)lc, n„n2, &1 (7b) p(t)=l+(t) &(+(t)l (12)
for two mode, with the corresponding initial conditions

Ib&
(b)

la&

Ic& Ic)

FIG. 1. Atomic level configuration for (a):- type and (b) A

type.

with the state vector given by (7). We now proceed to in-
vestigate the time evolution of photon-number probabili-
ties and Mandel's g parameter of two typical cases.

A. One-mode = type

We consider a three-level atom with:--type energy-
level configuration. The initial condition is that the atom
starts in the upper state

I
b & and the one-mode cavity

field is in the coherent state. Thus
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p, (n)=e "n "In!, (13)

where n is the initial mean photon number. From Tab1e I
of I we find

Ui = Vi /p12 @13

U2 ~1 /823821

U3 = ~& /V»V»

(14)

where V21
——A21(n+1), V22=A. 22(n+2), p,i=p, —

pJ (t,j
=1,2, 3). Substituting the V's in (11}and (14) and then
making use of the resulting (14) together with (9), (10),

I

+po(n —2)
~
C(n, t)

~
(15)

where po(n)=~Q(n)~ is the initial photon distribution.
In the present case, the cavity field is assumed to be in the
coherent state and hence po(n)=p, (n). More explicitly,
we have from (12), (13), and (15)

and (11), we find the probability that n photons exist in
the cavity at time t,

p(n, t)= g (a, n~p(t)!a, n )
a=a, b, t..

=po(n —1)~ A (n, t)~ +po(n)~ B(n, t)~

e "(B(0,t)( for n =0
e "[(A (l, t)[ +n [!B(l, t)[ ] for n =1

p(n, t) .

p, (n) —
~

A (n, t)~ + ~B(n, t)~ +
~

C(n, t)~ for n ~2 .
n n

(16a}

(16b)

(16c)

With the probabilities p (n, t) given by (16), the Q parame-
ter can be calculated directly from (1) if we recall that the
mean values are given by

(n ) = g np(n, t), (17)

(n ) gn p(n, t) .

We first study the time evolution of the photon distri-
bution for different detunings. Throughout this paper,
we have assumed k, =A,&=A, in our numerical computa-
tion. The detuning parameters b, ; (i = 1,2) are measured
in the unit of A, , and the time t is measured in 1/A, . In
Fig. 2 we plot the time evolution of the photon probabili-
ty distribution for a fixed 6, and different A2. The figures
depict how the probability variation with time is
influenced by changing detunings. It is observed that as
long as t )0, the photon distribution curve changes
shape all the time. This implies that the nonlinear cou-
pling with the atom has changed statistical properties of
the field. Generally speaking, the p(n, t) curve becomes
alternatively flatter and sharper than the original
coherent state distribution. The most probable photon
number also changes oscillatory with time. When p(n, t)
is flatter than the initial Poisson distribution, it is super-
Poissonian with a large fluctuation, and a sharper curve
means sub-Poissonian distribution with small fluctuation.

In the short-time regime, a larger most probable pho-
ton number than its initial value corresponds to the radi-
ation process, while a smaller most probable photon
number corresponds to the absorption process. As t be-
comes greater than m. , multipeak structure appears in the
p(n, t) curve. This reflects the coherence in summing
over the coefficients of the atomic states. As can be seen
from Eq. (16c), the photon distribution is a sum of three
terms corresponding to the three atomic level occupation
probabilities. Each of these terms involves three sets of

beat frequencies as has been discussed in great detail in I ~

As t increases further, the distribution curve recovers a
Poissonian shape. This approximately periodic appear-
ance of nearly coherent state is consistent with the results
of II. The situation is illustrated in Fig. 3, in which we
plot the long-time behavior ofp (n, t).

To study the detuning dependence of the photon distri-
bution, we calculate for fixed n and b i, p (n, t) as a func-
tion of A2 as shown in Figs. 4 and 5. Both the figures
demonstrate the strong interference effect when t is large.
It is observed that all the curves in Fig. 4 for 6, =0 are
symmetric with respect to hz=0, and those in Fig. 5 for
5, =5 are all asymmetric with respect to 62=0. In other
words, a dispersion phenomenon' ' appears when mode
1 is off resonance. We note that the atomic level occupa-
tion probabilities have similar features, as has been dis-
cussed in I.

A straightforward way to determine whether the pho-
ton distribution is sub-Poissonian or super-Poissonian is
to look at the Q parameter which can be obtained by
plugging (17) and (18) in (1). In what follows we calculate
Q numerically as a function of time for various cases.
The results are presented in Figs. 6 and 7. It is clear that
the photon distribution oscillates between super-
Poissonian (Q )0) and sub-Poissonian (Q (0). Q is a
nearly periodic function of the time. When the curve in-
tersects the time axis, it is nearly Poisson distribution in
agreement with the results of II. The period of oscilla-
tion becomes shorter as ~b, ,

—b, z~ increases, namely, as
the system deviates farther from the two-photon reso-
nance. At two-photon resonance, the amplitude of oscil-
lation is modulated as in Figs. 6(d) and 7(c). It is also
seen from these figures that minimum photon-number
fluctuation can be achieved at certain times at the two-
photon resonance. Thus it appears clear that the two-
photon processes result in sub-Poissonian distribution.
When the field-atom coupling is far from one-photon res-
onance but satisfies two-photon resonance, the coupling
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is mediated only via two-photon processes and the result-
ing photon distribution is sub-Poissonian.

The long-time behavior of Q is depicted in Fig. 8 for
two different cases, i.e., off and on (two-photon) reso-
nance. It is observed that the oscillatory variation of the
photon-number fluctuation with time shows collapse and
revival phenomenon. During the time between collapse
and revival, the field stays in sub-Poissonian distribution
for off'-resonance and in super-Poissonian distribution for
on-resonance cases. A comparison of Figs. 6 and 3 re-
veals that fluctuations remain more or less unchanged for

(a)

(c) FIG. 3. Long-time behavior of the photon-number distribu-
tion for 6, = 5, n = 10. (a) 6 2= —5 and (b) 6& = 5.

0.67T

(e)

-0.25 0.25

-IO 0 IO -l0 0
6p

FICx. 2. Time evolution of the photon-number distribution
for 6)=5 and n =10. (a) 62= —10, (b) A2= —5, (c) 62=0, (d)
62 =5, (e) A2 = 10.

FICx. 4. p ( n, t ) vs 5& for 5, =0 (at resonance), n = 10, and
n = 10 at different times.
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p.47r 040— (a)

P.Bar
0.00

-040-
0.40- (b)

O.OO ~.
7T

lO
0+25

-0.40—
0.40-

(c)

-lO 0 lO

FIG. 5. p(n, t) vs 52 for 6&=5 (off resonance), n =10, and
n =10at different times.

0.4

-0.40—

FIG. 7. Q parameter vs t for n =10. (a) A, =t),z=o, (b)
A~ =0, 62=+5, (c) 6, =hz=20.

a long time after the collapse of oscillatory varying Q, but
the probability distribution keeps changing all the time.

-04-
0.4- (b)

B. Two-mode A type

We now consider the atom with A-type level structure
interacting with a two-mode cavity field. The initial con-
ditions are that the atom is in the state ~a ) and the field
is again in the coherent state with initial photon distribu-
tion

-04-
0.4- (c)

( n
)
+ fl 2 ) ll

lp, ( /, nnp)=e n
/

n ~ ln)!n2! .

We first look up from Table I of I

(19)

0.50-

Q
0.00

—0.50"

(e)
0.50-

Q
ooo

20vr

0.4-
-0.50-

FIG. 6. Q parameter vs t for b, , =5 and n = 10. (a) A2= —10,
(b) b, = —5, (c) 62=0, (d) 62=5, (e) 5,=10.

FIG. 8. Long-time behavior of Q for 6, =5 and n =10. (a)
A2= —5, (b) 6,=5.
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U1 (Pl +612) /P12 P13

U2 — (P2+ 512 ) /P21P23 (20)

p(n1, n2, t)= g (a, n, , n2~p(t)~a, n, , n2)
a=a, b, c

3 (P 3 +~ 12 ) /P 3 1P 3 2

where b, 12=6,1

—b, 2, V, =A, (n, +1), i =1,2. The pho-
ton-number distribution for a two-mode fie1d is

Finally, we investigate the dependence of the photon
probability distribution upon the photon number n and
detuning parameters. Figure 11 shows for fixed 6, and
n2 the distribution p (n, , n2) as a function of n, for vari-
ous 62 and t. The curve starts with a Poissonian form,
changes continuously because of the interaction, and
gradually develops into multiple peaks. At the begin-
ning, the inhuence of A2 on coherence effects between

=p, (n1, n2) ~
3 (n, , n2, t)~

+ ~B(n„n„t)~
n&

+ ~C(n, , n2, t)~'
np

(21)

(b)
Like what has been done in II, we consider only mode 1

for simplicity. Thus we shall calculate numerically in
this paper the photon probability distribution

p(n, , t)= gp(n, , n2, t)
n2

and the Q parameter

(n21 ) —(n, )'
Q=

(n, )

(22)

(23) (c)

where

(n', ) = g n~@(n, , n ,2)t,
nl, n2

(n, )= y n, p(n, , n, , t).
nl, n2

(24)

(25)

Once more, the units employed in our calculation are k
for energy and 1/A, for time, and we still assume

In Fig. 9 we plot the photon distribution for
different cases. The curve changes shape more appreci-
ably and the multipeak structure appears earlier than the
corresponding one-mode case. It is also noted that the
peak never narrows, implying super-Poissonian distribu-
tion all the time. The peak height, however, oscillates as
a function of time. The period of oscillation is shorter
when 6, and A2 have the same sign than it is when the
detunings have opposite signs. This is probably due to
the ac Stark effect.

We now turn our attention to fluctuations and plot Q
computed from Eq. (23) as a function of time in Fig. 10.
Clearly, Q )0 all the time in every case. Hence the fluc-
tuation is always larger than its initial condition, and
photon probability distribution remains super-Poissonian
once the interaction starts. In general, Q is an oscillatory
function of time and the frequency increases as the cou-
pling deviates from the two-photon resonance, or as
~h, —b, 2~ increases. We also note that Q has a very
different time dependence at two-photon resonance as in
Fig. 10(d).

FICx. 9. Time evolution of photon-number distribution of
mode 1 for 5, =5, n, =10, n, =20. (a) 52= —10, (b) 62= —5,
(c) 6 =0, (d) 5,=5, (e) 52=10.
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0.04

(a) p(n, ,5)
IO

0.00

3.50-
0 n, IO

0.04
( b) p(rl~, 5)

IO

0.00
3.50 (c)

0 n, IO

0.04
(c) p(~„5) 0

0.00

3.50
0 IO

0.00

0.04
(d) p(n, ,5)

IO

3.50-
(e)

0 IO

0.00
3.I4

FIG. 11. p(n~, n2) vs n~ for n, =nz=5, 5~=5, n2=5, and
various choices of time. (a) t =~/2, (b) t =~, (c) t = 2n, (d)
t =4m.

FIG. 10. Q of mode 1 vs t for n, = 10, n, =20, and b, , =5. (a)
6 = —10, (b) b, = —5, (c) 6,=0, (d) 6,= 5, (e) 5,= 10. &p= -lo

0.06 0.06

0.06

n =-5

atomic levels is not very significant. gradually, such an
interrerence effect becomes remarkable, and the distribu-
tions corresponding to different 62 values are totally
different even though they are calculated for the same
time with the same 5&. In Fig. 12 we also show the prob-
ability distribution as a function of detuning parameters
at a given instant of time. It is seen that at any time, the
photon distribution is symmetric with respect to 6, =0
for 62 =0, asymmetric for 52&0, and antisymmetric with
respect to hz=0. We recall from I that the atomic level
occupation probabilities possess the same symmetry
properties. We are not able to offer any simple explana-
tions at this stage. We would, however, like to point out
that a similar situation exists for the one-mode coupling
even though we have not shown the curves explicitly.
For instance, the mirror image of Fig. 5 can be obtained
by setting 5

&

= —5 instead of 5 in the computation.

0.06

0.06 O. (06

&p =lO

O.q6

-lO 0

(o)

lO -IO 0

(o)

I I I

IO -IO 0

(c)

IO

FIG. 12. p (5, 5) vs 5& for various choices of t and A2 where
n

~
=n2 =5. (a) t =a, (b) t =27T, (c) t =4'.
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IV. CONCLUSIONS

We have investigated the photon probability distribu-
tion and fluctuation in the interaction of a three-level
atom with one- or two-mode cavity fields of arbitrary de-
tunings. A large number of new results are obtained. In
addition to what has been discussed above, we can also
determine the bunching or antibunching effects in the in-
teracting system. Since the normalized Glauber correla-

tion function g~2~(0) is related to the Q parameter by'

(26)

we can draw the conclusion from our study that the de-
generate two-photon processes result in sub-Poissonian
distribution of the field and at the same time exhibit anti-
bunching effects. Therefore photons involved in the one-
mode =-type interaction exhibit antibunching and in the
two-mode A-type interaction exhibit bunching.
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