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Preparation of a pure number state and measurement of the photon statistics in a high-Q micromaser
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Two schemes to prepare pure number states in a high-Q micromaser with Rydberg atoms are pro-
posed. In the first experiment the atoms are probed after the interaction with the cavity field and
the number state is obtained via state reduction. In the second experiment the interaction time of
ionic Rydberg atoms with the maser field can be controlled via an electric accelerating field. The
velocity of the ions is adjusted in such a way that every ion emits a photon and the total number of
photons is exactly known via the total number of passing ions. It is also shown how the photon
statistics in the micromaser in general can be probed via the outgoing atoms.

I. INTRODUCTION

The photon statistical distribution in lasers and masers
is of fundamental interest. We show how the recently
developed micromaser' can be used to give new insight
into the interdependence of photon statistics and mea-
surement. As a special case we consider the preparation
of a pure number state, which is interesting both from the
point of view of measurement theory and precision mea-
surements.

In a micromaser, two-level Rydberg atoms are
prepared in the upper maser level and injected into a
maser cavity with a high quality factor Q. It has been
shown experimentally' that the maser oscillation can be
sustained even when the atomic flux is so low that only
one atom is in the cavity at a time. The theoretical
description of the micromaser ' shows that the photon
statistics is essentially determined by the duration of the
atom-field interaction, which is the atoms time of flight
through the cavity. In the experiment, this time can be
controlled by a velocity selector for the atoms. For cer-
tain values of this parameter, the photon statistics is
found to be sub-Poissonian. It is the aim of this paper to
demonstrate how the statistics of the photon field in the
cavity (which cannot be directly measured) is projected
onto the statistics of the outgoing Rydberg atoms.

The present paper deals with two selected but separate
topics. First we consider the inference of the maser pho-
ton statistics by "looking" at the Rydberg atoms as they

exit the cavity. Next we consider how the atomic infor-
mation may, in some conditions, be used to prepare a
number state. In both cases we make use of the quantity
P„")(m) which is the probability to measure n atoms in
the lower state out of m atoms injected into the cavity in
their upper states when the field is initially in a number
state with k photons. The basic idea of our experimental
scheme is to infer from the number of atoms in the lower
state the number of photons emitted in the cavity. To
experimentally achieve a state of the field where the num-
ber of photons is exactly known, two conditions have to
be fulfilled.

The first condition concerns the temperature. Thermal
photons have to be suppressed because they do induce de-
cay and influence the statistics so that a superposition of
number states is obtained. We can eliminate thermal
photons by cooling the cavity to a low enough tempera-
ture. The incan number of thermal photons for a fre-
quency v of about 20 GHz is 3 X 10 at T=0.1 K.

As a second condition we must not lose photons stored
in the cavity for the duration of the experiment, i.e., we
need a cavity in which losses can be neglected for this
time. The photon lifetime is determined by a decay rate
A, =v/Q. The quality factor Q of the cavity can reach
values of up to 10", and with a microwave frequency of
about 20 GHz this results in photon lifetimes of several
seconds. The effects of statistical losses on the photon
statistics of the field are investigated in the following sec-
tion. In Sec. III we look at the interaction between m

39 1915 1989 The American Physical Society



1916 KRAUSE, SCULLY, WALTHER, AND WALTHER 39

atoms and a field number state, and the result is used in
Sec. IV to measure the photon statistics of the micro-
maser in Sec. V to prepare a number state via state reduc-
tion. In Sec. VI the preparation of a number state is
reconsidered using a diA'erent scheme.

II. STATISTICAL DECAY OF NUMBER STATES

To understand the extent to which cavity losses would
be detrimenta1 to n-state preparation, we consider the de-
cay of the photons in the cavity at a rate k. The density-
matrix equation of motion describing such a situation is
given by

p = —Amp (t)+A(m +1)p +, +,(t) .
d

When this equation is solved, we then find the probability
of being in the state 1m ), given we started with 1n ), to
be'

X (
—a ki sin1(+a Ki cos1() 0;0) (4)

Here the transmission coefficients are r(k, A, )= r ( K, A ) =cosP and the reflection coefficients
p(k, k)= —p(K, A)=sing. For g=n/4, we have a 50-50
beam splitter, and the number state 12;0), for example,
will be transferred into the superposition state

Iq&'=-,'(12;0)+10;2)+v'211;1&) . (5)

Hence we see that both absorption [Eq. (2)] and transmis-
sion losses are detrimental to the preparation of a number
state n ).

behave like the classical amplitudes. If the initial state is
given by a number state 1n;m ), where n refers to the
mode (k, A, ) and m to (K, A), then we have

1il )'=uk„1n;m )

with

1 (a'.cos0+ ~~A»nf)"i/n! m!

n —
A. mt( 1

—i. l )n
—m

m (2)

This can be verified by substitution into Eq. (1).
Thus we see that the state 1n ) becomes an impure

mixed state p when cavity absorption takes place.
However, if At« 1, i.e, ., if A, =v/Q is small, then we have

(n)
p =6„

This result is in agreement with the quantum theory of
the beam splitter. In such a device we consider two
modes with equal frequency which are characterized by
wave vector and polarization (k, A, ) and (K, A), respec-
tively. If (k, X) describes the incoming beam, the
transmitted beam is described by (k, A, ) as well, while
(K,A) describes the reflected beam.

The action of the beam splitter on the incoming beam
can be described by an unitary operator

uk'. e"p(akiaKA ~KA~ki. )

If the initial state is a two-mode coherent state, the re-
sulting state is again a coherent state, and the amplitudes

III. INTERACTION OF THE ATOMS
WITH A NUMBER STATE

The basic interest of our experiment is to obtain infor-
mation about the photon statistics of the field in the cavi-
ty from the outgoing atoms and to use this information
for manipulation of the experimenta1 parameters. There-
fore we have to look at the basic problem of the interac-
tion of a single atom with a radiation field in a pure num-
ber state first.

We assume that our experiment takes place within a
time interval t «A. , where A, =v/Q is the cavity decay
rate, and consider Rydberg two-level atoms initially
prepared in their upper levels. These Rydberg atoms are
then injected into the micromaser cavity at a very low
rate such that only one atom is in the cavity at a given
time. We assume that it interacts with only one cavity
mode via a coupling constant g.

The Rydberg atoms are probed by a static electric field
after they have left the cavity. The field is adjusted in
such a way that all the atoms in the upper level are ion-

Channet trons

1

1 l

Rydberg Atoms Micromaser
Pumped to Cavity

Upper State
ionizing Fietd
for Upper State

Ionizing Field
for Lower State

FIG. 1. Setup for the state reduction experiments: Two-level Rydberg atoms prepared in their upper levels are injected into a
high-Q micromaser cavity. To obtain a fixed interaction time of the atoms they pass a Fizeau velocity selector before they enter the
cavity. After they leave the cavity the atoms in the upper state and the atoms in the lower state are detected separately in different
ionizing fields.
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U(r)=
cos(grv v+1)
i si—n(g rv'v+ I )

i sin( —g r&v+ I )

cos(grv'v+ 1)

where ~ is the interaction time. Since the atom is in the
upper level la ) at t =0, the combined density operator
for atom and field is given by

p(0) = la, v) & a, vl,
while at t = v. the combined density operator reads

p(r) = U(r) la, v) & a, vl U (7.)

= cos'(g rv'v+ I ) l a, v & & a, v
l

+sin (grv'v+1)lb, v+1& & b, v+ 1
l

+ i sin(grv'v+ 1 )cos(grv'v+ I )

X(lb, v+1) &a, vl —la, v & &b, v+ 1 I),

(7)

where lb ) denotes the lower atomic level and U(r) is the
time development operator in the Jaynes-Cummings
model.

By the interaction of the atom with the field the state
of the field is changed to a superposition of the two num-
ber states lv) and iv+1). This result is obtained if we
only know that an atom passed and we trace over all
atomic states (as is usually done in maser theory). In this
experiment, however, we get to know the state of the
atom after it has left the cavity. As it will be shown later,
it is not necessary in principle to perform this measure-
ment before the next atom enters the cavity but we as-
sume this here for simplicity.

If the state of the outgoing atom is now determined,
the density matrix of the radiation field is reduced to

p(r) = lv&& vl

if the atom is in the upper state la ) or to

(9a)

ized. The ground-state atoms which are not ionized have
emitted a photon, and by counting those, the total num-
ber of photons emitted in the cavity can be inferred (cf.
Fig. 1). It should be emphasized, however, that the num-
ber of atoms in the lower state is equal to the number of
emitted photons only for a lossless cavity. It is also im-
portant to note that the detection efficiency, which is al-
ways less than one, should be as close to unity as possible
to allow for a clear interpretation of the measurements.

When we assume that the field is in a number state lv)
with v photons (which can be the vacuum state l0) ), the
time development operator for the interaction of a single
two-level atom with the field is

=s(k)[c (k)+c (k +1)],
P'" (2}=s(k+1)P'" (1)=s(k)s(k+1),

and for three atoms this becomes

Plt &(3)=c(k}PIk&(2)=[c(k)]',

P II & (3)=c (k + 1)P Ik & (2)+s (k)P " (2)

=s(k)[[c(k)] +c(k)c(k+1)+[c(k+1)] I,
P'" (3)=c(k+2)Plk&(2)+s(k+1)PII &(2}

=s (k)s (k + 1)[c(k)+c (k +1 }+c(k +2)],
P3" (3)=s(k+2)P2" (2)=s(k)s(k+1)s(k+2) .

When m —1 atoms have passed, the field is in the state
l
k + n ) with a probability P„'" (m —1) and in the state
lk+n —1) with a probability P„"&i(m —1). Then the
probability that the field is in the state lk +n ) after m
atoms have traversed the cavity is simply

Pl &(m)= c(k +n)PI '&(m —1)

+s(k+n —l)P„"&,(m —1) . (10)

With this recursion relation we can find a general expres-
sion

1

P„&(m)= + s(k+i)
i =0 i =0

J
(I -'n )

m —1

Q c(k+i ),
j=n

i.e., the field remains in the state lv), is obtained with a
probability c(v)—=cos (gee v+ I), and the second (9b),
i.e., the field makes a transition to the state iv+1), with
a probability s (v) =—sin (grv'v+ I ). The superposition of
states

l
v) and

l
v+ 1 ) which is the state of the field after

the interaction with the atom is then reduced to one of
the states lv) or iv+1), depending on the result of the
measurement.

From this we obtain the probability P„" (m) to obtain
n atoms in the lower state lb ) out of m atoms that have
passed, given that the field was initially in the number
state lk ). That is, we have initially Po" &(0)=1 and
P„"&(0)=0 for n &0. After one atom has passed, the only
probabilities diFerent from 0 are Po" (1)=c(k) and
P'," (1)=s(k). For two atoms one has

pl" & (2) =c (k)pl" & (1)=[c(k)]',
P'" (2)=c(k+1)P'" (1)+s(k)P" (1)

p(r) = lv+ il & & v+ 1
l

(9b) (1 la)

if it is in the lower state lb). The first possibility (9a), where the definition is

m —1

n n

n n+ I

m —2 m —1

g c(k+i, ) for m )n,

i.=O
(&

c(k+i )—: 1 for m =n,
J =n 0 form &n .

(1 lb)
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The proof of this equation, which is quite elementary, is
given in the Appendix.

From this it follows as well that we do not know prior
to the experiment which number of atoms in the lower
state we are going to prepare. We are only able to calcu-
late an a priori probability to obtain a certain number of
atoms in the lower state. Therefore this experiment has
to be performed repeatedly with a constant number of
atoms so that the probability distribution can be mea-
sured and the prediction checked. However, this a priori
probability must not be confused with the photon statis-
tics of the radiation field. After the experiment, the field
is always in a number state whose photon statistics are
described by a 6 function.

The distribution of the a priori probabilities can be
evaluated numerically, and two examples are shown in
Fig. 2. The distribution becomes very narrow for larger
atom numbers because the probability s(n) to add one
photon to the field gets very small for
gr&n+1 =jar(j =1,2, . . . ). If it has an exact zero at
some natural number no, a number state is obtained there
in the steady state. This has been proposed as a scheme

to prepare pure number states by Filipowicz et al. For
such an experiment, the precision of the atomic velocity
is crucial, as opposed to our state reduction scheme. If
s(n) has an approximate zero at no, another peak in the
probability distribution will build up at a larger photon
number.

IV. MEASUREMENT OF THE PHOTON
STATISTICS IN A MICROMASER

In this section we discuss an idealized sequence of mea-
surements which allow us to infer the photon distribution
by looking at two-level atoms which have interacted with
the maser field as they exit the cavity.

Recall that the passage of active atoms through the
cavity results in the generation of a steady-state photon
distribution. That is to say, the atoms passed through the
cavity, acting in concert with the cavity dissipation, yield
a steady-state photon distribution as discussed by Fili-
powicz et al. and by Lugiato et al. . Given then that
we have such a steady-state photon distribution we ask
what is the probability that of m atoms injected in this
upper state n are in the ground state upon leaving the mi-
crowave cavity. In particular we consider the experimen-
tal setup shown in Fig. 1. The atoms are probed for exci-
tation only during a time window. If this time is short
enough losses in the cavity can be neglected. After m
atoms have passed the cavity, the rest of the beam is in-
jected for a long time to restore the steady-state photon
distribution.

In this way the experiment can be performed repeated-
ly to measure the statistics of the state distribution of the
outgoing probe atoms. In this regard we are in conformi-
ty with the approach used to determine a statistical dis-
tribution of an ensemble of measurements which were
made at various times and thus invoking the ergodic
theorem to infer the distribution in a statistical sense.

We turn now to the special situation in which we have
a number state for the radiation field. As we have shown
in the preceding section the probability that an initially
excited atom remains in the excited state is given by

P, )=cos (grok+1),

0
0

t'\

t 1

i 1

I

I

I

20 40 60
number of atoms in lower state

80 100

and the probability that the atom makes a transition to
the lower state is

Pb")=sin (grok+I) .

Here g is again the one photon Rabi frequency, ~ the
duration of the interaction, and k the total number of
photons in the cavity. In our idealized experiment we
neglect cavity losses, i.e., the total number of photons k is
increased by the photons emitted by the atoms which
make a transition to the lower state. The number of
atoms in the lower state can be found by the recursion re-
lation (10):

FIG. 2. Probability of finding n atoms in the lower level after
m =100 atoms have passed the cavity, calculated for a number
state, a coherent state, and a micromaser state (Refs. 2 and 3):
(a) scaled interaction time g ~&r /y—:~;„,=5.9 = 1.9~; (b),
+int

P„)(m)= P„")(m —1)cos (g~&n +k +1)
+P' ), (m —1)sin (g~&n +k ) (12)

with the initial condition P„")(0)=5o„.
In general the radiation field is not in a pure number
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state but it is described by a field density operator
pF =gt, & pl, I, lk ) (k'l, and we are interested in the
probability of finding n atoms in the lower state out of m
atoms that have been injected in the upper state. We first
look at the simple case rn =2 and then generalize the re-
sult.

When two atoms pass the cavity one after another, we
need two time development operators U, (r) and U2(~)
which describe the interaction of the first and of the
second atom with the field, respectively. Both operators

contain a time step function to ensure that the atoms in-
teract with the field one after another. We then start
with the density matrix

p(0) = g p~, ~ lk a a )(k' a al,
k, k'

i.e., both atoms are initially in the upper state. We calcu-
late p(t&)= U2(r)U&(r)p(0)U&(r)Uz(w) and trace over
the field states to obtain the combined density operator
for the two atoms:

p„(tI)= g pl, &[ cos (grok+1)la, a )(a,al+sin (grok+1)cos (g~&k+1)la, b )(a, bl
k

+sin (grok+1)cos (g~&k+2)lb, a)(b, al+sin (grok+1)sin (grok+2)lb, bl)(b, bl

+sin (grok +1)cos(grok +1)cos(grok +2)(la, b ) (b, a l+ lb, a ) (a, bl )] . (14)

From this we immediately obtain the probabilities (i)
to find both atoms in the upper state, Pg'(2)
=g~ pl, l, cos (grok+1), (ii) to find one atom in the
upper and one atom in the lower state,

P ~~ (2)= g p& &sin (grok + 1)[cos (grok +1)

+cos (g~&k+2)],
and (iii) to find both atoms in the lower state,

P2I" (2) = g pz &sin (grok +1)sin (grok +2) .
k

P„'~'(m)= g pq I, P„")(m),
k

(16)

where P„'" ( m ) can be found from Eq. (11).
In Fig. 2 we have indicated a typical result for a num-

ber state, and we show the calculation for a coherent
state whose diagonal matrix elements are given by

s ~, ~ =, l~l'"exp( —l~l')

bility P„'~ (m ) for a field characterized by a density matrix
p is given by the corresponding probabilities for the num-
ber states:

Obviously this is the result of the recursion relation (12)
for an initial number state lk ), multiplied by the proba-
bility pk k of this number state, and summed over all k.
The same result can be obtained if one assumes that the
field density operator is changed by the passage of an
atom according to

pF =N, g cos(grok+1)cos(grok'+lip& ~.lk)(k'l
k, k'

(1Sa)

for an atom that leaves the cavity in the upper state and

pF =NI, g sin(grok +1)sin(grok'+ l )p& I, . lk ) (k'l
k, k'

(15b)

for an atom which leaves the cavity in the lower state.
—1

N, = g& cos (grok +1)pI, &

and

with

7

o 6

5CL

o 4

3
E

2

(17)

N~ = gl, sin (grok + 1)pl, I,

are normalization factors.
Although the first method is the correct one, e.g. , al-

lowing for the measurement of the first atom after the
second without changing the result, the second method
helps in generalizing the result. One finds that the proba-

0
0 2 3 4 5 6 7 8 9 10

number of passed ions (rn)

FIG. 3. Creation of pure number states in the cavity by ad-
justing the emission probabilities via manipulation of atomic ve-
locities.
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The field of the micromaser is characterized by the field
distribution '

sin (gr&l )
nI, y+r 1

y(nb+1)

where r is the rate of incoming atoms, y the cavity decay
constants, and 1V a normalization constant. The result of
the calculation for the micromaser is depicted in Fig. 2 as
well.

V. n-STATE PREPARATION BY STATE REDUCTION

Two conceptually simple ways to create an n photon
state are illustrated in this and the next section, which
demonstrate the feasibility of n-state preparation in a mi-
cromaser.

In a first way, as discussed in this section, we are able
to obtain a pure number state via the state reduction
scheme described in Sec. III, which was also applied to
the measurement of the photon statistics in the cavity in
the preceding section. Contrary to this experiment we
now start the experiment with an empty cavity, i.e., the
field is initially in the number state ~0).

We inject Rydberg atoms in their upper levels and
probe them by a static electric field after they have left
the cavity. The atoms which are not ionized have emit-
ted a photon, and by counting them, the total number of
photons in the cavity can be inferred. Again we would
like to emphasize the importance of avoiding cavity
losses during the time of the experiment.

From this it follov s as in the case of Sec. III that we do
not know prior to the experiment which number state we
are going to prepare. We are only able to calculate an a
priori probability to obtain a certain number state.
Therefore also this experiment has to be performed re-
peatedly with a constant number of atoms, and the mea-
sured probability distribution has to be compared to the
prediction. However, as discussed before, this a priori
probability must not be confused with the photon statis-
tics. After the experiment, the field is always in a number
state whose photon statistics are described by a 5 func-
tion.

It is now easy to calculate the a priori probabilities
from Eqs. (10) and (11) by setting k =0 there. The distri-
bution of the a priori probabilities can be evaluated nu-

merically, and an example is shown in Ref. 4 for different
numbers of atoms.

VI. GENERATION OF A NUMBER STATE
BY MANIPULATION OF ATOMIC VELOCITIES

To obtain a probability of unity, for a given g and n, we

When we are able to control the velocity of the atom
beam, there is another possibility to prepare number
states in a more straightforward way. We first look at the
probability that the atom emits a cavity photon, given
that the field is in a number state with n photons:

s(n)=si (gnr&n +1) .

2g1 v'n
U =

7T

and thus

2g&n
(20)

where I is the length of the cavity.
In summary, we have shown how an n photon state

can be produced via a conceptually simple experimental
arrangement. Compared with our previous proposition
in the second scheme larger photon numbers, i.e., higher
intensities, can be achieved within the time given by the
cavity decay rate by the present means.
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have only to control the interaction time ~, which is the
time of flight of the atom through the cavity. The change
in atomic velocity necessary for our purposes cannot easi-
ly be imposed on neutral atoms. Therefore we envision
using a beam of ions (e.g. , alkaline earth atoms) which
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ed to the upper level of a Rydberg state pair. We can
now accelerate these two-level Rydberg ions with an
ejectable dc voltage. For the first atom, which enters the
cavity when the field is in the vacuum state ~0), we adjust
the time of flight to be ~=~/2g, so that the probability of
emitting a photon is one. When the next atom enters the
cavity, the field is in the state ~1), and we change the ve-
locity (i.e., change the dc voltage) so that r=ir!2g&2
and that another photon is added to the field. Continu-
ing, we have r =n/2g &n for the nth ion, which will then
add the nth photon to the field. This is summarized in
Fig. 3.

We thus create a state with n photons by injecting n

ions with selected velocities into the cavity. One way to
prepare a suitable ion beam would be, e.g. , to use a minia-
ture storage ring. This allows one to prepare a bunch of
ions with a predetermined ion number. In addition, the
storage ring allows one to produce an ion beam with
equally spaced ions if they are, e.g. , cooled by photon
recoil with nearly resonant laser radiation. It has been
shown in molecular-dynamics calculations' that in such
a case a regular array of ions can be obtained identical to
a one-dimensional Coulomb lattice. In this way it can be
guaranteed that the time between two successive ions is
constant and always larger than the interaction time in
the cavity, i.e., there are not two or more ions in the cavi-
ty at the same time.

In order to prepare the proper dc field for each ion we
have only to add a constant increment to the field after
the passage of each ion. In this way we produce an ac-
celerating voltage proportional to the number of single
ions that have passed through the cavity. The kinetic en-
ergy of the accelerated ions is then proportional to n, and
therefore we have the desired result
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APPENDIX

We prove Eq. (lla) with the help of the definition
(1 lb). Together with the definition of the product symbol
1I os(i)=1 the initial condition P„'" (0)=6„0 is ob-
tained for m =0. For m = I we have

—
1 0 0P" (1)= g s(k+i) g g c(k+i, )=c(k),

i=0 i0=0 j=0
0

P',")(1)= g s (k +i) X 1 =s (k),
i=0

and P~")(1)=0for n&0, 1.
Assuming that Eq. (1 la) is correct for m —1, we get

with the recursion relation (10):

n —
1

P„" ( m)=c( k+n) g s(k+i)
i=0 i.=Oj

m 2

m 2 n 2

Q c(k +i l) +s(k +n —1) g s(k +i)
i=0

n —1

i.=0j
(i m 2 -'n -1)

m —
1

j =n —
1

c(k +i, )

n —1= Q s(k+i)c(k+n)
i=0

m —1

i =0 j =n+1
J

m —1 n+J

n —
1

c(k+i )+ g s(k+i)
i=0

n —1

i =0
J

(I' -'n j

m —1

j=n —
1

c(k +i, )

n —1 n n+1 m —2 m —
1

i=0 +l —0 I +~
—0 i &=0 j =n+1

P &(k+&) c(k+n) g g . g g c(k +i)

n —1
j
m —2 m —1
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which proves Eq. (1 la).
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