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Two-body-operator matrix-element factorization technique in U(n }$SN unitary bases:
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A detailed exposition of explicit formulas used in the evaluation of raising-raising forms of two-
body-operator matrix elements is presented. The methods are based on the use of the unitary-group
distinct-row tabular-graphical representation of the many-particle basis. All matrix elements are
expressible in the form of scalar and 2X2 matrix factors. In order to facilitate the derivations of
simple, computationally eKcient forms for the matrix factors we develop a calculus based on ele-
mentary graphs. The methods are applicable to systems of particles involving spins greater than —,

'

and reduce to previously known results for the case of spin —,'.

I. INTRODUCTION

The application of unitary-group methods to the
analysis of many-body problems has been studied in con-
siderable depth since the pioneering work of Gel'fand and
Zetlin. ' Gel'fand and Zetlin demonstrated that the irre-
ducible representations (irreps) of an N-particle system
under unitary symmetry U( n ) are the permutational
symmetry-adapted unitary groups U(n) ISA whose basis
states are referred to as Gel'fand-Zetlin tableaux (GZT's).
Biedenharn and co-workers and Ciftan further
developed the basic theory into the tensor operator cal-
culus (generalized Racah-Wigner calculus) based on tech-
niques from substitutional analysis. Moshinsky and co-
workers utilized certain aspects of the method in appli-
cations to nuclear physics. For an excellent review of the
state of the art of the unitary-group approach up to 1970
the reader is referred to the paper of Louck.

More recently, commencing with the work of Harter
and Patterson and Paldus, ' there has been a focus on
the case of U(2n ) D U( n ) SU(2) which describes elec-
tronic spin-orbital configurations. An important aspect
of the work of Harter and Patterson is the development
of simplified computational techniques for the evaluation
of elementary group generators using two-column Weyl-
Young tableau" (WYT) representations of the basis
states of each irrep. The advantages of this approach
over earlier methods based on GZT's were that the states
were described in a more compact notation which
afforded a visually intuitive, easily implemented algo-
rithm for matrix-element calculations.

It is seen through the literature on the unitary-group
approach that the path that has been followed by most
workers has been to determine methods which either lead
to a more fundamental understanding of the connection
between the physics and the mathematics or to improve
upon existing methods for performing computa-
tions. '

In two recent papers ' we have presented general re-
sults pertaining to the evaluation of one- and two-body-
operator matrix elements in U(n) AS+-adapted bases, that
is, unitary bases of N-particle systems. Examples of such
bases include the Gel'fand tableaux, Weyl- Young ta-
bleaux, and the distinct-row table formulation developed
by Paldus' and Shavitt' for SU(2) and recently general-
ized to SU(n) by us. ' In particular, it is to be noted
that the results are applicable to N-particle states made
up from single-particle wave functions describing spins
greater than —,

' as well as the spin- —,
' case.

A number of ambiguities may arise as a consequence of
the manner in which results were presented in Refs. 31
and 32. The purpose of that work was to present a gen-
eral graphical formalism which could be applied to the
deduction of factorized expressions for two-body opera-
tors. The lack of detail can understandably lead to some
confusion, however, which can only be dealt with
effectively by presenting the method in expanded form,
accounting for both general and special cases.

The purpose of the present paper is to present a
coherent exposition of the algebraic expressions involved
in our scheme together with a detailed treatment of spe-
cial cases which do arise. In order to facilitate this we
develop a simplified calculus based on elementary sub-
graphs introduced in Ref. 31.

The analysis and results of this paper differ from Refs.
31 and 32 not only in their being more coherent but also
in that they utilize a notationally very precise, purely
algebraic exposition of our methods. Thus they become
more immediately amenable to implementation on a com-
puter.

The paper is divided into four sections. Section II con-
tains a brief description of the background theory neces-
sary to obtain the results presented later. Section III
deals with the raising-raising (lowering-lowering) type of
two-body operators. This section is further subdivided
into parts which deal with a variety of general and special
subcases.
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II. BACKGROUND THEORY

We present a brief description of the generalized
distinct-row table (DRT), or graphical symmetric
unitary-group approach (GSUGA), formalism. A more
detaiIed description of the construction and generation of
the DRT is provided in Refs. 27 and 28.

The DRT, originally developed by Shavitt' based on
work of Paldus, ' is essentially a compact representation
of the Clebsch-Gordan (CG) decomposition of the per-
mutation symmetry-adapted irreps U(n) [or SU(n)]
formed by adapting U(p) at each stage in the subduction

U(n) DU(n —1)0 DU(p) Z DU(1) (2.1)

to the chain

SqDS~ lD . . DS, . (2.2)

We introduce partition labels p„={p„l,,k =0, . . . , NI,
0 p n, satisfying conditions that p„k are non-negati ve

integers and

g Ppa =P
t& =0

N

kp„q =N„, N„=N
k=0

(2.3a)

(2.3b)

where N„ is the number of particles described by labels
less than or equal to p. (We note that in Ref. 31 and 32
we utilized the notation {p j „which has been abbreviated
to the current p .) Thus the CG decomposition of p„canP
be expressed as

U (n)DU (n —1)D DU (p)D . DU (1)I' n ) n-1 Pp Pl

&U (0),
(2.4)

where we have added, formally, the group U (0) (poi, =0
Vk) describing zero particles (vacuum state) as an artifice
in order to generate a complete DRT and a correspond-
ing graph.

In practice the actual number of labels, p„, required
will be less than N, the number of particles in the system.
Thus we define L =max{k~p„l, )0;k =0, . . . , N) which
we refer to as the maximum row length (due to its visual
interpretation as the maximum row length of the corre-
sponding WYT). The upper limits N in the summations
(2.3) are, therefore, replaced by L and we refer henceforth
to the set of labels p„k, k =0, . . . , L.

The p k describe the number of rows of length k in apk
WYT after the removal of all boxes containing labels
greater than p. Thus a single set of labels p„describes
only a Young frame shape, while a complete set of labels

{p„;p,=0, . . . , n I can be used to deduce the number of
particles with label p. , say, as well as the positions of these
in a %'YT. Alternatively, p„k is equal to the number of
times the integer k appears in the pth row of the corre-
sponding Gel'fand tableau. Also, for the SU(2) case, '

the connection with the so-called Paldus, or ABC, ta-
bleau entries is P„o=c„,P„]=b„, and P„z =a„.

The irreps U (@+1)are generated from U (p) us-
~]r+1 P

ing a linear step operator
+

pp+1 ~t pp pp —dt

where the diff'erence labels d, (t =0, . . . , 2L —1)
defined by the relations

(2.5)

q

ld, ~l«1, 0«y d, i, «1 Vq«L,
k=0

(2.6a)

t = g [5(d,i„l)—5(d,i„—1)]2"—1 . (2.6b)
I& =0

Starting from the U(n) irrep labels p„one applies the step
operators to p„, for each generating up to 2 irreps p„
subject to conditions (2.3). To distinguish the irreps p„a
final row index is added, hence p„&z (upper case is used
to distinguish the row label from the element label k used
previously —complete labeling is of the form p I, z ). Fi-
nally, a lexical ordering of the irreps, p„z (p„z.
(R & R '), is defined by the relations

Ppq R Ppq R' Ppk R Ppk R' (2.7)

Ip„{&I&—= + s,-~„,
p=l

(2.8)

and where the product of step operators is ordered left to

where q is the largest index value for which (2.7) holds.
The complete DRT is a table whose entries are organ-

ized first into subgroup levels p=n, n —1, , 0. Within
each level p are J„(the total number of irreps at level p)
row entries p„z (R =1, . . . , J„) in lexical order. Ap-
pended to each row entry are sets of associated labels
such as linkage or chaining indices k„t z which give for a
particular p„,z the irrep p„k generated upon appli-)" ptR
cation of St, and various weight indices y„«which are
used to enumerate the many-particle states of the sys-
tem. ' ' ' Additional information, such as multiplicities
of each irrep and other symmetry labels, ' ' may also be
included as part of each row entry.

The DRT can also be represented as a two-rooted, pla-
nar hierarchical digraph comprised of nodes and links.
The irreps p„and po =0 are represented by the head and
tail nodes, respectively. At level p the irreps p„z are
represented as nodes ordered from left to right by the in-
dex R. Links between successive levels p and p+1 can be
either labeled explicitly (by the appropriate linkage label
value t) or drawn in a way which assigns lines of unique
slope and length for each linkage value. En the remaining
discussion of matrix-element calculations we shall not re-
quire the row index R so it will be omitted. When the oc-
casion arises where we must refer to two or more sets of
labels (graph nodes) at level p we shall distinguish these
through the use of primes or some other label.

A complete many-particle state is represented by a
walk, or traversal, from the head (top row of the DRT) to
the tail (bottom row of the DRT) along allowed links.
Since p, is unique to each irrep of 5& then a complete,
unique specification of a given state can be written as
~p„{TI ), where {T I is the set of all step operator indices
t„which generate allowed irreps in the chain (2.4), name-
ly,
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right. Further, the states form an orthonorma1 basis

& p.' I
T'

l Ip. t T l &
=5(p. p.' »( ( T! t

T'
l ) . (2.9)

and have the Hermitian property

&p„[T }IE„„p.tTI &'=&p. tT]IE.,„IP.[T ~
& .

E„,.E., p ~.,gE, , -=5-,&p, r (2.10)

It is to be noted that the orthogonality of these states
requires, in general, some constraints on the manner of
their construction. We assume herein that the states
are constructed by coupling particles, one at a time, to
the many-particle system. In terms of the WYT, as a
particle labeled p is added to an intermediate tableau it is
always placed in the lowest row, furthest-left column po-
sition allowed, consistent with the resultant final arrange-
ment of labels. Each of our states (2.8) is equivalent to a
WYT state constructed by drawing the Young frame cor-
responding to p, and filling the boxes with 1's, then add-

ing boxes consistent with pz into which are placed 2's,
and so on, up to p„. The orthogonality of the WYT basis
thus ensures (2.9).

Alternatively and equivalently, a state is represented by
a list of labels I [p„p„, . p, I & which can either be read
from the complete DRT, proceeding from level to level,
or generated recursively from p„by application of the

step operators in (2.8). In any case, for the purposes of
evaluating matrix elements of the group generators, as
will be seen below, it is necessary to use the partition la-
bels explicitly.

The group generators E„,of U(n) satisfy the Lie alge-

bra commutator relationship

(2.1 1)

&p„(T'1IE„,„Ip„lT) &

(2.12)

where the factors 6, A, and 8 are defined below. The
subgraph identity product symbol h~ is defined as

gP gP( p~)

P N

n 5(..'P;. )
~=a k =0

N

g 5(ppk p j~)
k=0

P
5(r„t', )

x=a+1
(2.13)

We. find the latter form to be more efficient in computer
applications.

The elementary subgraph factors B„and A „are
defined as

Matrix elements of the elementary one-step raising
generators E„,„(a lowering generator would be

E„„,) can be expressed in the form

h„(A., k)
B„(A)=B„(A,;p„p„,p„', )=I s(k, ,p)D„, (k) Q 5O +(1—

5O~ ) (2.14)

and

L h„(A., k)
A„(A.)= A„(A,;p„p~„,)=I „(A.,p)D„(A, ) g 50 +(1—

5O& )
h„(k, k)

(2.15)

We note that (2.14) and (2.15) are written in a different form than expressions (3.8) and (3.9) of Ref. 31. Although the
current expressions appear more complicated than those previously defined they prove to be more useful in subsequent
derivations; however, they are equivalent.

The quantities h and h are referred to as hooklengths and are defined by

h„(X,k) =h„(X,k;p„)= Ik+1 —Xl+
max(A, , k) —

1

pw
j =min(k, k)

(2.16)

h„(A., k) =h„(k,k;p„p„, ) =h„(A, , k)+elf,.v„(k, k),
where

(2.17)

(2.18)

The parameter A, above is referred to as a pivot index and denotes the position of labels, p„& and p„& i, which differ be-
tween bra and ket states.

The quantity v„(k, k), whose value represents the number of boxes, in a WYT, containing the label p in a row of
length k after the removal of all boxes containing labels greater than p, is defined as
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v„(k, k) =v„(X,k;p„p„ i )

X
1 —|i 0, g (p„, —p„,, ) I(k —k,„)[(1—Qo q )+$0 k (1—50 )]+(1—h„(k,, k)]tio J, 60

(2.19)

where k „„=maxIj(1—60 );j =0, . . . , k —1 I. Note that expression (2.19) is much easier to evaluate than expres-'~V- li

sion (3.12) of Ref. 31. The evaluation of the set I j(1—50 );j=0, . . . , k —1I can be made more efficient by restrict-

ing attention to the subcases 0~ j k —1 when k (A. and A, j k —1 when k k. Practically speaking, however, the
search for a maximum index j involves only a few comparison operations in typical cases of interest. This search prob-
lem is anticipated to become significant only in rather esoteric applications (for example, in biological situations where
the number of particles is very large). Further, it should be noted that in calculating the ratio of h„ to h„ in (2.14) or
(2.15) one should calculate v„ first, since: if v„=0 then the ratio is 1 automatically; if all boxes in the WYT row are la-
beled p then h„= 1; otherwise, a nontrivial ratio exists.

Finally, we define the quantities

D„(A. ) =D„(k;p„p„' )

k —2 N

H ~(p I p / ) II ~(p k p k)~(p i. +1 p k. )~(p i.—i 1 p i.—1)
k =0 k =k+]

j, p )=S( p and p ]
—S~ p

(2.20)

FB(~ V) FB(~ p p pp —Ip —i )

r„(X,I )=r„(X,~;p„p~„,)=
pp —&=St pp and p„,=S, p„'

p„—)&Sg p or p„—&&St' p„

0, P„,~S, p„orp„', ~S, p„
(2.21)

(2.22)

for some t, t' consistent with the conditions (2.5) and
(2.6). The factor D„(k), together with the I factors, sub-

jects the triplet of labels p„p„, ,p„', (p„p~„ i ), in the
case of B„(A„), to a consistency check and in this
respect plays a role similar to a selection rule as do the
triangularity conditions of Racah-Wigner (6-j)
coeKcients.

In cases where no ambiguity is likely to arise we shall
suppress the p labels in the various function argument
lists. However, we shall see below where, by retaining
the explicit functional dependence on p, simplifications of
the algebraic expressions can be easily derived. We shall
take the expressions (2.13)—(2.22) to be standard in the
sense that when the p arguments are omitted it is to be
understood that the explicit arguments are those given
above. Further, in our approach the actual evaluation of
the numerical value of a matrix element of an operator is
performed using only the ket labels; the combination of
bra and ket labels is used to verify, using (2.20) —(2.22),
whether the matrix element is nonzero. An immediate
advantage to this is that Hermitian conjugation of
matrix-element expressions is easily derived simply by in-
terchanging primed and unprimed partition labels.

Note that a phase convention has been established in
which all one-step operator matrix elements (labels p —1

changing to p, or vice versa) are assumed positive. All
subsequent phase information is derived from this basic
assumption and the Lie bracket relations (2.10).

The matrix elements of multi-step generators E„and
their products can, in principle, be calculated using the
result obtained from (2.10),

VI+~ V+~ ~ V+] ~ V I+~ '

applied recursively, accounting for all possible intermedi-
ate states. This involves performing extensive sparse ma-
trix multiplication involving only the matrices of one-step
generators (2.12) and is a very inefficient procedure, pri-
marily due to the associated problem of properly

enumerating all intermediate states. Alternatively, as
shown by a number of workers' ' ' and especially Ref.
32, it is possible to reduce the computational complexity
significantly by using factorized expressions in which the
relevant factors corresponds to subgraphs defined in
terms of labels at levels p and p —1 only.

We express the matrix element of the generator E„,, as
the product of factors

(p. I T'I l&„,„lp. I T I )
v —1

=b,Q,(k„,) Q T,(k„k, , ) A„(A.„)h~o, (2.23)

where X, refers to the pivot index relevant to level ~.
Using the definitions of A (tail) and 8 (head) subgraph

factors above we write ' the (intermediate) subgraph fac-
tors T (A, , g),

(k PP P 1)B (k 'P P 1P— i ) . — —

(2.24)
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Due to the I „(A,, y) and I z(g, y) factors contained in
the expression above [see (2.14) and (2.15)] it is often the
case that only one of the two terms contributes to the
evaluation of r . In such cases the total amount of corn-
putation required is governed by the computations for
each of A and B. When both terms contribute, however,
it is possible to simplify the expression and thereby avoid
the otherwise doubling of computation (actually, when

computing with rational numbers, it is also necessary to
include the computation which determines the difference
of the two terms, a situation which is complicated by the
necessary use of arbitrary precision arithmetic ).

First we note that the effect of the generator E„,„on
the state ~p„{T j & is to alter only the labels p„,; leaving
all other labels unaltered. Hence writing states in the
form ~p„{T j &

=
~ {p j &

=
~ {p„p„, .p, j &, we have that

&„-i,„l {p j &
= g & {p'j l&„-i,„l{p j & I {p'j &

Is 'I

L= y &{p. . p„I+~„--lk pl jlE„-1,„~{pj&~{p. p„I+~-„-l~ . pl j» (2.25)

where we define 0,& as an operator which acts on the p, labels according to the component relations

I 7-k I 7-k +~rAk I 7.k +~A, k ~X—1, k Vk L (2.26)

and where the label changes are performed at the index positions A, and A. —1. Note that, at most, L, states can be gen-
erated by application of E„

Using (2.3a), (2.6a), (2.16)—(2.19), and (2.26) and assuming p', =p, +B,z and p', , =p, , +0, ,&, it is passible to
derive the results

h, (g, k.;p, +B,q) =h, (g, A,
—I;p, )+engr, q

+a )—

(2.27)

(2.28)

h, (A., k~,p,p, , +B, ,~)=h, (A, , k~,p,p, i),
h, (A, , k&,p,p, , +8, ,&) =f,(A, , k&,p,p, , )

—e &,

h, (A, , k~,p,p, , ) =h, ((,A.;p, +B,q),
where k =min {k [1—5(0,p,z )];k =(, . . . , L j is the length of a WYT row containing label w in column g.

From (2.27) and (2.28) it follows that

(2.29)

(2.30a)

(2.30b)

h, (g, A,
—1)+aqua, qB (g;p +8 N lp ) +8 1$)=B (g;p p lp 1+8 lg) h, (g, A,

—I)+eq~(p,q, —1)

Similarly, using (2.29) and (2.30) we find

1/2

(2.31)

f,(A, k~ ,p,p, ., +'B, ,~)
—

eq~A, (A.;p,p, +B,~, , +8, ,&)
= A, (A, ;p,p, +B,~, , )

h, (A, , k~,p,p, , +B, ,~)

h, (g, A,
—1)+ear(p,~, —1)= A, (k;p,p, + B,~, , ) ~.(k ~ —1)+e~y .~-i

]/2

(2.32)

With the results (2.31) and (2.32) in (2.24), assuming
both terms are nonzero and p', =p +0,& and p',
=p, ] +0, , &, we find the simplified form

(2.33)

where

C,(A, , g')=@~~{ [h, (g, A,
—I)+eq~(p,q, —1)]

X [h, (g, A,
—1)+engr, ~ ) ] j (2.34)

We note that the forms of T and C, presented above

diff'er from expressions (3.18') and (3.19) presented in Ref.
31, but reduce to those special cases when p,& ] =1. The
forms that we have chosen permit the numerical value of
matrix elements of the E„operators to be determined
solely from the ket (p) labels (recall that the selection
rules require information about both states, however).
Thus (2.33) is in standard form in this respect. In Refs.
31 and 32 we used a mixed notation in which both bra
and ket labels were used. This can lead to some con-
fusion, however, in the application of the results.
[Indeed, there is an error in Eq. (3.19) of Ref. 31 which,
in turn, led to an error in our second example numerical
calculation in that paper. ]
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The generator product matrix elements that we shall
be concerned with in Sec. III are those pertaining to the
evaluation of the symmetric product of two generators,
namely,

[E„„EtsI =E„E g+E ttE„, .

We choose to evaluate these operator products primarily
because they lead to rather symmetrical expressions in
our factorization scheme. Further analysis of the t~o-
body-operator matrix-element expressions is facilitated by
considering subcases based on the relative values of the
indices p, v, a, and P.

III. RAISING-RAISING OPERATORS

The raising-raising (RR) [lowering-lowering (LL)] sub-
cases assume the relations on the elementary generator
indices

/t, &v and a&/1 (p) v and a)P) .
The LL subcases are derived from these by finding the
Hermitian conjugate of the matrix-element expressions
for the RR subcases, hence

(, T'I IE„, E,I3I IT)*=(TI I E.„,Els I
IT') .

It is useful to decompose the RR subcases into further
subcases involving various degrees of overlap between the

ranges of application of each generator in the symmetric
product. The following diagrams serve to illustrate the
ranges, and their overlap, of the operator indices:

A: - v
8: a--v, C:, D:a-

a-- p

P-- v

a

P-- vF:, G:

IJ

In all the cases we consider p~a; it is assumed that 0
and n are at the bottom and top of the diagrams, respec-
tively. Remaining cases are easily derived from these ei-
ther by conjugation or by renaming indices.

Before proceeding we state one further simplification in
notation, namely, that states are written in the form
I»= p. [T]).

Case A: p & v&a &/3. This case is referred to as non

overlapping, or disjoint; the range of application of one
generator, E„,is completely out of the range of the oth-
er, E &. The matrix-element expression immediately
reduces to the form

P —1 v —1

(T'I [E„„E I T) =2b, "Bp(A. , ) Q T (A. , A. , )A (A. )b,, 'B,(A.„,) Q T,(A,„k, , )A„(k„)A"
p=a+ 1

(3.1)

Case B: p & v=a &P. Cases in which one index, pertaining to one of the generators, is equal to an index pertaining
to the other generator are referred to as contact cases. Thus this case involves nonoverlapping contact between the
operator ranges:

f3—1 v —1

(T'I tE„,E ] IT) =6"B (A. , ) g T (X,A. , )W, , (A, , k, , ) Q T,(k„k, , )A„(A,„)b,"
p=v+1

(3.2)

where the scalar factor W (A, , g) is similar to T (A, , g), differing only in the relative sign of the two terms below [see Eq.
(2.24)], hence

Wr(k, g)=A (X;P P'P i)B (g;P'P ip' &)+3 (X;P P'P' i)B ((;P,,P &P' &) .

When both terms above are nonzero this simplifies to the form

(~ Pp Py 1)By'(k'P P —1P 1)C, (~ k'—P P ——1)

[compare with (2.33)], where C (A, , g) is defined as

C ( A, , g) = {2[6 ( g, A. —1 ) + e~~v q, ]—eq] I

X [ [h~((, A,
—1)+e~((pr~ &

1
I )][br(—g, A. —1)+e~tpr~, ] I

(3.3)

(3.4)

(3.5)

Case C: p & a & v &fj These cases are referred to as partial ouerlapping The matrix. -element expressions are given as

P —1 v —
1

( T'I IE„„E ] I
T) =3,"B (A. , ) / T (A, , A, , )F„(A,,,k', , A,„,) / T, (A,,', A.„A,,', , A, , )G (A, ', k,k, )

p —v+1 ~=a+1
a —1

X Q T,(k„A, , ) A „(A,„)h~o

(3.6)
where the factors F, G, and T will be defined below following case G. Factors F and G are two-element row and
column vectors, respectively, T is a 2 X 2 matrix. The two distinct pivot indices A,„i = 1,2, effective within the overlap
range cx —v are distinguished by an additional superscript. We assume A, (X, in all cases; hence the operative nodes in
the overlap region a —v are lexically ordered such that p', &p,' &p, &p, (appearing as graph nodes in order from left to
right; see Ref. 27).
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Case D: Si, =a & v &P:
P—1 v —

1

( T'I IE„,E„ I I
T) =b, "B (A, , ) / T (A. , A, , )F (k„A.' „A, , ) g T„(k,', k„A.', , A~, )A„(k„',Z2)bg

(3.7)

where the factor A„, a column vector, is defined following case G.
Case E: Si, =a & v=P;

(3.8)

where the factor B,a row vector, is defined following case G.
Case F: p&a&v=P:

(T'I IE„.,E..IT) =g~.(Z.'
K=a+1

a —1

T,(k,', &(,„,A,„',, A,„,)G (A, ', &(, , A, , ) Q T,(A, „A, , ) A„(A,„)b,"

Case G: Si, & a & P & v:
v —1 P—1

(T'I IE„„EpIT) =hQ, (A, , ) Q T (X,A. , )Fp(Ap, kp, ,kp, ) Q T, (A,,', l,„,X,' „A,„,)G (A, ', l, , l. , )
p=P+1 K=a+1

a —1

X Q T, (A,„A, , ) A„(A,„)bg

(3.9)

(3.10)

In the cases C—G above the quantities Ar(A, , (), B (A, , g), F (p, A. , g), G (p, A, , g), and T (A, , g, p, P) were introduced;
they are defined below (using Q to denote the transpose of the matrix Q):

B (A. , g) =
r &Prpr »r —i ) r—(~'PrPr ipr i —)— (3.1 1)

The notation p, used above refers to the use of the intermediate-state node derived from applying a raising operation,
p', =p, + r},zi, first at the pivot point A, '.

In cases where both elements above are nonzero (two intermediate states exist) (3.11) can be simplified. In addition to
(2.27) —(2.30) we require the results

h, , (g, X—I )+ei~pB,(k;p,p, i+a, l~p, 1+8, 1~+a, 1~)=B,(k,p,p, ip, i+a, 1~)
hh, , (g, k —I)+eq~(p, , i, i+1)

1/2

(3.12)

h, ( (, &(,
—1)+ eq~(p, q, —1 )

A, (gp, +a,~,+a„+a,~, , ) = A, (gp,p, +a,~, , )
h, (g, A.

—I)+ezra, &

and, recalling that k' & A. ,

h, , (A, ', A. —1)+p . . . =h, i(A, , k' —1)—p

From (3.12)—(3.14) it follows that (abbreviating p =A,
' and cr = A, )

(3.13)

(3.14)

B,'(p ~)=B.(S p.p, ip", i».(~'p-.p, --ip', -i)lh, -i(S»~ —I)+p,-i~-i 1

l h.—i (S» ~ —1)+p, —i ~- i
—1 j

[h r,r(p, o —1)+p, , q, + 1]

Similarly,

(4'p p p i)A (~'p p p i)— —
Ar(A, , $)= Ar(~'P P P i)A (4 P P P i)— —

In cases where both terms in the matrix are nonzero this simplifies to the form (again with p =&(.' and cr =A, )

(3.15)

(3.16)
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[I,(p ~ —I)+p.~-i+1)'"
A, (p, o )= A (p p p'p

& )A, (cr;p,p,p, , )[h,(p, cr —I)+p,~, ] ', I, , 1,+ l~irz~h7-(P, O. —1 +P,~
(3.17)

The individual matrix elements of the Fr(p, A. , g) matrices are defined as

F'(p, l., g)=B (g;p p, p'y, )T (p, X;p p'p' @',)+B (A, ;prp' gr', )T (p, g;p p'p, p', ), (3.18)

where i =1,2 for the first and second elements, respectively. Due to the treatment of the symmetrized product of gen-
erators being considered the sums above contain terms which cancel. In general, these expressions reduce to the forms

(p~k) B (fp p lp —&)B—(~» p —1)A (p'p p p

By((&pypy &Py —
&
—)By(~'&Pypy 4y ——

&
) y(P PyPyPy t)—

which can be rewritten in terms of the B matrices as

F y(p&k&g)= Ay(p&pypypy —1)B y(k g&p&yp y ~py»y ~ ) Ay(p&pypypy & )By(k g&pypy ~py tpy ~
) .

(3.19)

(3.20)

Additional simplification of the expressions can be derived in cases where both terms are nonzero. For instance, de-
pending on the relative values of the indices p and A, and g we find from (2.32) (recall that p' =p +8 and

Pr i Py i+ r is+ r is

r(p&prprpr » —-r(p'prprpr ~ )
hy(p, A,

—I)+eg (p g )
—1) h (p, g

—I)+e~ (p ~ )
—1)

hy(p, A,
—I )+ezgyz, hy(p, g —I)+e&g &

(3.21)

Similarly, the two Br matrices appearing in (3.20) are related by a simple multiplicative factor

h (g,p —1)+e &pr, hy(A, ,p 1)+e—
~yp

h (g —1)+e (
—1) h (A, —I)+E ( —1)y P ~pg Pyp —1 y &P ~pk Pyp —1

1/2

(3.22)

such that the final form of Fr involves, at most, the multiplication of a coeScient, A r and the Br subgraph factor
(3.15).

Proceeding in a similar fashion we find for the Gr matrices the expressions

Gr(P»~) r P'Prpr ~Pr ~
— r(~&~'PrprPrPr ~r—P'PrPr ~pr ~y—( &~'PrprPrPr (3.23)

When both terms are nonzero the following relations, derived using (2.31), can be used to further reduce the amount of
computation:

1/2
h (p, &(.

—I)+ez p z & hy(p, g
—1)+a& py&

h (P, A,
—I)+e (p, —1) h (p, g

—I)+e (p, —1)

h (g, p
—I )+e ~(py, —1) hy(g, p

—1)+e „(pr, —1)

h (
—1)+ h (A, —I)+er ~ ~~~r~ &

(3.24)

(3.25)

The greatest degree of computational complexity arises in the evaluation of the T matrices occurring in the overlap
range of the generator product:

r ~&'P'PrPrPr »y —
~ ) —r '~&prprPr &r-

''P'PrprPr »y —
~ r—~&~'PrPypr »r—

T (5 O'p p p 1p 1)T (~ O'p— p p— 1p 1)——
(3.26)

y & ~'P rP rP r »r ~—r ~&—'P'P rp rp r »r—
As might be expected from previous subgraph factors there are numerous simplifications which arise when we consider
subcases. The worst case, in terms of computations, occurs when al1 four matrix elements are nonzero and when both
terms of each Ty factor are nonzero. In such cases (3.26) simplifies to the form

(~'p p p 1)A (k p p p 1)B (%'p—p ip 1)B —(e'p p 1p— 1—)~ (~ r m —0)— (3.27)

where the elements of the 2X2 matrix M (A, , g, &p, g) are
comprised of simple combinations of hooklength ratios.

The results presented in this section are intended to
demonstrate the techniques used for defining the graphi-
cal factors which arise in raising-raising matrix-element
calculations as well as the application of fundamental

I

rules, a calculus in other words, by which specific
simplifications of these factors may be obtained. The fun-
damental quantities in this respect are the subgraphs A
and B from which all other higher-order graphs are
defined. Though the results presented herein are com-
pletely general we have not attempted to cover explicitly
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all of the many special cases which do occur. These can
be derived, however, by the use of the algebra based on
expressions (2.27) —(2.32) and (3.12)—(3.14).

IV. CONCLUSIONS

We have presented a detailed exposition of the algebra-
ic methods used to derive specific subgraph factors per-
tinent to the efficient evaluation of raising-raising matrix
elements of the U(n) group generators. It is to be em-
phasized that the method is fully general with respect to
the treatment of arbitrary S~-adapted irreps of U(n), in
other words, Weyl-Young tableaux of arbitrary shape
(appropriate to n and N). Thus the methods are likely to
be use of practitioners in diverse areas such as nuclear
and elementary particle physics in addition to applica-
tions in the atomic and molecular domains to which the
unitary-group approach has been largely restricted here-
tofore.

As part of the presentation we have introduced a num-
ber of essentia1 algebraic relations, notably expressions
(2.27}—(2.32}and (3.12)—(3.14) which facilitate the deriva-
tions of simplified forms for higher-order graphical fac-
tors. As such, these relations form the basis for a cal-
culus based on the graphica1 techniques of Ref. 31, in
particular, the elementary subgraphs 3 and B.

The treatment of the raising-lowering (lowering-
raising) operator matrix elements will be the subject of
the next paper in this series.
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