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We present a statistical theory of forward and backward Raman amplification and spontaneous
generation in dispersive media pumped by a phase-diffusion field of arbitrary bandwidth. It is

shown that, unless the Stokes input is correlated with the pump, the Stokes output and the pump
are statistically orthogonal, even if the Stokes field builds up spontaneously. The growth of the
average Stokes field amplitude is not affected by dispersion. A general expression is given for the
average Stokes intensity which is valid both above and below the critical pump intensity for over-

coming the decorrelating effects of group-velocity dispersion. If the length of the medium is much
greater than the coherence length associated with the dephasing of the two waves, then the average
intensity of stimulated Raman scattering (SRS) depends on the pump bandwidth. For relatively
short medium lengths the average intensity of spontaneously initiated SRS is essentially indepen-
dent of the bandwidth of a phase-diffusion pump field.

I. INTRODUCTION

The effect of group-velocity dispersion in stimulated
Raman and Brillouin scattering (SRS and SBS) of broad-
band laser radiation has been the subject of numerous pa-
pers. ' ' Yet all the theoretical treatments of this prob-
lem are approximate. The problem arises in the use of
high-power broadband laser systems in important appli-
cations of these two nonlinear-optical processes such as
generation of frequency-shifted laser radiation, pulse
compression, and generation of phase-conjugate waves. '

Morever, it is known that the undesirable presence and
effects of SRS and SBS in other laser applications, such as
laser-induced fusion" and fiber-optic communications, '

can be suppressed by using broadband lasers and disper-
sive media. These are the reasons for the continuing
theoretical interest in this problem and the motivation for
improved theoretical treatments. Note that, in the case
of forward SRS, if the variation of the index of refraction
with frequency is small, the effects of dispersion can be
neglected. ' ' In the case of backward scattering, how-
ever, even if the medium is assumed to be nondispersive,
the counter propagation itself introduces a group-velocity
mismatch that cannot be neglected.

In the absence of group-velocity dispersion the
Maxwell-Bloch equations for SRS in the one dimensional
approximation, neglecting depletion of the pump and of
the ground-state population, can be solved analytically
for an arbitrary fluctuating pump field, and with a ran-
dom Langevin force acting on the medium to simulate
spontaneous Raman scattering. ' ' From the analytic
solutions one can easily then calculate, by averaging, ob-
servables such as the average amplitude (coherent com-
ponent), average intensity, spectrum, and tvvo-time inten-
sity correlation of the Stokes field, as well as the pump-
Stokes field cross correlation. Extensive theoretical work
in this area has been carried out by Raymer and co-

workers' ' for a phase diffusion and a chaotic pump
field of arbitrary bandwidth. In the presence of disper-
sion, the Maxwell-Bloch equations for SRS and the
mathematically similar SBS cannot be solved analytically
for a fluctuating pump field. The prescribed theoretical
approach in this case is to, first, derive the equations of
motion for the quantum operators corresponding to the
various observables mentioned above; second, average
these equations over all fluctuations, quantum and classi-
cal; and third, solve the resulting deterministic equations.
The first significant theoretical work on SRS of broad-
band laser radiation in dispersive media was published by
D'yakov. ' He considers a Raman amplifier pumped by
a phase-diffusion field, and uses a Dyson-type equation
iterative method to calculate the average amplitude and
intensity of the Stokes output field. The calculation is
carried out in the first (Bourret) approximation and pre-
dicts, in agreement with experimental observation, ' the
existence of a critical pump intensity needed to overcome
the decorrelating effects of dispersion. In subsequent pa-
pers, a nonstatistical coupled mode theory is
developed where the pump and Stokes fields are written
as sums over discrete equidistant modes. The mode spac-
ing and, hence, the pump bandwidth are assumed to be
much greater than the Raman linewidth of the medium,
and the interaction between cross modes of the pump and
the Stokes fields is neglected. This model also predicts
the existence of a critical pump intensity. Another treat-
ment that uses a Karhunen-Loeve expansion to study
SRS of a chaotic pump with continuous spectrum is valid
only for pump bandwidths much smaller than the Raman
linewidth. Under this condition there is no critical pump
intensity. In a previous paper on Raman amplification in
dispersive media we presented a mathematical technique
for averaging exactly the integral equation of motion for
the Stokes field amplitude over the fluctuations of a Mar-
kovian chaotic pump of arbitrary bandwidth. The aver-
age intensity, spectrum, and two-time intensity correla-
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tion, however, were calculated approximately using a
Markovian expansion for the Stokes field amplitude, and
not by averaging the corresponding equations of motion
for these observables. In this approximation, it is pre-
dicted correctly that in the case of a narrow-band chaotic
pump the Stokes gain is higher than in the case of a
coherent pump. ' Moreover, the amplification of a
Stokes input that is perfectly correlated to the pump is
described correctly for both narrow-band and broadband
chaotic pumps. But, in the case of the pump bandwidth
being much larger than the Raman linewidth, the Marko-
vian modeling of the Stokes field cannot account for the
growth, out of a coherent Stokes seed, of a non-
Markovian field component that is quasicorrelated to the
pump and grows with nearly the same gain as in the case
of a coherent pump. As a consequence of this, the Stokes
amplification calculated in Ref. 9 for the last case ac-
counts only for the intensity of the Stokes field com-
ponent that is uncorrelated to the pump, and whose gain
is less than that of the quasicorrelated component. Also,
the corresponding spectrum and two-time intensity corre-
lation of the Stokes field should tend to reproduce those
of the pump, just as in the case of the correlated Stokes
input.

In this paper we study the Raman arnplification of a
Stokes signal and the concurrent spontaneous generation
of Stokes radiation in a dispersive medium pumped by a
phase-diffusion field of arbitrary bandwidth. Note that
previous theoretical papers' ' on SRS in dispersive
media do not deal with spontaneously initiated SRS. In
Sec. II we describe the mathematical model giving the
relevant Maxwell-Bloch equations, the initial condition of
the medium, and the statistical properties of the pump
and the intrinsic noise of the medium. In Sec. III we cal-
culate the average amplitudes of the Stokes field and the
Raman transition. We also calculate the cross correla-
tion of the Stokes and the pump field. Finally, in Sec. IV
we derive the equations of motion for the Stokes intensity
operator and calculate the average intensity.

II. BASIC EQUATIONS

Consider a broadband laser field propagating through a
dispersive Raman active medium. In the plane-wave ap-
proximation and assuming negligible depletion, the elec-
tric field of this wave, referred to as the pump, can be
written as

i(cu t+k z)
E~(z, t)=E (t+z/u~)e ' ' +c.c. ,

where ~ =k v is the center frequency of the spectrum,
v the group velocity, and E (t+zlu ) a ffuctuating com-
plex amplitude which is treated as a classical stochastic
process. Note that for either forward or backward Ra-
man scattering, the Stokes field is taken to propagate in
the positive z direction, while the direction of the pump
field is positive z for forward scattering and negative z for
backward scattering. In this paper we model E (t+z/v )

with the well-known phase-diffusion field which has a
constant real amplitude, while its phase is a Wiener-Levy
Markovian process. ' ' The mean value and the auto-
correlation of the complex field amplitude are

(E (t+zlu )) =0,
(E (t+zlv )Ep*(t'+z'/up))

=E~o exp [ —
—,
' y ~

t t '—+ ( z —z '
}Iv

~ ],

(2a)

(2b)

where co, =k, v, is the center frequency of the spectrum
and v, the grou velocity. The quantum field amplitudes
P, (z, t) and, (z, t) are eff'ective multimode photon
creation and annihilation operators, respectively, for the
Stokes field.

The Maxwell-Bloch equations (or Heisenberg equations
of motion) for the Stokes field operator E, and the slowly
varying amplitude Q of the collective atomic raising
operator corresponding to the two-photon Raman transi-
tion in the medium can be written in the form ' '

8 a+—E,(z, )r= i x2Ep(—r+pz)Q (z, r),
az

(4)

id+ ——Q (z, r)
a~ 2

=i'&E~'(r+pz)P, (z, ~)+F (z, r), (5)

where r=t —z/u, is a retarded time and p=(1/u,
+I/u~ ) measures the group velocity mismatch of the two
waves for forward ( —} and backward (+ ) Raman
scattering. The constant a is the linear absorption
coefficient of the medium at the Stokes frequency; I is
the FWHM of the Raman line, and A=co —co, —cuz the
detuning from resonance, with co& being the center fre-
quency of the Raman line. The coupling parameters ~&

and ~2 are defined in Refs. 13 and 16 for vibra-
tional and electronic Raman scattering, and the relation
between them in the meter-kilogram-second-ampere
(MKSA) system of units is ~2=NA'co, x*, /(2e, v, ), where N
is the number density of the medium and e, its permit-
tivity at the Stokes frequency. F (z, r) is a collective
quantum Langevin force operator describing the intrinsic
noise of the medium. ' The statistical properties of the
Langevin force are described by the relations '

(F'(z, ~)) =0,
r(F (z, r)J'(z', r') ) = 5(z —z')5( r~'),

PL

(F (z, r)F (z', v') ) =(F(z, r)P(z', w')) =0,

(6a)

(6b)

(6c)

where pL = A1V is the linear number density of the medi-
um, with 3 being the cross-sectional area of the interac-
tion volume. The medium at position z is assumed to be
in its ground state until the leading edge of the pump
pulse arrives there at ip —pz. This initial state of the
medium is described by the relations'

where y„ is the full width at half maximum (FWHM) of
the Lorentzian spectrum, and E~o the constant real am-
plitude.

The electric field of the Stokes radiation is treated as a
quantum-mechanical operator and is written as

E, (z, t)=P, (z, t)e ' ' +E, (z, t)e



1878 A. T. GEORGES 39

(7a) &Q(z, ro)Q (z', ro)) =0 . (7c)

& g '(z, r, )g(z', r, ) ) = &(z —z'),
PL

(jb) It is assumed that during the interaction the depletion of
the ground-state population is negligible.

III. AVERAGE AMPLITUDES AND CROSS CORRELATIONS WITH THE PUMP

The Heisenberg equations of motion (4) and (5) can be integrated to yield the following two integral equations:
1

&
az z

2 a(zl —z) (
—i 6+ I /2)(TQ —T)E, (z, r) =E,(0, r)e ' ii—r2 e ' ' E (r+pz, )Q (z(, ro)e ' dz,

0
l

z 2 a(z& —z) (
—i 6+ I /2)(rl —T)—i~2 e ' '

dz& e Ep(r+pz()F (z, , r()dr(
0 TQ

z 2 a(z& —z)1
T ( I a+ r/2)(T] T)

+K)K2 e dZ ) e E (r+pz, )E*(r,+pz, )E,(z, , r, )dr, ,
0 TQ

( —i 6+( /2)(~o —r) 7 ( —ii(+( l2i(~( —~i+ e F (z, ~, )dr,
TQ

(
—iA+ I /2)(ri —T)

2
az1

+lKi e E*(r,+pz )E,(0, r) (e ' dr,
TQ

T ( —ia+r/2)(T, —T)
1

&
a(z& —z)+KIlC2 e dr, e' ' E*(r,+pz)E (r, +pz, )Q (z, , r)dz,

0 0

(8)

From these equations we can calculate exactly the average amplitudes, as well as the cross correlations of the Stokes
field and the atomic raising operator with the pump field.

A. Average Stokes field amplitude

On taking quantum expectation values and averaging over the classical fluctuations of the pump, Eq. (8) gives
1 1

&E, (z, )r) =&E,(0,r))e ' +ir(ir2E o f e ' '
dz( J e ~ '

& E, (z , (r)()dr, ,
0 TQ

(10)

where the quantum expectation value is denoted by dropping the circumflex, and the classical average over the pump
fluctuations by angular brackets. In carrying out the average over the phase-diffusion field we have used the relation

&E*(r+pz, )E (r, +pz, )E, (z(, r, )) =&E*(r+pz()E (r, +pz())&E, (z, , r()),
which is exact owing to the statistical independence of the phase increments p (r+ pz( )

—
cp (ro) and

((( (r(+pz() —g (ro), and the fact that E, (z , ()r(depends only on the latter of the two. Note that the decorrelation
above is not valid for other types of stochastic pump fields, such as the chaotic field. Equation (10) can be solved by
Laplace transform techniques. The steady-state solution for 6=0 is

&E,(z)) =&E,(z =0)) exp —gI —a z
r

2 ~ I +q,
where I =2v e E~~ is the pump intensity and gI =4ir, a2E 0/1 is the well-known steady-state gain coefficient per unit
length in the case of coherent pump and Stokes fields. As can be seen, for a phase-diffusion pump the growth of the
coherent component of the Stokes field is not affected by dispersion. This is not so in the case of a chaotic pump, where
the fluctuations in the intensity of the pump give higher gain than in Eq. (11),but the dispersion reduces it. From Eq.
(11) it can also be seen that if the Stokes input is completely incoherent, i.e., & E, (z =0) ) =0, then the Stokes output is
also completely incoherent.

B. Pump-Stokes field cross correlation

Multiplying both sides of Eq. (8) by E'(r+pz) and averaging, we obtain the integral equation

——'( +l l&E*(r+pz)E, (z, r) ) = &E*(7.)E, (0, r) )e

z
2
(a+ ~p(y )(

1

— )
1

( —i 6+1 /2)(rl —T)
+~(~2E„f e' ~ ' dz, f e & Ep'(r, +pz, )E, (z(, r, ) )dr(,

0 TQ
(12)
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X exp[ —,
' (gI —

/ p f y —a )z ] . (13)

In a lossless nondispersive medium, the gain for the cross
correlation and, consequently, for the Stokes field com-
ponent that is correlated to the pump is bandwidth in-
dependent, and equal to that in the case of coherent
Stokes and pump fields. The effect of dispersion, through
the time lag that it causes between the two waves, is to
reduce this gain. Note that if gI~ ( ~p~y~, the cross
correlation decreases with z, but this does not imply that
the Stokes field decreases in intensity. Actually, it experi-
ences a small gain which in the presence of dispersion
cannot be extracted from Eq. (13), but must be calculated
from the average total Stokes output intensity. If there is
no correlation between the Stokes field and the pump at
the input, i.e., (E*(z =0)E,(z =0) ) =0, then according
to Eq. (13), no correlation develops through either the
amplification or the spontaneous Raman generation pro-
cess. This can also be seen, in the case of nondispersive
media, by multiplying the analytic expression for the
Stokes field in Eq. (19) of Ref. 16 by E~*(r) and averaging.
In the case of a nondispersive Raman generator pumped

I

where again the implicit field decorrelation is exact for
the same reasons as in the case of Eq. (10). For b, =0, the
steady-state solution for the pump-Stokes field cross
correlation is

(Ep*(z)E,(z) ) = (Ep'(z =0)E,(z =0) )

by a broadband (y ))I ) pump, ' ' the Stokes field that
grows from noise tends to reproduce the pump spectrum,
but there is no correlation between the two fields in the
strict statistical sense. In fact, as we have seen, the two
waves are statistically orthogonal, i.e., (E~*(z)E,(z) ) =0.
The small difference in the two spectra is associated with
a slow stochastic phase difference in the time domain
which makes the stationary cross correlation equal to
zero. Indeed, the fact that (i) the Stokes intensity in a
nondispersive Raman generator pumped by either a
coherent or a phase-diffusion field and (ii) the
amplification of a coherent Stokes input in a nondisper-
sive Raman amplifier pumped by a phase-diffusion field
are both proportional' ' to exp(gI&z)I(rrgI&z)' is a
manifestation of the lack of cross correlation between the
fields. The Stokes field amplitude does not follow exactly
the Auctuations of the pump, and this reduces the gain by
the factor (rrgI z)' compared to the case where the
Stokes field amplitude is an exact replica of the Auctuat-
ing pump amplitude. Therefore, in the two cases above
we can only speak of the Stokes field as being quasicorre-
lated with the pump.

C. Statistics of the Raman transition amplitude

Averaging Eq. (9) in a procedure similar to that used in
the case of Eq. (8), we obtain

+l I(Q'(z, r)) =i», J e ' (E*(r,+pz)E, (0, r, ))e ' ' dr,
7p

(
—i 5+ I /2)( ~) —~) 2

(a+ lyly )( )
— )

1

+K iK2Ep() 8 dr, e ' ' ' (Q*(z„r,))dz, ,
7p 0

(14)

where the quantum expectation value of the operator Q (z, r) is denoted by the conjugate amplitude Q*(z, r). For
b =0, the steady-state solution is

2K]
(Q*(z))=i (E*(z=0)E,(z =0)) exp[ —,'(gI~ —

~p~y~
—a)z]

2K]=i (,E*(z)E,(z) ) . (15)

Thus, the average Raman transition amplitude is proportional to the pump-Stokes field cross correlation. Likewise, we
can show that the steady-state pump-Raman transition amplitude cross correlation is given by

(E (z)Q "(z) ) =i» '
,'gI (E, (—z)) .~ r+q, (16)

Relations (15) and (16) refiect the parametric nature of stimulated Raman scattering. If the Stokes field has a com-
ponent that is correlated with the broadband pump, Eq. (15) says that the Raman excitation (phonon or electronic) of
the medium has a corresponding coherent monochromatic component. In the case of spontaneously initiated SRS, as
the Stokes field tends to reproduce the pump spectrum (y~ ))I ), the phonon wave tends to become monochromatic.
On the other hand, when a coherent Stokes seed is amplified from a broadband pump below the critical pump intensity
(see discussion in Sec. IV), and the Stokes output is essentially monochromatic, Eq. (16) says that the phonon wave is
correlated with the pump. Of course, this does not imply that the phonon spectrum reproduces the pump spectrum.
Unlike the Stokes field, the spectral width of the medium excitation cannot exceed the Raman linewidth I".

IV. AVERAGE STOKES INTENSITY

From Eqs. (4) and (5) we can derive the following coupled equations for the Stokes intensity Hermitian operator

I, (z, r}=2U,e,E,(z, r)E, (z, r}
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and the field-matter product operator C(z, r) =P, (z, r)Q(z, r):

+a I, (z, r)=is'2[E*(~+pz)C'(z, ~) E—(r+pz)C' (z, r)],
z

(17)

r+id+ —C(z, r) = i'',—E~(r+pz)I, (z, r)+P, (z, r)P(z, r)+
a7 2 s z, v z, 7

'7
(18)

where KI —Kl/(2e, u, ) and I~z=2e v Kp. The last term on the right-hand side (rhs) of Eq. (18) involves the time derivative
of k, (z, r), which can be evaluated from Eq. (8) using Leibnitz s rule for differentiation of integrals. Integrating then
the two equations above and performing a formal average leads to the following integral equations:

(I, (z, r) ) =I,oe '+iz2 f e ' [(E*(r+pz, )C(z&, r) ) —c.c. ]dz&,
0

(19)

(E*(r+pz)C(z, r) )
(ib, +l /2)(r —7)

e I

0

(E*(~+pz)(E,(z, r, )F(z, r, )) )

I

+~z+E +~ +~z ~
F z

~
7 ] z 7

0

+ ef ( —id+I /2)(r —7 )2 I

70

X E' ~+pz ib, —+ — E (r, +pz, )
r a

7 ]

X (F tz|,T'p)Q(z 7'1!)&)diaz dzi

—ilrII oe '(E*(r+pz)E (r, +pz))
z a(z

I
—z )

+1~&s2 e ' [(E*(r+pz)E (r&+pz)E*(r&+pz&)C(z&, r&))
0

—(E'(r+pz)E (r, +pz)E (r, +pz, )C*(z„r,))]dz,
I

z
2 a(zI —z)

+Ir, a2 e (E*(7.+pz)E (r, +pz, )E*(r,+pz, )(E,(z„)rQ(z, )r)~ )
0

I ( id+ I /2)(72 rI )
e

0

r aX E* ~+pz iA ——+ Ez ~]+pz& &* 2 p ]2

X(E,(z le 2)Q(z, x, ))~)diaz dz| dvq,

(20)

where ( ) denotes quantum average, and for simplicity in this section we assume that the Stokes input field is coherent
and its intensity is I,o. Note that in obtaining Eq. (20) we have neglecting a transient term corresponding to the time
derivative of the second term in Eq. (8) because we are interested in the calculation of the average Stokes intensity only
in the steady-state case.

The three correlation functions on the rhs of Eq. (20) which involve the Langevin force can be evaluated exactly.
Multiplying Eq. (8) by F(z, r) and averaging gives

—'( —
)(E,(z, r)F(z, ~)) = —i@2f e ' '
dz& f e ' E (7.+pz, )(F (z&, r, )F(z, r))dr,

0 rp

r
Ep(r+pz) .

4pL
(21)
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Note that there is no correlation between F(z, r) and E, (z), r) ) for z, (z and ri (r in the last term of Eq. (8), because
the generated Stokes field at a given point in spacetime does not depend on the Langevin force at later times. Multiply-
ing the Hermitian conjugate of Eq. (9) by I' (zi, w) ) and averaging gives

7

(I' (z„ri)Q(z, r))) = f e ' ' (P (z), ~))P(z, r2))dr2
70

r
6(z —z, ) .

2PL
(22)

For the third term on the rhs of Eq. (20) which involves the Langevin force the averaging leads to

r

(
E "( +rz(zl (6——+ E ( r+r|(z)z|(F lzl, rz)g(z, r|))z)2 7

(i'd+I /2){r —
2 r)) . I

e '5 z —z, ib, ——+
2 B7)

(E"(r+pz)E (r)+)Liz) )

l
(

PL
(23)

where we have used the fact that the order of
differentiation (8/Br) ) and averaging can be inter-
changed. Using Eqs. (21)—(23) in conjunction with Eq.
(2b), the expression for the first three correlations on the
rhs of Eq. (20) reduces to

i E oe —' ' ' {[id+—,'(I +@~)]
2pL

—[ib, ——,'(I —y )]e
(24)

The two correlations on the rhs of Eq. (20) which in-
volve C(z„)ra)nd C*(z),r)) can be also evaluated ex-
actly and they reduce to

1

E~~e
' ' ' [(E~*(r)+)Mz) ) (Cz„)r))—c.c. ] . (25)

For the first correlation function inside the last set of
curly brackets on the rhs of Eq. (20) we have

&E*(r+pz)E (r)+(Mz) )E„"(r)+)L)z))

X (E,(z„)Qr(z, r, ) )q )

(26)

At A
The average ( E(z ,ir) )Q(z, r))) is a two-point, one-
time cross correlation and cannot be evaluated exactly.
We can, however, relate it, to a good approximation, with
the one-point, one-time cross correlation ( C'(z), r) ) ) ~

as
follows:

I

=E oe
' ' ' X exp[ —,'(gI —2~p~y —a)(z —z, )]

X ( E*( )+prz ) )C(z„))r.) (28)

where we assume that Q(z, r)) grows from Q(zi, w)) ex-
ponentially, in the same way that (Q(z)) grows from
(Q(zi )) according to Eq. (15). The justification for this
approximation is based on the following analysis. Con-
sider the classical triple correlation (Ez*E,Q). If we
write E, =(E, )+E, and Q =(Q)+Q, where E, and Q
are fluctuating parts with zero mean value, then we have

( Ep*E,Q ) = ( Ep' ) ( E, ) ( Q ) + ( E*E, ) ( Q )

+(E,*Q &(E, )+ &E,*E,Q) .

The first term on the rhs is zero since (E') =0, and the
last term can be neglected compared to the other two.
From the results of Sec. III it follows that the dominant
term is the second term,

&E,*E,)(Q) =(E;E, ) &Q),
which has the largest gain coefficient. Hence, it
is justified to approximate Q(z, ~) ) in the triple correla-
tion on the rhs of Eq. (26) with its average value and ob-
tain thus relation (27). The effect of this approximation
on the calculation of the average Stokes intensity will be
discussed later on in this section. Using relation (27), Eq.
(26) reduces to

E 0(E*(r+pz)(E, (z ,i)r)Q(z, r)))q)

&&,'(z, , , )Q(, , ) &,

= ((z„r, )), exp[ —,'(gr —
~)u~y,

—a)(z —z, )], (27)

Similarly, we can show that the second correlation func-
tion inside the last set of curly brackets on the rhs of Eq.
(20) reduces to
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r aE' &v+yz& zd ——+ E (vl+yzl& Ep&v)t pz, &(E, &z, , v~&Q(z, r, &&q)2 a~1

1
)

ii&&,
——+ e ' ~ ' (E*(r~+&Mz)E&(r&+pz& )Ez*(r2+pz, )(E,(z&, r2)Q(z, r&) )~ )

2 'BT]

)+~ I( — )]=[id, + —,'(y —I )]E' e ' ' ' ' (E*(r +pz, )(E,(z, , r )Q(z, r, ) ) )

1r]' ' '1)
[I a +,' ( 1,—r ) ]E,',e ' ~ ' exp [,' (gI, —2

~ &u ~ Y,
—a ) (z —z, ) ]& E,*( r, +„,, )C (,„r,) ) (29)

where in the first step we have interchanged the order of time differentiation and statistical averaging. Note that for a
phase-diff'usion field the average of the product E*(r,+pz )E (r&+pz& ) is not a function of r&. In the last step we have
employed again relation (27) and, in addition, have assumed that Q(z, , r, )=Q(z&, rz). The latter assumption of sta-
tionarity is justified since we are interested in the calculation of steady-state average values only.

Substituting Eqs. (24) —(29) into Eq. (20) and rewriting the first term on the rhs we obtain

~ r(~, —~)(E*(r+pz)C(z, r)) = i —E 0I e ' dr,
2pL p

& [is+ —,'(r+rp)l(~1 —~)

1[iA+ &(I +@&)](~1— ) z ~(zl —z)
+Ir lrE 0 e ' ' ' dr, e ' [(E(~+pz)C(z„r))—cc]dz,

70 0

[id+ &(r+y )](71 ~)+K1K2EpO e d'T]
70

X e
(a+ ~p~y

——gI )(z —z)
p

0

X (E*(r,+pz, )C(z, , r, ))
T

+[id, + —,&(y —I )]f e
0

X(E&*(rz+pz, )C(z, , rz))dr2 dz& . (30)

The first term on the rhs of the equation above is a source
term associated with spontaneous Raman scattering and
is independent of the detuning and the laser bandwidth,
as expected. It arises from the contributions of the three
diff'erent correlations on the rhs of Eq. (20) which involve
the Langevin force. The second term is a source term as-
sociated with the input Stokes field. The third term de-
pends on the pump bandwidth and is associated with
amplification of the Stokes field component that is un-
correlated with the pump. The last term, which involves
the approximation in Eq. (27), is associated with the
Stokes field component that grows either spontaneously
or from the coherent seed and tends to become correlated
with the pump field, in accordance with our discussion
following Eq. (13).

Equation (30) can be solved by two-dimensional La-
place transform techniques. In the steady-state case and
for zero detuning {6=0), the Laplace transform F{k),
where k is the transform variable corresponding to z, of
the difference

f (z, r) = (Ez*(r+pz )C(z, r) ) —c.c.

is given by the quotient

F(k) =X(k)/Y(k),
where

X(k)=(k+a+ ~p y~
—

—,'gI )

(31a)

and

(k+a) 2 . , p, 4
p0 ~ 1 p0 sOr+PL p

{31b)

——gI Fp (k+a) .' r+r, (31c)

Taking the inverse Laplace transform of F{k)and substi-
tuting it into Eq. (19), the steady-state average value of
the Stokes intensity is found to be

Y(k)=(k +a+ ~p~y
—,'gI ) k+a gI-—Xp
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I Ace,
(I, (z) ) =I„+ ' +I„

(i) &

—1/2+ 1/r)
(e ' —1)

(r)i —1/2+ 1/r) G,+ (e ' —1) (32)

Y(r)) =i) — 1 ——+ —r)+ —(1 —2/r),1 b b

2 2
(33)

where b =I /(I +y~ ). Note that the quantity I A'co, /4A
in Eq. (32) plays the role of an effective input intensity for
spontaneously initiated Raman scattering.

In the case of forward Raman scattering in a non-
dispersive medium (r~ oo ), Eq. (32) becomes

wh««=gI, /lyly, and G, 2=gI rl, 2, with the relative
gain coefficients g, z being the roots of the quadratic po-
lynomial Y(gI r)) given above. For a=0, this polynomi-
al can be rewritten in terms of dimensionless variables as

nomial in Eq. (33). For forward SRS in a nondispersive
medium (r~ oo ) it gives G& =gI and G2=0. According
to this, the Stokes field that grows from the coherent seed
is perfectly correlated with the pump, and there is no in-
terference term in the expression for the average Stokes
intensity, in disagreement with exact nondispersive
theories. ' Moreover, in the case of a monochromatic
pump (y =0) it gives G, =gI and Gi = —lplI . The
fact that the effect of dispersion does not disappear in this
case, as is expected, is unphysical. In these respects, the
present theory is an improvement. Both theories, howev-
er, as well as the nonstatistical coupled mode theory
miss the factor (vrgI z) ' which in the nondispersive

G, z p
case multiplies e ' and accounts for the lack of perfect
correlation between the Stokes field and the pump. In
any case, for high gain this factor becomes unimportant
(see Fig. 4 of Ref. 16).

In the general case of @&0and for high pump intensi-
ties (r )&1), the two gain coefficients are given approxi-
mately by

G, =gI~ —
—,
' lyly [1+(1—3b/2)/(1 b/2)],—(37a)

(I,(z)) =I„+ I i6co r r+r,
4~ ' r+X, r+2r,+I,o

X (esp' —1)

and

G =—' I r
pR p~+

—
—,
'

Ip ly, [1—(1—3b/2)/(1 —b/2)] . (37b)

+2 exp —'gI r
p I +y

z —1

p

(34)

r ra~,(I,(z) ) =I,o 1+gI z + gI z,p r+q, 4W
(35)

which agrees exactly with the results of theories for non-
dispersive media. ' ' At this point, we should mention
that a quadratic polynomial determining the gain
coefficients G& 2 has been obtained also by D'yakov using
a Dyson-type equation method in the Bourret approxima-
tion, neglecting spontaneous Rarnan generation. ' In
our notation, his polynomial takes the form

YD y,q,„(i)) = i) — 1 ——— — i) — —. (36)
r1 r 1

r y r

Note that its coefficients have a different dependence on
the laser bandwidth and the parameter r from our poly-

The two gain coefficients are the same as those in the ex-
act theory of Raymer et al. ' for nondispersive media.
The first term inside the curly brackets gives the growth
of the intensity of the Stokes field component that is
quasicorrelated to the pump. The second term is due to
interference between, on the one hand, the amplitude of
the Stokes field component that is uncorrelated with the
pump and, on the other hand, the Stokes input or part of
the spontaneous Stokes field. This term vanishes when
the pump becomes monochromatic (y =0). For very
low gain (gI z « 1), Eq. (34) reduces to

If y &&I, then the expressions above simplify to
G, =gI —lyly and Gi= ,'gI I /(I +—y ), with G, be-

ing much greater than G2 and determining essentially the
Stokes gain. The last expression for G& agrees with previ-
ous results. ' ' In this high pump intensity regime
(Iz)) lplyz/g) the effect of group-velocity dispersion is
negligible, and the Stokes field is quasicorrelated with the
pump. For low pump intensities (Iz « lp, lyz/g), the
gain coefficients are given approximately by

r
Gi =gI gI

2 Iply,
(38a)

and

G2 = —p l y +gI —,' gI & 0 —.
r

(38b)

The Stokes gain is again determined by G„and can be
high (y &1 ) or low (y ))I ). Note that G, is approxi-
mately equal to twice the gain coefficient for the average
Stokes field amplitude given in Eq. (11). In the low pump
intensity regime, the Stokes field that grows from either a
coherent seed or spontaneous Raman scattering is un-
correlated with the pump.

Figure 1 shows the dependence of G, 2 on the ratio
gI„/l ply, for four different pump bandwidths. It can be
seen that G, is always positive and greater than G2. The
latter, which is associated with an interference term in
the average Stokes intensity, becomes negative if
I & 2

l p l y /g. For very large pump bandwidths
(y~ &&I ), the curve for G& displays a steep increase at
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FIG. 1. Stokes gain coefficients G& (solid line) and G& (dot-
dashed line) vs gI~/~p~) ~ for four different pump bandwidths,

y~ =I /10, I, 10I, and 10'I, where I is the Raman linewidth.
The curves for G~ numbered 1, 2, and 3 correspond to the first
three pump bandwidths. The curve for G& with y~ =10'I falls
on the horizontal axis and is not drawn.
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the critical pump intensity, I,„=~p, ~) /g, and there is a
rapid growth of the Stokes field component that is
quasicorrelated to the pump. For small band widths
(y„& I ), there is no such critical intensity and the
quasicorrelated Stokes field component develops continu-
ously from I =0. We should mention here that the
curves for G, in Fig. 2 of Ref. 2 show a trend similar to
ours, but there are quantitative differences due to the
differences in the polynomials of Eqs. (33) and (36).

The next three figures show the Stokes amplification
z&b ir

7

~, ', z', ~ /I, o, and spontaneous Stokes generation,
(I,(z))/(I A'co, /4A), versus gI /~p, ~I for three different
l

~ ~ ~
P

engths of the dispersive medium. Figure 2 is for z =100
L„h, where L„&= I/~p, ~

I is a mean coherence length for
the pump-Stokes field cross correlation in the case of zero
gain. As can be seen, for this length we can obtain five
orders of magnitude of Stokes amplification with pump
intensities I (0.1I„,for all three different pump band-
widths. This case corresponds to the low pump intensity
regime in Fig. 1, where G, is most sensitive to y and th
Stokes field is uncorrelated with the pump. If in this
case, the intensity I,o of the coherent seed is much greater
than I"Ace, /4A, then the Stokes output is essentiall
monochromatic and we have conversion of broadband ra-
diation into monochromatic radiation. The incoherence
of the pump is filtered by the medium, which is left excit-
ed with an energy spread equal to AI . The conversion
process burns a hole at the center (for b, =0) of the pume pump
spectrum with width I . In order to have high-eneig -energy
conversion efficiency, we must have I =y . The broad-
band to narrow-band conversion could be observed more

th
easily in backward Raman or Brillouin amplification dn, an
t e competing process would be depletion of the pump
from forward scattering. In Fig. 3 the length of the medi-
um is z = L„h', that is one hundred times shorter than in
the previous figure. Therefore, in order to get five orders
of magnitude of Stokes amplification as before, the pump

FIG. 2. Stokes amplification (solid line), (I,(z))/I, o, and
generation (dot-dashed line), (I,(z) ) /( I irido, /4A ), vs gI~ / p ~ I,
for three different pump bandwidths. The length of the medium
is z = ioo/~ p, ~

r.

intensity must be increased above the critical intensity.
In this intensity regime, G& is less sensitive to y, and
this is reflected in the smaller spread of the threshold in-
tensities in Fig. 3 compared to the previous figure. Last-
ly, in Fig. 4 the length of the medium is z =L /100.
To

coh
o get the same arnplification and Stokes generation as

10'

10'

~ 102

~10'

1

.&r

l

10'

FIG. 3. Stokes amplification (solid line) and generation (dot-
dashed line) for z = 1 /~ p, ~

1 .
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growth region) does not depend either on the pump band-
width or the scattering direction.

Comparing Figs. 2 —4 with Fig. 1 of Ref. 9 and Fig. 2
of Ref. 17 for SRS in nondispersive media pumped by a
chaotic field, we expect that the effect of intensity fluctua-
tions in the pump would be to cause a larger spread in the
threshold intensities for the different pump bandwidths
than in the case of a phase-diffusion pump. The increase
in the spread will be on the narrow-band side (yz ( I ) of
the figures.

V. CONCLUSIONS

|0'
gl, /lil

I

fO' 10'

FIG. 4. Stokes amplification (solid line) and generation (dot-
dashed line) for z = I /100~@~ 1 .

before, the pump intensity must be increased to 10, 10,
and 10 times the critical intensity corresponding to the
three bandwidths, y =-I /10, I, and 10I, respectively.
For these pump intensities the effect of group-velocity
dispersion is negligible and G& =gI . The small spread in
the three curves for the intensity of the spontaneously ini-
tiated Stokes radiation is due to the slight bandwidth
dependence (a factor of 2 variation) of the factor multi-

plying e . It is under the conditions of Fig. 4
(z ((L„„,y ))I, and I ))I„),that one would operate
a Brillouin phase conjugate mirror pumped by a broad-
band pump, in order to obtain high-fidelity wave-front in-
version. '

Figures 2 —4 demonstrate very clearly the well-known
(from experimental observations) asymmetry for forward
and backward Raman scattering in the case of a broad-
band pump. Assume that the group velocities for the
pump and the Stokes waves differ by two percent, in
which case p+ = 100~p ~. If Fig. 3 corresponds to for-
ward SRS, then Fig. 2 corresponds to backward SRS for
the same medium length. The range of the absolute
pump intensity in the two figures is the same. Likewise,
if Fig. 4 corresponds to forward SRS, then Fig. 3 corre-
sponds to backward SRS. As can be seen, the asymmetry
depends on the length of the medium, and becomes more
pronounced as the length is increased. Another point
that is demonstrated by the three figures is the fact that
the intensity of spontaneous Raman scattering (linear

We have presented an improved theoretical treatment
of Rarnan amplification in dispersive media pumped by a
phase-diffusion field. In addition, we have treated, for the
first time, the problem of spontaneously initiated SRS in
dispersive media using a Langevin approach. The aver-
age Stokes field amplitude and the pump-Stokes field
cross correlation have been calculated exactly. One of
the new results is the fact that, unless the Stokes input is
correlated with the pump, the Stokes output and the
pump are statistically orthogonal, even if the Stokes field
builds up spontaneously. This is related to the fact that
the reproduction of the pump spectrum by the Stokes
spectrum is never perfect due to the finite Raman
linewidth. Hence, we can only speak of quasicorrelation
between the pump and the Stokes field. The average
Stokes intensity is determined by the triple correlation

(E*(7+Pz)E,(z, 7)Q(z, 7) ),
between the pump, the Stokes field, and the density ma-
trix element for the two-photon Rarnan transition. The
calculation of this correlation is quite complicated, and
new averaging techniques must be developed in order to
calculate the growth of the average Stokes intensity more
precisely. Nonetheless, the present treatment is an im-
provement over previous works. ' ' Other unsolved
problems related to the effects of group-velocity disper-
sion are (i) the exact evolution of the Stokes spectrum, (ii)
the calculation of the two-time intensity correlation of
the Stokes field, (iii) the calculation of the cross correla-
tion between the pump and the Stokes intensities, and (iv)
the effects of pump intensity fluctuations. The solution of
these problems will provide a more complete understand-
ing of the statistical properties of the Stokes radiation
and their dependence on dispersion and pump statistics.
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