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Time evolution in stimulated Compton scattering
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The time evolution of the electron and field operators in stimulated Compton scattering is con-
sidered. The operators are described by equations of motion in which the coordinate and momen-
tum operators of the electron appear separated. These equations are solved by applying a new in-
tegration method based on iteration techniques, so the rigorous solutions are obtained. The resul-
tant operators are presented as a Laplace transform and a subsequent inverse Laplace transform of
suitable functionals. Moreover, the functionals that describe the creation and annihilation opera-
tors are written in ordered form. Finally, applications of these results to particular cases are given.

I. INTRODUCTION

There has been considerable interest recently in the
study of the stimulated Compton scattering (SCS), even
though this process was extensively analyzed long ago. '
This interest has been motivated by studying the proper-
ties of free-electron lasers since SCS is the fundamental
process in a free-electron laser working in the Compton
regime.

It has been shown that, in a moving frame where the
frequency of the radiation propagating along one direc-
tion is identical to that propagating in the opposite direc-
tion, the Hamiltonian for SCS can be written as

H= p +fico(b FbF+b ~bs)
2m

+fib[b Fb~ exp( 2ikz)+b—Fb ~ exp(2ikz)],

where z and p are the coordinate and momentum opera-
tors of the electron, bF and b~ (bF and b~) are the annihi-
lation (creation) operators of the forward and backward
propagating fields, A'co and Ak =Ace/c are the energy and
momentum of the photons, and 6 is the coupling con-
stant. This Hamiltonian implies the conservation of total
photon number N and and total linear momentum. Con-
sequently, systems obeying the Hamiltonian (1) have been
studied by using quantum states ~p, N, n ) expressed as a
product of a plane wave of momentum p for the electron,
a Fock state of n photons for the forward propagating ra-
diation, and a Fock state of N —n photons for the back-
ward propagating radiation. In fact, when a system is in-
itially in the state ~po, No, no), the time evolution of this
state can always be described as a linear combination of
the No+ 1 basic state !po,No, n ) with the same total pho-
ton number No,

po, No, no(t)) = g C„(t)~p 0N on ) .
n=0

Within this framework, from the equation of Schrodinger
we can write a recursive differential equation for the
probability amplitudes C„(t), that, at time t, n photons
are propagating forward and N —n photons are propaga-

ting backward. This equation is given by

i C„(t)=( 2n5+—n p)C„(t)
. d
dt

+b [(N n)(n +—1)]' C„+,(t)

+A[(N —n +1)n]' C„,(t),
where

(2)

k
5 =—[p + 2fikn ( t =0) ], p =

m

24k

Bosco and Dattoli have recognized Eq. (2) as one of the
various types of generalized Raman-Nath equations and
these authors have called it the spherical Raman-Nath
equation. ' '

Raman-Nath equations have been used to describe a
large number of physical problems, but in only a few lim-
ited cases analytical solutions of these equations have ac-
tually been found because of the presence of the nonlinear
term n p. '' Perturbative solutions in the perturbation
parameter p have been recently obtained. The trouble
with these solutions is that the analytica1 expression is so
lengthy that it is very difficult to use it to calculate any
observable physical quantity. ' '

In this paper we will describe a new method to study
the time evolution of a system during the SCS process.
In order to investigate the time development of the field
and electron operators we apply the mathematical tech-
niques that have recently been used for studying the evo-
lution of a quartic anharmonic oscillator. '

First, we write the equation of motion in a form for
which the coordinate and momentum operators of the
electron appear separated. Then, we look for a solution
of these equations by applying iteration methods. But
solutions expressed as a power series of time can be writ-
ten only if a recursive operational relation among the
terms of the power series is found and, at the same time,
the expansion factor ( !n)

' for the generic nth term of
this series is taken into account. With the help of some
integral operators we are able to overcome these
difficulties and to obtain formal solutions of the motion
equations. Finally, we condense the resultant power
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series in integrals of analytical functionals. So the con-
clusive expressions appear in the shape of a Laplace
transform and of a subsequent inverse Laplace transform
of suitable operator functionals. Moreover, the operator
functionals that describe the creation and annihilation
operators of the two fields are presented in normal order
by means of associate boson functions.

The results obtained in this paper allow one to describe
the properties of the forward- and backward-propagating
fields and of the electron in SCS without applying usual
calculations techniques.

Section II is devoted to writing the equations that de-
scribe the evolution of the field operators in SCS. The ex-
act solutions of these equations for the photons of the
forward- and backward-propagating fields are presented
in Sec. III. In Sec. IV a concise analysis of the time evo-
lution for the coordinate and momentum operators of the
electron is given. Finally, in Sec. V these results are em-
ployed to study the time evolution of the photon opera-
tors in particular simple cases.

U(t) = exp(gL ) exp ——.A exp( —gL ),
fi

(8)

where

&= exp( —gL )H exp((L ) .

Consequently, from Eqs. (5) and (7) we obtain

(p —2fikb Fbr) +fico(b FbF+b tombs)2m

+fih(b Fbi+ bFbti ) .

We point out that the coordinate operator z is not
present in &. Then, we rewrite this Hamiltonian as

unitary transformation operator

exp(gL ) = exp( —2ikzb FbF )

is applied to the evolution operator, by using Eq. (3) we
can write

II. EQUATION OF MOTION

In this section we derive the equations that describe
the time evolution of the photon operators in the SCS
process. We will write these equations in a form upon
which we can apply the mathematical method previously
used for studying an anharmonic oscillator.

Let us first introduce some theorems of operational cal-
culus. If 3 and B are two noncommuting operators, g a
parameter, and f a function that can be expanded in a
power series of the argument, we then have'

exp(gA )f(B)exp( —gA )= f( exp(gA )B exp( —gA ))

.8=4 +.8, +A
where

%0= (2m ) 'p ',
P, =fico(b Fbi;+btib8 ),

and

VE2=fi[Ab t bF+p(b FbF) +A(b Fbti+bFb ii )],
with

n= —2am ]p

(10)

(1 la)

(1 lb)

(1 lc)

(12)

and

(3) and

p=2Am 'k (13)

exp(gA )B exp( —gA )=B+g[A,B]
p2

+ ~ [A, [A,B]] +

From these theorems it follows that

(4)

Since

[&0,&~]=0, [&,,A'z] =0,
we have

exp(ga a )f(a, a ")exp( —ga a ) =f(ae ~, a e+&),
n

exp ——A = exp ——& exp

exp( gP )z exp( —
gP ) =z i ftg, — (6) X exp (14)

and

exp(gz )P exp( —gz ) =P +ilia,
Next we recall that the time evolution of an operator 0

is given by the relation

where a and a are annihilation and creation boson
operators and z and p are canonical coordinate and
momentum operators.

Now, we proceed to study the equation of motion. We
begin by analyzing the time evolution operator for SCS

O(t)=U (tjOU(t) . (15)

When this equation is applied to the annihilation opera-
tor bz that describes the backward propagating field in
SCS, by making use of Eqs. (8) and (14) we obtain

U(t) = exp — H—
bs (t) ='9 (z, t)be&(z, t), (16a)

where H is the Hamiltonian defined by Eq. (1). When the where
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gg
Vl(z, t) = exp ——&2 exp

X exp(2ikzb ~bI; ) . (16b)

similar to Eq. (2) can be written when the time evolution
operator exp[ —(it/))14Vz] is applied to an initial state

~pp Np np).

III. PHOTON OPERATORS

0

b I)" (t) = exp —&2 bs exp ——&z (17)

An identical expression describes the time evolution of
the creation operator b B. In order to determine the ex-
plicit form of bz(t) it is useful to study the operator

We will premise some mathematical considerations in
order to make easier the following study of the SCS pro-
cess. First, we introduce the integral operator

I(t;t) )= f dt(, (23)

From the definition we see that the operator
b I)(t) would describe the time evolution of the operator
b~ if the Hamiltonian of the system was &2. Therefore

(R)the operator b (s '(t) obeys the following equation of
motion:

b (R)( t) — [b (R)(t) gy ] (18)
dt

By analogy we introduce the operator

for which we set

I "(t;t„)=f dt, f dt~ f dt„.
Obviously, we have

I "(t;t„)(t„)"=k![(0+n)!]'t'+"

and, in particular,

I "(t)g:I "(t;t„)g—=(n!) 't "g,

(24)

(25a)

(25b)

b I; (t) = exp —&z b~ exp ——&z (19)

which will be useful to evaluate b ~"'. The operator
b P'(t) obeys the equation of motion

provided the function g is chosen so that dg /dt, =0.
Then, we consider the operators J '+ and J ' defined

by the following relations:

J +'(g;g)g"=n!g"

b ~")(t)=— [b ~~)(t—),k, ] .
dt

(20) and

(R)(t) = l t( b (R)(t)F (21)

and

If Eq. (1lc) is introduced into Eqs. (18) and (20), we find
that the operators b (s '(t) and b (z '(t) must satisfy the fol-
lowing equations:

(26b)

These operators can be expressed in explicit form by
using integral transforms. If

&(g;0)f(k)= f "dPexp( —g0)f(P)=q(g)

is the Laplace transform of the function f (j) and

'(g;g)y(g)= . f dgexp(gg)y(71)=f(g)

—2ipb "'(t)[b ' '(t)]tb "'(t)
—ibb I) '(t),

with the initial conditions

b ' '(t =0)=bt), b (t =0)=b ~ .

(22)

and

X (g; g)g" =n!g

( g' 'ti )g = ( n !)

is the inverse Laplace transform of the function y(g), we
have

Here and in the following the boson operators bz and bF
are assumed to be expressed in the Schrodinger represen-
tation when they are written without any indication of
functional dependence. The equations of motion for
[b ~")(t)] and [b P'(t)] are the complex conjugate of
Eqs. (21) and (22), respectively.

When Eq. (21) is solved, we can obtain the explicit ex-
pressions of the photon operators b~(t) and [bt)(t)] by
introducing the solution into Eq. (16). For the particular
symmetry of Hamiltonian A the explicit expressions of
the photon operators bz(t) and [bz(t))~ can be directly
obtained from the expressions of bs(t) and [bs(t)] . To
this end we must exchange the subscripts B and I' and re-
place the propagation vector k by —k in the expressions
of bt)(t) and [bs(t)] . We point out that an equation

Consequently, for the operators (26) we can write

(27a)

and

(27b)

Now, in order to study the time evolution of the opera-
tor b (s )(t), we solve Eqs. (21) and (22). For the integra-
tion we will use a mathematical method, previously ap-
plied to other problems, which is very convenient to
study nonlinear equations. We express the solutions of
the equation of motion as a power series of time. So we
must find a recursive operational relation among the
terms of the power series and, at the same time, take into
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account of the expansion factor (n!) ' for the generic
nth term of the series. We use integral operators that
permit us to deal with these difficulties in different phases
of the calculations. We begin by writing a formal solu-
tion of Eq. (22) that is obtained by iteration techniques.
With straightforward argumentations we find for b 'F '(t)
the following expression:

b '"(r)=&F(r)

+I(r)g [EF(r}+I(t)gIZF(r)+I(r)g I j j j,
(28)

from Eq. (34) we see that the real functions cp(r), P(r},
and y(r) must satisfy the following relation:

= —[b, +i(Q —p)]8 2i—p exp(2y)aa & .

From this relation we find that Eq. (35a} is solution of Eq.
(34) provided

y(r)=(Q —p)r+p(2b, ) '[1—exp( —2b r)],
P(r) =p(2b. ) '[1—exp( —2b, r)],

where the operator I ( t ) has been introduced by Eqs. (25),
the operator ZF(t) is defined as

and

y(r)= —5 r .
ZF(t) =bF i KI(t—)b~,

and the functional g(EF ) is given by

g(EF ) = —[6 I(t)+i (Sl P)]SF—2i PE—FEtFE~ .

Then, from Eq. (21) we have for b PP'(t) that

b PP'(t)=b~ ibI(—t)b F '(t) .

(29)

(30)
X exp[ —ipse [1—exp( —2b, r)]a a j

since for boson operators we have

(36)

On making use of the preceding results we can write the
functional as

y(r) =a exp[ [a'+—i(n i )]r—j

It is trivial to verify that Eqs. (28) and (31) are solutions
of the equations of motion (21) and (22), since the deriva-
tive of Eq. (28) gives

f(d a )a =If(a I —1} . (37)

For our purposes it is necessary to express the r depen-
dence of the functional y by means of the operator I(r).
So, with the help of operator 2 I+ ', we write the following
identity:

+g I ZF(r)+I(r)g I ZF(r)+I(r)g j j j j

and, consequently, it is

b F '(t)= ibb~ —[b, —I(t)+i(Q —P, )]b 'F '(t)

y(r)= exp[I(r)D(il)]2' '(g;r')y(r=r')~!0,

where, for the sake of brevity, we let

D(ri) =
dn

(38)

(39)

y(r)=a+I(r)pj &+I(r)p f &+I(r)pI .
j j j, (32)

where 8 is an annihilation boson operator and the func-
tional ~(y ) is given by

y(y)= —[6 +i(A —p, )]y —2ipyy y . (33)

Here 6, A, and p are suitable real c-number constants.
Our first task is to write the function to which the series
(32) converges. We note that y ( r ) obeys the following
equation of motion:

2ipb '—(t)[b "'(t)] b ' (t) .

Now, we look for the analytical function to which the
series (28) converges. For this purpose let us initially
consider the simpler series

We mean by subscript ~o that the functional at the right-
hand side of Eq. (38) must be evaluated for g =0.

Then, we compare the operators b 'F"'(t) and y(r)
which have been defined by Eqs. (28) and (32), respective-
ly. We see that b 'F (t) can be easily obtained from the
expression of y(r). To this end it is sufficient, in Eq. (32),
to replace b, by 6 I, & by (bF —i AIbz ), 8 by
(b F+i bIb ~ ), and 0 by 0 and to assume r=t. If we use
Eqs. (36) and (38) to express y(r), in order to take into ac-
count of the preceding substitutions we must re~lace 6
by 6'g, 8 by bF —iAqb~, and a by b F+iAgb ~ in Eq.
(36). So for b 'F '(t) we obtain the following expression:

b I"'(t)= exp[I(t)D(g)]2 +'(ri;r')B F"'(ri;r')~!0, (40)

where we have set

= —[b, +i(Q p)]y(~) 2—i'(r)y (r)—y(r) .
d1-

(34)

If we assume that y(r) is expressed as

y(r)= exp[y(r)] exp[i%'(r)]a exp[ i%'(r)], (35a—)

B IF '(ri;r') =SF(ri) exp[ —[b, ri+i(Q p)]r'j—
X exp[ —i@(A g) '[1—exp( 2A rim')]—

XX',(q)S, (~)j, (41)

with

with F ( ri) = b F i brib— (42)

%'(r) =q&(r)a a + /(r}(a a ) (35b) Now, we free Eq. (40) from the operator I(r) with the
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help of the operator J ' '. From the definitions (25b) and
(26b) we find that b P'(t) can be expressed as

b F (t)= J (t;ti)2' '(rt;r)B F (t};r) . (43}

bz(t) = exp( —2ikzob FbF) exp —A, b z"'(t)

If we consider Eq. (31), we see that the operator b ti '(t)
can be described by an equation similar to Eq. (43), name-

ly, with

X exp ——&, exp(2ikzob tFbF ), (48)

(44) zo—=z(t =0) . (49)

where

B ~~ '(ii;r) =bti id'—B F '(ii;r) . (45)

BtI '(ri;r) =bti ib, rtXF(i—})exp(2ikm 'Por)

X exp[(ip —b, g)r]
X exp[ ip(—b, t}) '[1—exp( —2b, ilr)]

XX F(t})XF(ti)l, (46)

with

Po=P(t =0) .— (47)

These results describe the time evolution of the operator
b t, ', which is governed by the equation of motion (18).

In order to obtain the time evolution of bz in SCS we

must introduce the expression of b ti (t) in Eqs. (16). So
we find that

When Eqs. (12) and (41) are introduced into Eq. (45), we
find that the operator B z is given by

(al exp(ga a)la) = exp[[exp(g) —1]a*aI (50)

where g is a c number. ' With the help of this relation we
can write for two boson operators a] and a2 that

While we analyze the consequences of the presence of
b ~z '(t) in Eq. (48), we will order the operators present in
the resulting functional which gives bti(t) We . will write
the boson operators in normal order and reorder the elec-
tron operators so that all coordinate operators zo are
written to the right of all momentum operators po.

We recall that an operator f(a, a ), a function of bo-
son operators a and a, is expressed in normal order
when in each term of the series defining the functional f
all annihilation operators appear to the right of all
creation operators. ' In order to write the functional

f (a, a ) into normal order we use the associate function

f (a, a*), which is obtained by the diagonal elements of
f(a, a } in the coherent state representation,

f(a, a*)=(alf(a, a )la),
with a la) =ala). We find the normal form of f (Q, a )

if we replace o. by a, a* by a, and write each term in
normal order in the function f (a, a*).

In the following we will make use of the relation

(a, , a&i exp[((ii*, a, +i}za z)(i}&a, + i}2az )]la, , az)
= exp(I «p[g(li} I'+ lil I')] —II(lii a +i}a I')(li}, '+ li},l') '), (51)

provided g, and g2 are c numbers and

a
1 a2 0'1, CX2 =Clio'2 0-'1, a2

We will now analyze the operator bti(t) described by Eq. (48). We begin by considering the operator

(52}

(P) lt it,B ~ (t; l; i)=~exp —&, B ii (ri;r) exp ——A (53)

with the Hamiltonian A, defined by Eq. (11b). We directly obtain from Eqs. (5) and (46) that

B z '(t;g; )=rexp( —idiot)B B '(ii;r) .

If we apply the property (37) to Eq. (46), from Eq. (54) we find that

(54)

B Ii '(t;q;r)= exp( —itot)(bji —ibrtexp(2ikm 'Por) exp[(ip —b, t})r]

X expI —ip, (A i}) '[1—exp( —2A gr)][SF(i})X~(ii)+6 ~ i}1+]Igjl ( F))i}. (55)

Then, we consider the operator

B ii '(t;ti;r) = exp( —2ikzob FbF)B ii '(t;t};~)exp(2ikzob FbF ) .

From Eqs. (3) and (6) we have the commutation relation

(56)
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exp( —2ikzob FbF) exp(2ikm 'Por) = exp(2ikm 'Por) exp[ —2ik(zo —2fikm 'r)b FbF] . (57)

Therefore, when we apply the properties (5) and (57) to Eq. (56), for the operator 8 s
' we obtain the following expres-

sion:

B ii '(t;g; r) = exp( —icut)[bti —i brtexp(2ikm 'par) exp[(i iu
—5 g)~] exp(4iirik m 'rb Fb~)

X exp( ip(—A g) '[1—exp( —25 qr)][[X'F '(zo;q}] X'F'(z 0'g)+b, g +
1 I )%'F '(zo,'q)],

where

S'F '(zo;q)=bF exp(2ikzo) ib, q—bti .

(58)

(59)

We point our that Eq. (58) appears to be ordered in the electron operators Po and zo. Since the operators J ' '(t;g) and
J '+'(rt;r) commute with all the operator met in the calculation of B ti ', we can finally write the operator bti(t) as

b ~(t}=J' '(t;g) J'+'(q;r)B I~T'(t;g;r) . (60)

Let us now introduce the boson associate function of the operators b~ and 8 ~,(T)

r (p,p;t)=&p, p lb (t)lp, p }

and

r',"(p, ,p, ;t;~;r)=&p„p, lB ;iI(t;q;r)lp, ,p, },
where, as in Eq. (52), we have

btibF lpga&pF } p/pFlpg~pF )

On making use of Eqs. (5), (13), and (51), we find that the associate function I 'ii
' is given by

I'~ '(pti, pF;t;rt r) = exp( icot)(p—~ i hg —exp(2ikm 'par) exp[(ip —b i))r] exp[[ exp(2i pr) —1]lpF l
I:-(r);r)

Xexp[[:-(g;r)—1)[&F(Pa PF zo r/)) (1+6' 't) ) I'PF(Pti PF zo 'r)))

(61)
where we have put

and

:"(7);r)=exp[ —ip(b, q) '[1—exp( —2b, gr)](1+5, rt ))

yF(Pti, PF', zo, q;r) =PF exp[2i(kzo —pr)] —i hrtP&,

y'F(Pii, PF, zo', g) =PF exp(2ikzo ) i hrtPti . —

(62a)

(62b)

From Eq. (60) we see that the associate functions I ii and I'~ are connected by the following relation:

r, (p„p, ;t) =J '-'(t;q) J '+'(q;r)r~ "(p, ,p, ;t;q;r) . (63)

Consequently, in order to write the desired associate function I ti(pic, pF;t) we must introduce Eq. (61) into Eq. (63).
The associate function for the operator bF(t) which describes the forward propagating field in SCS,

r (p, p;t)=&p, p lb (t)lp, p, &t,

is easily obtained from the expression of I ti(pic, pF;t). To this end we must replace the propagation vector k by —k
and exchange the subscripts B and F in Eqs. (61) and (63), as it has been previously noticed by analyzing the properties
of the operators bz and bF So, for the associate f'un. ction I ii(pii, pt;, t) we obtain the expression

rF(pti, pF, t)=&' '(t;g)&' '(rt;r)r' (p, p, ;t;g; ), - (64)

where it is

I'F '(P&, PF,.t;g;r)= exp( —icut)(PF —iAg exp( 2ikm ~PO~) ex—p[(ip —6 g)~] exp[[exp(2ipr) —1]lPii l I:"(q;r)

X exp[[=(g;w) —1][yti(P&,PF, zo''g''r)l*rB(PB PF zo rt)(1+~ rt

X yti(Pti, PF, zo, rl)),
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with

7 g (pJJ pF'zo' 'g' 7) =pJJ exp[ —2i ( kzo +it r) ]—i b rtpF

(66a)

with

U '(t) = exp ——& exp(2ikzob FbF) .

and

y JJ(pJJ, pF, zo', g) =pJJ exp( —2ikzo) —idgpF . (66b)

Since the operator po commutes with the Hamiltonian. &,
we have that

P, (t)=po+2Akb FbF . (70)

The explicit expressions of the boson operators b~ and bF
are directly obtained from the associate functions
I JJ(pJJ, pF; t) and I F(ptJ, f3F; t) when the variables

pJJ, ptJ, pF and /3F are replaced with the operators bJJ, b JJ,

bF, and b ~, respectively, provided these operators are
written in normal order.

For the sake of completeness we'will rewrite Eqs. (63)
and (64) by expressing the integral operators in explicit
form. If we use the Laplace transform and the inverse
Laplace transform, from Eqs. (27) we find that the associ-
ate functions I JJ(/3JJ, /3F, t) and I F(pB,pF, t) are given by

r, (p, ,p, ;t) =X '(t;q ')X(q -',7)-

On making use of the operator b F (t) defined by Eq.
(19), we find from Eq. (14}that

Pz(t)=2fik exp( 2ikz—ob FbF)[b F '(t)]

Xb F '(t) exp(2ikzob FbF) .

X [[b' (t)] b'"'(t) bF—b F)

X exp(2ikzob FbF) (72)

When Eqs. (70) and (71) are introduced into Eq. (69), for
the momentum operator we obtain the expression

p(t) =po 2fik exp—( 2ikzo—bFbF )

and

XI ' (p,p;t; g=y ', r) (67a) Next, for the coordinate operator z we can write the
well-known equation of motion

I F(pJJ, pF; t) =X '(t;y ')L(y ', r)

xr',"(p, ,p, ;t; q=y ', r) . (67b)

1z(t) = p(t),—
dt m

since for Hamiltonian (1) we have

(73)

We point out that the integral expressions (67) contain a
Laplace transform and a subsequent inverse Laplace
transform only. Therefore these expressions can be used
to study the properties of the fields in the SCS process or
to obtain handy values of quantities in processes which
obey Raman-Nath equations. ' For instance, we recall
the analogy between Hamiltonian (11c) and the Hamil-
tonian governing radiation from a Josephson junction.

IV. ELECTRON OPERATORS

In this section we will suggest a method for evaluating
the time development of the coordinate and momentum
operators of electrons in the SCS process.

We begin by applying Eq. (15) to the momentum
operator p, so that we have

P (t) = U (t)P, U(t) .

From Eqs. (7) and (49) we see that

exp(2ikzob FbF }Po e p( 2ikzob FbF) =Po—2A'kb FbF .

(68)

[H,z]= —imam 'p .

The solution of Eq. (73) can be formally expressed as

z(t) =zo+ m 'I(t)p(t) .

Finally, by using Eq. (72) we see that the time evolution
of the coordinate operator is described by the relation

z(t)=zo+t(po+2fikb FbF) —26k exp( —2ikzob FbF)

xI(t) I [b", (t)]'b,"(t) I

X exp( 2i kzob FbF ) (74)

Thus we have written the desired expressions that de-
scribe the time evolution of the coordinate and momen-
tum operators of electrons in SCS. We point out that by
straightforward calculations the operators z(t) and p(t)
can be ordered as it has been made for the boson opera-
tors btJ(t) and bF(t) in the previous Sec. III, but, for the
sake of brevity, the calculations are not present in this pa-
per.

V. APPLICATIONS

Therefore from Eq. (8}we can write

P(t) =P, (t) —P, (t),
where the operators P, and P2 are given by

P, (t)=[U' '(t)] P U'"'(t)

and

P, (t)=2k'k[U'R'(t)] b, bFU'R'(t), -

(69)

We will illustrate the utility of the present approach by
applying the results to two simple cases. In these calcula-
tions we assume that, at time t =0, the electron is de-
scribed by a state ~po) with Po po) =po~po). For the
sake of brevity we let

( E"(zo ) ) = ( po ~
exp(2inkzo ) ~po )

First, we will analyze the time evolution of the photon
operators by supposing that the parameter p defined in
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Eq. (13) is negligible. As p is intimately connected, in the
SCS process, to the electron quantum recoil, the case may
appear not to be particularly interesting. On the con-
trary, this problem has been extensively studied since it
has been the necessary step for writing the perturbation
solution of the equation of motion (2). ' We consider the

I

associate function (63) that, for p=0, is given by

[ra(pa, pF, t)]„=&' '(t;g)2'+'(ri;~)

x[r~,"(p, , p, ;t;z; )],
where

(75)

[ra (pa, pF, t, t), r)]„=exp( —i tot) I pa —i 6'ti exp[ —(b, ri+i Qo)r][pF '(zo )
—i b rtpa ] j

with

P~ '(zo ) = &E(zo ) &PF, Qo= —2km 'Po .

After the integration Eq. (75) becomes
00

[I (p,p;t)]„=exp( —itot)g' '(t;q)jp —
iraq g [ —(g rt+iQo)rt]"[p (z )

—ihip ]j .
n=0

Then, on performing the inverse Laplace transforms, we find that

O[I a(Pa, PF', t)]„=exP —i co+ t (2y) ' (y+Ao) exP i t +—(y —Qo) exP i t —P—a

+25, exp i t ——e—xp i t p—'F '(zo) . , (76)

where

(4g2+ f12 )
1/2

Consequently, the operator [ba(t)]„ is given by

n,
[ba(t)]„=exp i to+—

2
t (2y) ' (y+Qo) exp i t +(y ——Ao) exp i t ba— —

+25 exp —i —t —exp i —t
~ x

2 2
&E(z, ) &b, (77a)

Likewise, for the operator [bF(t)]„we see that

[bF(t)]„=exp i to — t (2g) —' (y —Qo) exp i t +(y+Q—o) exp i t ba——

+25 exp —i—t —exp i —t
~ x x

2 2
(77b)

So we have found the expressions that describe the time
evolution of the photon operators when p=0. These re-
sults can be obtained by a direct integration of the equa-
tions of motion (21) and (22) also.

Now we wi11 study the time evolution of the photon
operators when the field is described, at time t =0, by a
coherent state i/a, gF & with

bFlla 4F& Al0a A& bal—0a OF& 0al4a 4F& . —

operator b~,

&ba(t)&y &0a A polba(—t)lpga 4F p'o&

which we write as

& ba(t) &~= J '(t;ri) J '+'(ri;~)

x & ga, &F',po l& a '(t;g;r)
I pa, &;po & .

(80)

(81)

(78)

Moreover, in order to simplify the following calculations
the amplitudes gF and ga are assumed such that

(79)

For the following considerations it is convenient to make
use of Eq. (58). Thus we see that

&polB a '(t;g;~)lp &=oexp( icot )[ha+8 'F"'(q;~)], —

(82)

We begin by considering the mean value of the photon where
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B F" (rI;r}=—iver)exp[ —[b, r)+i(Qo p—, }]r]&po I
exp(2i pub FbF)% F '(zo, g)

X exp( —i@(b, r)) '[1—exp( —2h gr)]I [%'F (zo;r))] Sp'(zo', t)) ])lpo)

with

%f'(zo, rt) =bF exp(2ikzo )
—i b r)b~ .

When we expand the operator B F
' as a power series, we obtain

B IF"'(r);r)= —
imari g g (n!1!) '( —I)'[ip(b, g) ']"+'exp[ —[(2n +1)b, g+i(Q o

—p)]r]
n =01=0

X &po exp(2iprb FbF)'8 f (zo p}I [&'F''(zo''rt)] & F '(zo;t) }I"+'lpo) .

In order to give a handy form to the mean value

A. A

%F (Qg, QF, /, v) & Qg, fj,po exp(2i prb FbF)X F '(zo, rt) I [&F (zo' rt}1 &'F '(zo r))] Pa fF po ~ (83)

we introduce some approximations. Since the conditions (79) allow us to neglect the terms of superior order with
respect to

l Ps /gF, we can write Eq. (83) as

+'F '(gz, PF, g;r) = &po exp(2i pr PF l
)(1+ibrtI P& exp[2i(kzo pr)]D(—QF }

—ttz exp( —2ikzo)D(PF)I ) exp(2ikzo)OF O'F 'lpo ~ . (84)

If we make use of Eq. (84), we see that

9 "'(gr)&P~, PFlB F" (g;r}l&~,OF't=&E(zo) ~ty'o '(0F', g)+id &E (zo) ~tg&D(QF)yz '(gF, g) —ibD(QF)yo '(PF', g),
(85)

where

y"(gF;ri)= —ibTt'g g (n!1!) '( —I)'[ip(b, g) ']" '( —[(2n +1)b, g+i[IIo+p(j —1)—2}ulPFl ]]t))"lPF
n, l h =0

(86)

Now it is useful to write some properties of the operator 2 . If f (t)) is an arbitrary function, from the definition
(26b) we have

and

I(t;q)[g 'f(g)]=D '(t)[9' '(t;g)f(r))] (87a)

'(t;q)[gf(q)]= f dt, [i' l(t, ;g}f(g)] .

Consequently, from Eq. (86) we find that the functions

G,'"'(g, g*;t)=J '(t;q)y,'"'(P;q)

(87b)

are given by

G "'(p
Fp Ft)=p eFxp[

—
ipse pF D(t)] g (n!) '[i'd lttFl D(t)]"F';,'(t),

n=0

where

oo

F~'„(t)=J ' '(t;r)) —i bq' g (
—[(2n +1)'h ri+i[Ao+p(j —1)—2plpFl ]]g

h=o

h

If we operate as for Eq. (76), we see that for U ~ 2, we have
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+ ' (t)=Q(g( ) [2i(y" +Q ) ]' exp ——(y(")+II )'
J, n J J J 2

—[2i(Q, —y'"') ']" ' exp —(y'"' —0 )t +2iy(")[(Q )
—(y "') ] '5„2 (89)

where

X~"'= [ 4(2n + I )b, + [Qo+)M(j —1 ) —2p l gF l

2]~
I

) ~~

and

QJ =Qo+)tt( j —1 } 2p I
Q—F I

Then, we introduce Eq. (89}into Eq. (88) and after a little algebra we obtain

oo

G,"(pF, fF;t)= ~ g (n!) '(2i)' 'b(y,'" } '[plpF I
(2b, ) ']"exp ——(t —

ipse)), ~lgFl2)II
n=0

x (y&"'+ $1&
)"+ ' 'exp — (t i—pt) '—

l qF l

')y(.")

(+z —gz" )"+' 'exp —(t —ipse, lgFI )y~ + 2i~(n)[( II )2 (~(n) )2]
—lg (90)

If we consider Eq. (85), we see from Eq. (90) that the mean value

)(t;q)2(+)(q;~) & g, , q, lB (F4)(q;r}lq, , q, )

can be written in the present approximation as

&B F (t))p &E(zo))GQ (QF, QF', t)+&E (Zo))62 (QF QF+lkl/s, t) Go ( PF idge QF t)

Finally, when Eq. (91) is introduced into Eq. (82), from Eq. (81) we find that

& bz(t) )&= exp( —itot)[Pz+ &B F"'(t) ) &] .

Thus the expression that describes the time evolution of the operator bz is obtained.
Now we will study the mean value of the operator bF,

& bF(t) &)( & ggi&F~polbF(t) lgs~WF&po &

On the analogy with the evaluation of the mean value & bz(t) ) v„we consider the expression

&polB F )(t;ri;r)lpo) = exp( itot)[bF+—BI'()q; )]r,

where

B
tI

'(ri;r) = idge —(n!l!) '( —I )'[i)Lt(5 g) ']"+'expI —[(2n +1)b, g i(A +go)] lr—
n, l

X&pol exp(2iprb ~b~)%It (z 7')I[ Bg (zo 'g)] Bg (zo g)]"+'lpo) .

with

g (~ )(zo,.ri) =bs exp( 2ikz() ) i b, rtbF—. —

On the present conditions we can approximate the mean value

+B '( 0a 4F rt' r ) = & 4a WF
'
p o I

exp( 2& p rba ba )& a '( zo '
)1 }[ [& B '( z o

'
fi ) ] & 'a '( z o

' ri' r ) I
'l 0a 6 p o &

as follows:

(Qg QF rt r)= &po l [ i(1 i(611) [gs exp[2i(kzo+p'r)]D(QF)

—Ps exp( —2ikzo)D(QF ) ] )(b, g) '+'gF'gF+' j lpo ) .

(91)

(92)

(93)
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From this relation we obtain

'(g;r)& Ps, g, l&,"'(g;r)lg~, &F & =y ',"(P,;q)+(F(z, ) &O~D(OF)y '~"(gF, g) (—& '(zo) &D(QF)y o' (QF, g),
where

y,"'(WF n)=g(n'i') '( —1)'&,',"".i(n)~A ~""'"0
n, l

(94)

7,"„'&(ri)=imari[(id' —l)6,o+1]g

(ipse)"

'( —[(2n +1)b r)
—i [Qo+p(j +I)] ]71)" .

A=0

If we set

F,"„',(t)=&' '(t;q)[2,"„',(q)],
from Eq. (87b) we see that the functions F "„'& are given by

F ~'„', (t) =a(y,'"') '(ip)"+'[( I —ib)5, 0
—1]C„+i,+ )( y, "'—II, ;t—) @„+—(,+)(T')"' fI, ;t—)

where

(95)

with

l(x;t)= —x 1
exp —xt —Y —xt

2 2

Y, (x)= g (h!) 'x" .
h=0

Here it is

y', "'=[4(2n+1)b, +[ fIO+p(j +I)] ]'
and

0, = —[Qo+p(j+1)] .

When we introduce this result into Eq. (94), from Eq. (93) we see that the mean value of the operator bz can be written

as

(bF(t) &q= exp( idiot) P—F+g(n!I!) '( —1)'[Fo „'t(t)P*"+'f"+'+'+(&(zo)&F,'„'((t)(QF+g' )"+'Q"
n, l

(~ —](~ )&F(lj (t)pen+i(q +q )n+I I+] (96)

The presence of the functions Y; in the expressions (95), which gives the functions F "„'&, does not permit to compact
Eq. (96) further, nevertheless, in specific problems the physical conditions should have to simplify Eq. (96) suitably. To
conclude, we have obtained the desired expressions that give the time evolution of the photon operators when the con-
ditions (78) and (79) are satisfied. In a forthcoming paper we shall show how the above method turns out to be very use-

ful to study the statistical properties of the field after the SCS process.

VI. CONCLUSIONS

We have studied the time evolution of the operators in
the SCS process. The equations of motion have been
solved by using iteration methods and the solutions have
been presented as a Laplace transform and a subsequent
inverse Laplace transform of suitable functionals. The
solutions written in this form permit one to analyze the
properties of the SCS and of other systems that are de-
scribed by particular Raman-Nath equations. In fact, the
inverse Laplace transform as well as the Laplace trans-
form can be evaluated by using the convolution law or
one of the many approximate methods of calculation re-

ported in literature. So many special problems can be
studied without applying the usual perturbation tech-
niques.

In order to verify the feasibility of the present method
we have analyzed the time evolution of the photon opera-
tors in particular cases for which we have been able to
write the resulting functionals in analytical form.
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