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Quantum theory of multiwave mixing. X. Two-photon three-level model
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We present a fully quantum-mechanical theory of nondegenerate multiwave mixing processes in
three-level cascades with a two-photon pump. The explicit formulas for the resonance fluorescence
spectrum and the quantum combination-tone source term are derived. The theory is applied to the
generation of squeezed states of light. We find almost perfect squeezing for some strong-pump in-
tensities and tunings within the Rabi sidebands. We find good broadband squeezing for low-pump
intensities and tunings outside a small region around central tuning. Both cases avoid regions of
significant spontaneous emission.

I. INTRODUCTION

Squeezed states of light are those for which the quan-
tum Auctuations in one quadrature phase of the electric
field are reduced below the average minimum variance
permitted by the uncertainty principle. Such states have
potential applications in optical communication systems
and gravity-wave detection. Due to the dependence of
squeezing on the phase of the electric field, squeezed
states have been predicted to occur in phase-sensitive
nonlinear optical processes, such as parametric
amplification, second-harmonic generation, and four-
wave mixing. The first successful generation of squeezed
states has been reported by Slusher et al. ' using nonde-
generate four-wave mixing. Recently other groups
have also succeeded in producing squeezed states using
different types of nonlinear media.

Previously Sargent, Holm, and Zubairy have derived a
theory describing quantum multiwave interactions in a
nonlinear one-photon two-level medium, in which the
levels are connected by an electric dipole. Later they
have applied this theory to analyze the generation of
squeezed states and compared to the experimental results
of Slusher et al. finding reasonably good agreement.
The first nondegenerate semiclassical theory of multiwave
mixing in a two-photon two-level medium has been given
by Sargent et al. The quantum theory of multiwave
mixing in such a medium has been derived in detail by
Holm and Sargent. Recently Capron, Holm, and Sar-
gent have applied the quantum theory of multiwave mix-
ing for the two-photon two-level model to the generation
of squeezed states of light.

In this paper we extend the quantum theory of mul-
tiwave mixing by Holm and Sargent to treat squeezing in
a three-level cascade model with a classical two-photon
pump at frequency v2 and a cascade of two one-photon
transitions at frequencies v, and v3 (see Fig. 1). The pre-
liminary result was presented in Ref. 10. The model
differs from those studied by Savage and Walls" for
which all field frequencies are identical.

The experimental observation of the suppression of
amplified spontaneous emission by the four-wave-mixing

process in this model has been reported by Malcuit, Gau-
thier, and Boyd. ' This experiment has been interpreted
using classical fields up to fourth order in all mode in-
teractions, ' while we treat a classical pump to all orders
and quantized squeezed modes to first order. Reference
12 also makes the one-photon rotating-wave approxima-
tion for the two-photon pump and neglects the popula-
tion in the intermediate level, while we include the terms
dropped in these approximations. Agarwal' studied this
model using a weak classical two-photon pump and weak
quantized side-mode fields. He showed the generation of
squeezed states, but simplified his treatment along the
lines of Ref. 12 by neglecting dynamic Stark shifts and
the population in the intermediate level. In contrast, our
treatment allows for more general tuning conditions and
nonzero intermediate level population as created by the
potentially strong pump field in conjunction with level
decays.

The two-photon three-level model is shown in Fig. 1.
The upper level a and ground level c have the same pari-
ty, but the intermediate level b has an opposite one.
Therefore the transitions a ~b and b ~c are dipole al-

FIG. 1. Three-level cascade model with a two-photon pump.
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lowed with frequencies v, and v3, respectively, whereas
the transition c~a requires two pump photons with the
frequency vz. We assume that the one-photon pump de-
tuning cob, —vz is suf5ciently large that the dipole transi-
tion c~b with pump frequency vz is negligible. The
pump frequency vz is approximately one-half the atomic
resonance frequency co„—=co, —~, . The side-mode fre-
quencies v, and v3 are assumed to satisfy the conservation
condition v, +v3=2vz, which gives the relation between
the side-mode detuning b ' and the beat frequency
b, —:v~

—v, as b, '=(tabb, —vz) —b. We assume that the
upper level a decays at the rate I, (=I i+I 2) to the
lower levels b and c. Here I

&
and I 3 are the decay con-

stants for the a~b and b~c transitions, and I z allows
for nonradiative decay of level a to level c.

Section II summarizes the basic theory of semiclassical
single-mode interaction. In Sec. III we use the results of
Sec. II to develop the theory of quantum side-mode in-
teractions. Section IV applies the theory to the genera-
tion of squeezed states of light.

we have

I3p„= (D+1) . (9)

Substituting Eq. (9) into (7), we have

D= —(D+1)/T, 2—(iV~„+ c. c. ), (10)

The steady-state solution to the dipole equation (4) is

p„=iVp)~(b, 2)D, (12)

where 62 =~„+~,Iz —2vz is the PumP field detuning as
shown in Fig. I and the complex Lorentzian denominator

1
2)p(&, ) =

yz+iaz
(13)

where the population difference decay time T, is given by

r,
T, = l+

2I 3

II. SEMICLASSICAL SINGLE-MODE
INTERACTION

In this section we consider the single-mode case and
derive the steady-state semiclassical population matrix
elements with the population difference decay time T&.
In an interaction picture rotating at the two-photon fre-
quency 2vz, the equation of motion for the population
matrix elements are given by

Substituting Eq. (12) into (10), we have

D = —(D +1)/T, 2RD, —

where the rate constant

R =I~X~(b~)/2Tt .

and the dimensionless Lorentzian

y2
X~(b,~) =

yz+ 62

(14)

(15)

(16)

p..= (r, +r, )p—.. (i V~,.+c—.c. ), (1)
Solving Eq. (14) in a steady state, we find

p„=I 2p„+I 3pbb+(i V2p„+c.c. ),

Pbb
——r,p..—r

p., = —[y2+ i(~d., + tu, l~ —2v2) jp., + t V2(p..—p„) .

(2)

(3)

(4)

D=
1+I22 2

Finally, using Eqs. (6), (8), and (17), we have

k

l +Iz+

(17)

(18)

where yz=—1/Tz is the two-photon coherent decay rate
between levels a and c, Vz= —k„t z/2 is the effective
two-photon interaction energy with the two-photon
coefficient k„defined in Refs. 7 and 8, cu, is the Stark
shift parameter, ' and the two-photon dimensionless in-
tensity Iz is defined by

I, = 21 Vp I
'tt/ T t T, . (5)

Using Eqs. (1) and (2) with the steady-state solution of
Eq. (3)

p„=(rt/1 3)p„, (6)

Paa +P bb +Pcc

we find the equation of motion for the population
difference D =p„—p„

D = —21,p„—2(i V2p„+c.c. ),
where I, =I 2+I,. Combining Eq. (6) and the trace
condition

where k =a, b, c, and the probability factors fk
's are

given by

I3
I + I

1 3

I, I X'b r +2r

(19)

(20)

III. QUANTUM SIDE-MODE INTERACTIONS

The total Hamiltonian gf consists of three parts, the
atom, the field, and the interaction:

~atom +~field +~i nt

f, =1+f. .

The assumptions and method used to obtain Eqs.
(18)—(21) are again employed in Sec. III when the
quantum-mechanical model is introduced, and we fre-
quently refer to these results.
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The atom Hamiltonian is given by

co, 0 0

salem 0 ~b (23)

The probability of finding n, and n 3 photons in mode 1

and 3 is given by the trace

p„„=(n, n3 lpln, n, )

0 0 co, P55+P33ln ~n —1+Plllnl )~n 3
—1 (27)

The field Hamiltonian is

3

~field X ViQi aj
j =1

and the interaction Hamiltonian is

~ln&=&gi i i i
J

(24)

(25)

The photon rate equation for mode 1 and 3 is given by
the corresponding time derivative. To find p55 p33 and

p&& and the density-matrix elements coupling to them, we
use the basic equation

P~F i(WPgF )+r
(where r are relaxation terms) with the Hamiltonian given
by Eq. (22). We have

where a, and a3 are the annihilation operators for the
field modes 1 and 3, az is the eA'ective two-photon annihi-
lation operator for the field mode 2, U = U (r) is the spa-
tial mode factor for the jth field mode, g is the atom-field
(jth) coupling constant, and the matnces cr„o2, and o 3

are defined by

p55= —(P2+ Vl)p55 —(i V2P25+i Vlp35+c. c. ), (29)

P33 I lp55l„, „,+1 I 3P33
—(iV~ p53+i V3P13+c c ), . .

(30)

pll ~2P44+~3P33ln n +1—(i V3P31+1V2p41+C. C. ),010 00
o&= 0 0 0 o~= 0 0 0

0 0 0 0 0 0

000
o3= 0 0 1

0 0 0
(26)

(31)

V, =g, U, Vrn, +1, V3=g3U3+n3+I,
and the effective two-photon interaction energy V2 is

(32)

where the one-photon interaction energies V, and V3 are
given by

We take mode 2 (two-photon pump field) to be classi-
cal, undepleted, and arbitrarily intense. Modes 1 and 3
are side-mode quantum fields treated only to second or-
der in amplitude and cannot by themselves saturate the
atomic response. The three-level atom interacting with
one strong and two weak-field modes involves at least five
atom-field levels as shown in Fig. 2. We define an atom-
field density operator p ~F and calculate the reduced elec-
tric field density operator p that describes the time depen-
dence of the two quantized fields by taking the trace of
p„F over the atomic states. The states depicted in Fig. 2
have been numerically labeled for notational simplicity.
For example, p53 is equal to

(an, n2n3 l p„F l
bn, + ln2n3 )

V2 =g2 U2+n 2 =-—k„6'z/2, (33)

l(V3P31)l 1+C C. (34)

This equation shows that all we need to find is the dipole
elements p53 and p». Using Eq. (28), we find the equation
of motion for p53 p3&, and the density-matrix elements
coupling to them:

where we neglect the dift'erence between n2 and n2+1,
i.e., we treat the strong mode classically.

Taking the time derivative of Eq. (27) and substituting
Eqs. (29)—(31), we find the photon number equation of
motion for the side-mode fields:

p. .. =»1p53 —( 1p53}l.. ., 1+ (~3P31)l..

4) = an, + 1 n2 2ns+1)-

3) = bn,

1) = cn, + 1 n, n, +1)

S) = an, n, ng

2) =,cn, n2+2ns)

P53
= [r 1 +1(~.b—v

1 }lc 53—
( V2P23 V1P33 V IP55) +1V3 P51

P31
= [r3+1(—~b, v»b»—

3P33 V2P34 } ' V 1P51

p43= [3 1 1( nb Vl )]p43

1(V2P13 V3P41}+'V1P45

P32 [3 3+ i(~b vl ) )P32

i(V*,p, 2
—V—2P35}

—i V3p

(35)

(36)

(37)

(38}

FICx. 2. Five-level atom-field energy-level diagram.
where we used the conservation condition v, +v3= 2vz in
Eqs. (36) and (38). To solve Eqs. (35)—(38), we note that
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the weak side-mode fields assumption means that V1 can
only appear to second order. This means that the
density-matrix elements p55 P33 P11 P52 and p4, , which
are multiplied by the weak side-mode interaction poten-
tials, can be factored into the corresponding semiclassical
value determined by the V2 interaction alone, multiplied
by the corresponding photon number probability

p]0]0= (n] + ln3 Ipln]+ ln3 )

p]]]] (n] +ln3+ llpln]+ ln3+ 1

(45j

(46)

Similarly, the density-matrix elements P54, P21, and P»,
which are also multiplied by the weak side-mode interac-
tion potentials in Eqs. (35) through (38), are given by

Pss =PaaPoooo

P33 PbbP1010 &

P11 PccP1111

Ps2 ' &4 2(P P c )Poooo

P41 +2+2(paa Pcc )P]111

(39)

(41)

(43)

P54 PaaP0011

P21 PccP0011

Ps] ='+2&2(p P )Poo]]

where p~» is defined by

poo» = (n, n3lpln]+ ln3+ 1)

(47)

(49)

(50)

poooo ( n ] n 3 Ip I
n ] n 3 ) =p„ (44)

where p„, pbb, and p„are given by Eq. (18) and the pho-
ton number Probabilities Poooo, P,o,o, and P»» are defined
as

To find the density-matrix element p53 and p31, we
solve Eqs. (35)—(38) in a steady state. Combining Eqs.
(35) and Eq. (38) and solving for ps3 in a steady state, we
have

—i+]I +]( fa &3&z l&2l )poooo+'V]fbp]0]0+i V3 V2(fcg)3 +x)2)poo„]
(1+X@),*IV, I')(1+I,'X, )

where we used Eqs. (39)—(43) and Eqs. (47)—(49). The complex Lorentzians for mode 1 and 3 are defined by

1
k

(51)

(52)

where y, and y3 are the dipole decay constants for a~b and b~c transitions, 6, =62 —6', and b, 3=6'. Similarly, the
matrix element p3] is found from the steady-state solutions of Eqs. (36) and (37)

]+31+3(fc &]&2 I
+2—

I )P]111 +3fbp ]0]0+]+I +2(f.&] &2)poo] ] 1—
(1+m*,n, I V, I')(1+I',i, )

By substituting Eqs. (51) and (53) into Eq. (34) and using Eq. (32), we find the equation of motion

(n]n3lpln, n3) = —A](n]+ l)(n]n3IPIn]n3) —A]n] (n] —ln3lpln, —ln3)
—A3(n3+1)(n]n3IPIn]n3 &

—A3n3(n]n3 —1lpln, n3 —1)

+8](n]+1)(n]+ln3lpln, + ln3 ) B]n](n]n3lp—ln]n3 &

+83(n+ 31)(n]n3+ 1lpln, n3+1) —B3n3(n, n3lpln, n3)
—C3+n](n3+1)(n, —ln3lpln, n, +1)—C3+n]n3(n, —ln3 —1 lpln, n3 )

D]Q ( n ] + 1 ) ( n—3 + 1 ) ( n, n 3 I p I
n ] + 1 n 3 + 1 ) D]+n ] ( n 3 + 1 ) ( n ]

——1 n 3 I p I
n ] n 3 + 1 ),

(53)

(54)

where the coefficients A1, 8, , A3, B3, C3, and D, are
given by

g ]2)] f, +I2&32)2 /4T] T2

1+I2/2 1+I22) 1X)3 /4T1 T2

g 3 %3 f, I2 X)*]X)2l4 T]T2—
1 +I2L2 1 +I~+1Q3/4T1 T2

lg 2) +XI
1+IA/ 2 1+Iq&1%3/4T1 T2

(59)

2

1+I',L,
g 3X)3

2

1+I

fb
1+I22)12)3 /4T1 T2

fb
I +I2+1+3/4T1 T2

|,'56)

(57)

f,2)3 +%2
1+I,'X, 1+I',nP),*)4T,T,

%'e can write an operator equation that yields Eq. (60) by
noting the properties of the creation and annihilation
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operator for mode k

ag lng &
=V'ng+ I in&+1&

and

ak l
n i, ) = 1/ ni, l ng

—1 ) . (61)

Using Equation (61) we finally find the equation of
motion for p, the reduced density operator for the side-
mode fields, in terms of the creation and annihilation
operators of the side modes:

p= —A i(pa, a i
—a, pa, )

—(B,+v/2Q )(a,a, p —a,pa i )

A, + c.c. 04

—A 3(pa3a 3
—a 3 pa 3 )

—(B3+v/2Q)(a 3a 3p
—a3pa 3 )+C3(a 3a i p

—a i pa 3 )

+D i (pa 3a i
—a i pa 3 )+ (adjoint) . (62)

where v/Q is the rate of cavity losses for mode 1 and 3.
The equations of motion for the number operator a&a&

for mode k and combination tone operator a, a 3 are easi-
ly obtained from Equation (62)

d
( a i a i ) = ( a i a i p ) = ( A i B i

—v/—2Q ) ( a, a i )

D*, (a, a—3)+ A, +c.c. , (63)

(a3a3 ) = (a 3a3p) =( A i Bi —v/2Q— )(a 3a3 )

d
, , &=(, ,p)dt

+C3 (a, a3)+ A3+c c. , (64)

=(A, + A3 B, B3 —v—/Q)(—a, a3 )

D, (a 3a3) —+C3( a, a, ) +C 3. (65)

In free space, no build up of photon number occurs, and
d ( nk ) /dt = Ak + Ak . Thus we interpret the inhomo-
geneous term Ak+ Ak' of Eqs. (63) and (64) as the spec-
trum of resonance fluorescence for mode k. Figure 3
plots the centrally tuned spectrum of 3, + 3

&
for

I2 =0.5 and 20. For the strong-pump field of I2 =20, we
note that the resonance fluorescence spectrum has only
two peaks, both of which are at the Rabi frequencies,
compared to the three peaks (two side peaks and one cen-
tral peak) spectrum of the one-photon two-level case. '

The difference Ak —Bk is the semiclassical complex gain
coeKcient for mode k. Similarly the inhomogeneous
term C3 of Eq. (65) is the source contribution for the
quantum combination tone ( a, a3 ), which is responsible
for squeezing. ' The real part of C3 has two peaks at
the Rabi frequencies for strong-pump fields as shown in
Fig. 4, but unlike for A, , one peak is negative.

0

a3. A possible experimental configuration in a cavity is
depicted in Refs. 1 and 6. The squeezed light may be
measurable by means of a homodyne detection scheme'
(note that for very large beat frequencies vz

—v, , homo-
dyne detection may be impractical). This homodyne
detection permits the direct measurement of the variance
for any relative phase shift 0 of the local oscillator. The
amplitude d of the squeezed field is

d =2 '"(a, e "+a',e ') (66)

We define two Hermitian operators d, z =(d+d )/2 and
calculate the spectrum of their variances as discussed in

.4

Re (Cs) 0

FIG. 3. Free-space resonance Auorescence spectrum
3, +c.c. vs 6' for I2 =0.5 and 20, 52=0, C = 1, I, = 1,
l, =I,=1, and yl=y, =y, = l. All frequencies are in units of
y2 ~

IV. APPLICATION TO SQUEEZING

— .4
-10 0 10

The squeezed light results from a linear combination of
the side-mode annihilation and creation operators a, and

FICx. 4. Real part of C3 for I2=0.5 and 10. The other pa-
rameters are the same as in Fig. 3.
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Ref. 6. The expression for the minimum variance outside
the cavity is given by

+ (+]2++34 2l +f3 l )
1 1 v
4 4 Q

where the spectral quantities SI2, 4», and S,4 are given
by Eqs. (38)—(40) of Ref. 6 letting C, =D3=0 and using
the coefficients given by Eqs. (55)—(60) of the present pa-
per

(a3 ice—)(a3 +ice) A I+ ~D& ~ A3 —(a3 +ice)D
&
C3+c C.

~ (a,

+ice�)(a3

+i co)+D, C3 ~2

(a3+i~)C3(A, + A I ) —(a", ice)D—, ( A3+ A3 )+(a; i~—)(a3+ico)C3 D, ~—C3J

J(a, +i co)(a3 +ice)+D, C3 ~

(a, ic—o)(al +ice) A3+ ~C3 A, +(al +ice)C3C, +c.c.
~(a3+ia))(a", +in))+C3D*,

~

(68)

(69)

(70)

where the absorption coefficients uk =Bk —Ak+v/2Q.
Substituting Eqs. (68)—(70) into Eq. (67) and letting

co=0, we calculate the squeezing variance Ad, as a func-
tion of the pump intensity I2, the pump detuning Az, the
side-mode detuning 6', and the cooperativity parameter
C =Ng Q/y 2vwhere we take g, =g2 =g. Figure 5
shows the minimum variance Ad I given by Eq. (67)
versus the side-mode detuning 6' for I2=0.5 and 150,
C =100, and hz=0. We notice that for the low-intensity
case there are two large regions with squeezing on either
side of a small unsqueezed region around b, '=0. For
pump intensities small enough to be treated by fourth-
order perturbation theory, four-wave mixing is the dom-
inant nonlinearity, since spontaneous-emission processes
first show up in sixth-order perturbation theory. A lack
of spontaneous emission aids in the generation of good
squeezing. On the other hand, for strong-pump intensi-

ties, we obtain even better squeezing, namely, for 5'
values within the Rabi sidebands. This is due to the Rabi
splitting of the upper level a accompanied by vanishing
splitting of level b, which, as Fig. 3 shows, leads to negli-
gible spontaneous emission for this tuning region.

Figure 6 plots the minimum variance versus the pump
intensity in the center of this region (b, =0) for various
values of the cooperativity parameter C. We see that as
C increases, squeezing is significantly enhanced for cer-
tain strong-pump intensities. In fact, we can get almost
perfect squeezing by choosing suitable values of the
cooperativity parameter and pump intensity (e.g. ,
Ad& = 10 for C = 100 and I2=-150, and Ad& =-10 for
C = 1000 and I2 —= 1500).

In conclusion, we have treated quantum multiwave in-
teractions in a two-photon three-level cascade model. We
have derived the explicit formula for the resonance
fluorescence spectrum and have shown that the spectrum

Edl' 0 25 b.d '

0 10 10' 104

FIG. 5. Variance Ad, vs 6'=(cub, —v2) —6 for I, =0.5 and
150, C = 100; the other parameters are the same as in Fig. 3.

FIG. 6. Variance hd', vs I2 for C =100 and 1000, 6'=0; the
other parameters are the same as in Fig. 3.
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has only two peaks, compared to the three-peak spectrum
of the one-photon two-level case. We have applied our
theory to the generation of squeezed states of light and
have shown that the two-photon three-level cascade mod-
el predicts broadband squeezing for low-pump intensities
and excellent squeezing for strong-pump intensities in the
vicinity of small side-mode detunings.
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