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Crucial aspect of beam breakup in a steady-state free-electron laser
in the microwave regime
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The beam breakup instability caused by the interaction between beam and induction gaps in a
steady-state free-electron laser in the microwave regime is considered. The large energy spread in-
duced by free-electron laser performance is theoretically proved not to lead to Landau damping of
the beam breakup instability when the synchrotron frequency is of order or larger than the betatron
frequency.

I. INTRODUCTION
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where c is the velocity of light, B~ and E, are the mag-
netic and signal field amplitudes, respectively, k~ and k,

For many years it has been realized that the major lim-
itation to the transportation of high-current beams in
linear accelerators is the growth of a beam-accelerator
cavity instability known as beam breakup (BBU). The
beam breakup instability in induction accelerators has
been extensively studied from theoretical " and experi-
mental ' points of view, particularly in the Advanced
Test Accelerator (ATA). It has been found that optimal
cavity design coupled with the proper magnetic transport
system can greatly reduce BBU growth, and the phase
mix damping provided by its nonlinear focusing can per-
mit acceleration of high currents to arbitrarily high ener-
gies without BBU growth. As expected, the latter fact
supports a popular theory that the beam breakup insta-
bility can be suppressed by Landau damping due to a
spread in the betatron wave number.

Meanwhile, there have been neither experimental
demonstrations nor theoretical investigations of BBU in a
microwave steady-state free-electron laser (FEL). The
microwave FEL is motivated by its use in a two-beam ac-
celerator, where BBU may be particularly serious. An
essential issue of the two-beam accelerator concept is
how far a kiloampere electron beam in a steady-state
FEL can be propagated with tolerable loss of beam quali-
ty. Therefore it is very important to estimate the charac-
teristic BBU growth distance L ~~U.

So far the synchrotron oscillation in a large bucket of a
steady-state FEL has been supposed to induce a relatively
large energy spread associated with a large spread in the
betatron wave number k&, eventually resulting in Landau
damping of the BBU. This hypothesis is easily proven to
be valid when the synchrotron frequency v is su%ciently
smaller than the betatron frequency. However, a typical-
ly proposed scheme does not have this feature. To
demonstrate this we note that the ratio of the betatron
frequency to the synchrotron frequency is described by
(see the Appendix)

are the wiggler period and the signal wavelength in a vac-
uum, respectively, and b is the vertical dimension of the
waveguide. The second term on the right-hand side is
normally much smaller than unity. The power-density
requirements ( —GW/m) in the proposed schemes where
permanent wiggler magnets with the nominal surface
field of —1 T are employed yield 0 & k&/v ~ 2.

The Landau damping hypothesis apparently fails in the
limit of k& /v =0 because the averaged betatron frequen-
cy for each particle is that of the synchronous particle,
i.e., too fast a modulation produces nothing. We are
here concerned with the case in which the synchrotron
frequency is of the same order of magnitude as the beta-
tron frequency; now it is of most interest whether or not
BBU is still prevented from occurring by Landau damp-
ing.

One of the main purposes of the present paper is to
give an answer to this issue from a theoretical point of
view. Present analysis for BBU is based on the BBU
model developed by Briggs et al. , where the induction
gaps couple to each other only through their interaction
with the beam. The synchrotron oscillation of each parti-
cle is included as the periodic energy modulation. Since
we restrict present discussions to the case of a steady-
state FEL, the synchronous energy is assumed to be con-
stant.

The organization of the paper is as follows. In Sec. II,
the above-mentioned BBU model is described. In Sec.
III, we analytically evaluate the dispersion relation for
BBU by the Green's function method and prove that
Landau damping due to a large energy spread is not ex-
pected in a steady-state FEL with the synchrotron oscil-
lation frequency of the same order as the betatron fre-
quency.

II. BBU MODEL

An extremely useful model of BBU will now be de-
scribed. The induction gaps are treated as discretely dis-
tributed along the structure with spacing of L . The
BBU cavity mode is characterized by its angular frequen-
cy co&, its Q or quality factor, and its Z~ /Q or transverse
shunt impedance. The mode is excited by a dipole
current source term which is proportional to the product
of the beam's current and transverse displacement. The
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transverse position of the beam centroid is determined by
the external linear focusing, the cavity fields, and the pla-
nar wiggler field. Here continuous focusing due to quad-
rupole and wiggler fields is assumed.

The force exerted on the beam by the mode is due to
the transverse magnetic field of the mode. We define the
quantity 5, the z-averaged normalized transverse momen-
tum change of the beam centroid, as A =AP~/mc, and
the quantity g, , the transverse position of each particle.
With this definition and the assumption of an isolated
deflecting mode the BBU equations are

the ith particle in the slice at pulse position ~ behind the
pulse head.

III. DISPERSION RELATION FOR BBU

We now try to solve Eqs. (3a) and (3b). Introducing a
new variable
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where (g(t, z) ) is the displacement of the beam centroid,
I~ and Io are the beam and Alfven currents, respectively,
c and cp are the maximum relative energy deviation and
the initial phase for each particle, d is the induction gap
size, b~ is the normalized wiggler field amplitude, yo is
the synchronous energy, and p(E) is the distribution func-
tion. Now, introducing the variable ~= t —z/c that mea-
sures the time delay behind the beam pulse head (we
neglect the change in the longitudinal velocity of the par-
ticle) and averaging (2b) over a wiggler period and over
one period of the induction module (we assume the crude
relation among characteristic distances: Lz~U &2~/k&,
2~/v & L &&2n/k z, ), the BBU model equations become
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01(z)=d/L is taken in the following derivation. The
former represents the time evolution of momentum gain
proportional to magnetic wake fields in the accelerating
gap located at z after pulse head arrival and the latter
represents the orbital evolution of transverse position of

Here c „=o(1 allows the first-order approximation on
the left-hand side with respect to c. For a small ampli-
tude oscillation the BBU exciting term is a perturbation;
therefore the modulation term c. cos(vg) on the right-
hand side is neglected to a first-order approximation. We
may solve Eqs. (3a) and (4) by first Fourier transforming
in the variable ~ to ~. Transformed quantities are denot-
ed by tildes. Then we have

&cog I~ Z~,'— '+ — ~ =--,' (g),
Q IoQ

(Sa)

2- 2

+ kt3+E —
kt3 cos(vg) t), = Bt(z) .

az2 2 '~ dyo

(5b)

7
7 2kt3+E —

kt3 cos(vg) .
2

With the variable Z =v( /2 a Mathieu-like equation

d x/dz +[a +b cos(vg)]x =0,

where a =k&&, b =c(v /2 —
k&&), is rewritten as

d x/dZ-+[a'+b'cos(2Z)]x =0,

We solve (5b) by using the Green's function method. The
exact form of general solution to the homogeneous part
of (5b) must be known to make the Green's function. The
homogeneous equation to (5b) is a Mathieu equation. Al-
though it may be possible to write solutions in terms of
the Mathieu function, they are in general very complicat-
ed; therefore we resort to an approximation of a very
compact form as described below.

We introduce nonlinearization of the Mathieu
coefficient
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where a'=(4/v )a, b'=(4/v )b .Then the Mathieu
coefficient a'+b'cos(2Z) is nonlinearized in the form

which i's a sufficiently good approximation to the original
form when

a '+ b 'cos(2Z) —1+ (a' —1)
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2
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The Hill equation with such a nonlinearized Mathieu
coefficient as (6) is known to admit exact solutions of the
form
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Employing terms of the Bessel function, expression (12) is
described by
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G

Expressions (8) and (9) are represented by original quanti-
ties as
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For k&/v& —, , g —1 and for k&/v& —,', g & —,
' as shown in

Fig. 1; thus G =go &1 except for k&/v- —,'. This enables
us to expand (7) to first order in G; we set
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then

g= vg —G sin(vg) .

Meanwhile, a formal solution to Eq. (5a) is written in
terms of the initial condition and the Green's function as

1 z
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Multiplying both sides by [1+Ecos(v()]', substituting
the expression

b(ai, z') =h (ai)(g(ai, z') ),
where

Using this result and &X+ 1/2 = k& /v, we have
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into the left-hand side, and averaging both sides over the
distribution of energy spread and the initial phase, we
have

(&~(cg, z) ) = ( [1+Ecos(vg)]' f(~,z) ) + f dz'(g(cu, z') ) f f dc dcp p(E)G (z,z'),h (ai) z, , 1 ~ 2~
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where o. is the maximum deviation from the synchronous energy. Substitution of expression (13} into the definition
form of the Green's function,

G (z, z') = [ —2),
+
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with the Wronskian,
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yields
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since the kick term driving BBU is a small perturbation
on the homogeneous betatron motion for a finite distance
and its ripple can be neglected. Assumption of a flat dis-
tribution
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Thus the integral equation (15) is identified as a Volterra
equation of the second kind,

X(z) = Q (z)+ g a f dz'X(z')sin[(kp —vm)(z —z')],h (ai)
L @ok(q

(20)

where the abbreviations X(z) = (g(ai, z) ) and Q(z) = ([1+Icos(vg)]' f(ai, z) ) are used. Utilizing a Faltung theorem,
Eq. (20) can be solved by the Laplace transformation. If we write X(p) as the transform of X(z) and Q (p) as the trans-
form of Q (z), the transformed equation of (20) is written as
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The Laplace inverse transform of X (p) gives the solution
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where e is positive and must be larger than all the real
parts of the poles of the integrand. From the theory of
residue, the integral is evaluated in the form

The integral may be evaluated by the method of steepest
descents to yield

X(z)=g A, (ai)exp[p~o(a~)z], (23)
(j(z) ) ~ 2 (co, )exp[p~~(co, )z +i co,r], (25)

where the saddle point ~, satisfies the following equation:
where p„(co) is the zero point of the denominator in the
above integrand. Finally, the Fourier inverse transform
of X(z) gives

dp~o(~, ) +i~=0 .
dc'

(26)

(24) The real part of p„(cu, } will determine the stability for
BBU.
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where

We need only consider nontrivial poles of the zero
points of the denominator in (22); the problem finally
reduces to a mathematical problem of solving the so-
called dispersion relation

for an arbitrary v because the finite integral (28) is not
represented in terms of elementary functions. However,
we are concerned with the case of k&/v=1 —3 as stated in
the Introduction. From the assumption of k&/v=1 —3,
the parameter (ko/v)go is apparently less than unity;
therefore summing the first few terms (m, n =0, +1) in
Eq. (20) leads to a sufficiently good approximation be-
cause of J„,(z) « 1 when z & 1 for

~
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pressions J„(z)=1—(z /4) and j, (z)-z/2 and perform-
ing integrations, we have
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It hardly seems easy to evaluate zero points from (28) Then, we have a dispersion relation
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We seek the poles from this dispersion relation which
should be close to the poles in the unmodulated system,
p„(cr =0). Setting tu = no+ u, where ttt =p and
no=po(cr =0), substituting this relation into Eq. (29),
and remaining at first order for u and 6, we have

W(cu) =po(e )z +i cov. .

Substitution of (31) into (32) yields
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From our recognition that an ample contribution of the
integral (24) comes from the vicinity of co=~;, we intro-
duce a convenient variable

An assumption of strong focus (h /kii, h /v « 1) leads to
and rewrite (33) in terms of 0,
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where the abbreviation K —= h (co)/2L„k&y„ is used.
Then, the Fourier inverse transformation is written as
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Since K is a function of io or 0, , it is straightforward to
seek a saddle point K,. instead of co, or 0, . Employing
the approximate form of h (co) in the vicinity of co =en;,
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and then
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The saddle point K, satisfies B4/BK =0 (Ref. 10) and is

written as
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The index of the exponential term in (36) is represented
as a function of K by
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Eventually, we can evaluate the BBU e-folding distance
as follows:
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If Eq. (43) is written in terms of L&HU(o. =0) and original
parameters, we have

Laav(o) = Laav(cr =0) v —2k'
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For the present case, the BBU growth distance falls in
the range below,

Lnav(cr —0) &Lanv(o ) ", LHDv(o —0), —(47)

because [(k&/v)g] o —1 at most.
This result should not be so surprising. Equation (13)

indicates that the frequency modulated betatron oscilla-
tion involves an infinite number of eigenmodes with the
frequency ~k&+n v~ and the relative strength of these

The last exponential term represents the BBU growth in
a steady-state FEL. If 5=0, this is in agreement with Eq.
(5.13) in Ref. 2, where the BBU growth rate for a conven-
tional linac has been derived by a different technique
from that presented here. Equation (43) describes the
horizontal excursion of the centroid of the beam segment
placed at ~ behind the beam head propagating through a
steady-state FEL by z.

The nonoscillating phase of (43) represented by 4'(r)
takes its maximum value

modes is determined by the Bessel-function term which is
a function of the betatron and synchrotron frequencies
and the energy spread. This discrete spectrum of oscilla-
tion mode tends to localize at k&(1 —c/2) in the limit of
k&/v~ ~, yielding an effective spread in the betatron
frequency of the beam. The spread leads to Landau
damping of the BBU. %hen k&/v-1, on the other hand,
there are only three dominant modes of k&, ~k&+v~ as de-
rived above. It is easily supposed that interference
among different spectra consisting of three lines is quite
weak. In fact, we have mathematically proved it.

IV. SUMMARY

The integral equation for BBU growth has been evalu-
ated in a compact form, introducing a novel technique of
nonlinearization of the Mathieu coefficient, and the
dispersion relation which is almost valid except, for the
vicinity of a singular point k&/v= —,

' has been derived. In
the region of k& —v of particular interest, we have calcu-
lated saddle points from the dispersion relation and final-

ly arrived at a formula for a characteristic BBU growth
distance LH„&, which is a function of the synchrotron and
betatron frequencies and the energy spread. From the ex-
pression of LH&U, we realize that enlargement in LH&U
due to the energy spread is quite small. Accordingly, we
conclude that a large energy spread particularly for a
FEL in the microwave regime does not contribute to
Landau damping of the BBU.

The above singularity has been artificially introduced
in the process of Mathieu coefficient nonlinearization; it
is not intrinsic to the nature of the frequency modulating
system. The present result, L»„(o-)—L»„(o-=0), is
expected to be valid over a whole range of v —k& includ-
ing kp/v= —,'.

The BBU growth formula gives L ~DU
= 71 m with typi-

cal parameters'' of I8=2 kA, k&=2~/3 m ', L„=2 m,
y=40, co,,Z~ =0.4 cm '. This value is crucial for a
steady-state FEL employed in a two-beam accelerator.
One would have hoped for beam transport over a greater
distance for higher conversion efficiency from beam
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power to microwave power. This requirement may be
satisfied in two possible ways. One of those is to use in-
duction gaps with the same accelerating voltage but
slightly diff'erent deflecting mode frequencies; Landau
damping of the BBU can be expected because of dephas-
ing by the frequency spread. The other is to introduce a
sufficient spread in the betatron number caused by non-
linearity as seen in the ion focusing regime. The latter'
has been proposed in Ref. 11, where a possibility of ion
channel guiding is theoretically anticipated.

The present theory is general for the beam breakup in-
stability in a frequency modulated system. For instance,
the present conclusion can be applied to the case of a rel-
ativistic klystron" (RK), which also is motivated by its
use in a two-beam accelerator, if it is driven with a low
energy. Unlike a steady-state free-electron laser, howev-
er, k&/v in a relativistic klystron is proportional to y'
therefore Landau damping will be expected when a RK is
operated with a sufficiently large y. LtiBU(o. ) in such a
case must be analytically derived by solving the original
dispersion relation (26) or obtained by computer simula-
tions. However, both are out of the present scope.

computer simulations are consistent with the present re-
sult. The author also enjoyed discussions of the present
topic with the KEK FEL group members.

APPENDIX

Following the usual definition for FEL quantities, the
synchrotron frequency is represented by

2e,. bivcos(P, )co, (k~ —6k, )

70 (A1)

where yo is the resonance energy in the rest mass unit, e,.

and b~ are the normalized signal field and wiggler field,
k, and k~ are the wave numbers of the signal field in a
vacuum and of the wiggler field, 6k,. is the diff'erence be-
tween k,. and the wave number in a waveguide, co,. is the
angular frequency of the signal field, and tt, is the reso-
nant phase -O'. Meanwhile, the betatron wave number
is given by
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where the meanings of E, , B~, A, , k„,, and 6 are given in the text. Substitution of numerical parameters E, =100
MV/m and Bu, = 3 kG into (A3) yields
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